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Abstract

This report documents internal details of the CMU Common Lisp compiler and run-time system.
CMU Common Lisp is a public domain implementation of Common Lisp that runs on various Unix
workstations. This document is a work in progress: neither the contents nor the presentation are
completed. Nevertheless, it provides some useful background information, in particular regarding
the cmucl compiler.
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1 Package and File Structure

1.1 Source Tree Structure

The cmucl source tree has subdirectories for each major subsystem:

assembly/ Holds the CMU CL source-file assembler, and has machine specific subdirectories hold-
ing assembly code for that architecture.

clx/ The CLX interface to the X11 window system.

code/ The Lisp code for the runtime system and standard CL utilities.

compiler/ The Python compiler. Has architecture-specific subdirectories which hold backends for
different machines. The generic subdirectory holds code that is shared across most
backends.

hemlock/ The Hemlock editor.

lisp/ The C runtime system code and low-level Lisp debugger.

pcl/ cmucl version of the PCL implementation of CLOS.

tools/ System building command files and source management tools.

1.2 Package structure

Goals: with the single exception of LISP, we want to be able to export from the package that the
code lives in.

Mach, CLX...
— These Implementation-dependent system-interface packages provide direct access to
specific features available in the operating system environment, but hide details of how
OS communication is done.

system contains code that must know about the operating system environment: I/O, etc.
Hides the operating system environment. Provides OS interface extensions such as
print-directory, etc.

kernel hides state and types used for system integration: package system, error system,
streams (?), reader, printer. Also, hides the VM, in that we don’t export anything
that reveals the VM interface. Contains code that needs to use the VM and SYS-
TEM interface, but is independent of OS and VM details. This code shouldn’t need
to be changed in any port of CMU CL, but won’t work when plopped into an arbi-
trary CL. Uses SYSTEM, VM, EXTENSIONS. We export "hidden" symbols related
to implementation of CL: setf-inverses, possibly some global variables.

The boundary between KERNEL and VM is fuzzy, but this fuzziness reflects the fuzzi-
ness in the definition of the VM. We can make the VM large, and bring everything
inside, or we can make it small. Obviously, we want the VM to be as small as possible,
subject to efficiency constraints. Pretty much all of the code in KERNEL could be put
in VM. The issue is more what VM hides from KERNEL: VM knows about everything.

lisp Originally, this package had all the system code in it. The current ideal is that this
package should have no code in it, and only exist to export the standard interface.
Note that the name has been changed by x3j13 to common-lisp.
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extensions contains code that any random user could have written: list operations, syntactic sugar
macros. Uses only LISP, so code in EXTENSIONS is pure CL. Exports everything de-
fined within that is useful elsewhere. This package doesn’t hide much, so it is relatively
safe for users to use EXTENSIONS, since they aren’t getting anything they couldn’t
have written themselves. Contrast this to KERNEL, which exports additional opera-
tions on CL’s primitive data structures: PACKAGE-INTERNAL-SYMBOL-COUNT,
etc. Although some of the functionality exported from KERNEL could have been de-
fined in CL, the kernel implementation is much more efficient because it knows about
implementation internals. Currently this package contains only extensions to CL, but
in the ideal scheme of things, it should contain the implementations of all CL functions
that are in KERNEL (the library.)

VM hides information about the hardware and data structure representations. Contains
all code that knows about this sort of thing: parts of the compiler, GC, etc. The
bulk of the code is the compiler back-end. Exports useful things that are meaningful
across all implementations, such as operations for examining compiled functions, system
constants. Uses COMPILER and whatever else it wants. Actually, there are different
machine-VM packages for each target implementation. VM is a nickname for whatever
implementation we are currently targeting for.

compiler hides the algorithms used to map Lisp semantics onto the operations supplied by the
VM. Exports the mechanisms used for defining the VM. All the VM-independent code
in the compiler, partially hiding the compiler intermediate representations. Uses KER-
NEL.

eval holds code that does direct execution of the compiler’s ICR. Uses KERNEL, COM-
PILER. Exports debugger interface to interpreted code.

debug-internals
presents a reasonable, unified interface to manipulation of the state of both compiled
and interpreted code. (could be in KERNEL) Uses VM, INTERPRETER, EVAL,
KERNEL.

debug holds the standard debugger, and exports the debugger
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2 System Building

It’s actually rather easy to build a CMU CL core with exactly what you want in it. But to do this
you need two things: the source and a working CMU CL.

Basically, you use the working copy of CMU CL to compile the sources, then run a process call
“genesis” which builds a “kernel” core. You then load whatever you want into this kernel core, and
save it.

In the tools/ directory in the sources there are several files that compile everything, and build
cores, etc. The first step is to compile the C startup code.

Note: the various scripts mentioned below have hard-wired paths in them set up for our directory
layout here at CMU. Anyone anywhere else will have to edit them before they will work.

2.1 Compiling the C Startup Code

There is a circular dependancy between lisp/internals.h and lisp/lisp.map that causes bootstrapping
problems. The easiest way to get around this problem is to make a fake lisp.nm file that has nothing
in it but a version number:

% echo "Map file for lisp version 0" > lisp.nm

and then run genesis with NIL for the list of files:

* (load ".../compiler/generic/new-genesis") ; compile before loading

* (lisp::genesis nil ".../lisp/lisp.nm" "/dev/null"

".../lisp/lisp.map" ".../lisp/lisp.h")

It will generate a whole bunch of warnings about things being undefined, but ignore that, because
it will also generate a correct lisp.h. You can then compile lisp producing a correct lisp.map:

% make

and then use tools/do-worldbuild and tools/mk-lisp to build kernel.core and lisp.core

(see section [building-cores], page 7.)

2.2 Compiling the Lisp Code

The tools directory contains various lisp and C-shell utilities for building CMU CL:

compile-all*
Will compile lisp files and build a kernel core. It has numerous command-line options
to control what to compile and how. Try -help to see a description. It runs a separate
Lisp process to compile each subsystem. Error output is generated in files with “.log”
extension in the root of the build area.

setup.lisp Some lisp utilities used for compiling changed files in batch mode and collecting the
error output. Sort of a crude defsystem. Loads into the “user” package. See with-

compiler-log-file and comf.

foocom.lisp Each system has a “.lisp” file in tools/ which compiles that system.

2.3 Building Core Images

Both the kernel and final core build are normally done using shell script drivers:

do-worldbuild*
Builds a kernel core for the current machine. The version to build is indicated by an
optional argument, which defaults to “alpha”. The kernel.core file is written either
in the lisp/ directory in the build area, or in /usr/tmp/. The directory which already
contains kernel.core is chosen. You can create a dummy version with e.g. “touch”
to select the initial build location.
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mk-lisp* Builds a full core, with conditional loading of subsystems. The version is the first
argument, which defaults to “alpha”. Any additional arguments are added to the
*features* list, which controls system loading (among other things.) The lisp.core
file is written in the current working directory.

These scripts load Lisp command files. When tools/worldbuild.lisp is loaded, it calls genesis
with the correct arguments to build a kernel core. Similarly, worldload.lisp builds a full core.
Adding certain symbols to *features* before loading worldload.lisp suppresses loading of different
parts of the system. These symbols are:

:no-compiler
don’t load the compiler.

:no-clx don’t load CLX.

:no-clm don’t load CLM.

:no-hemlock
don’t load Hemlock.

:no-pcl don’t load PCL.

:runtime build a runtime code, implies all of the above, and then some.

Note: if you don’t load the compiler, you can’t (successfully) load the pretty-printer or pcl. And
if you compiled hemlock with CLX loaded, you can’t load it without CLX also being loaded.

These features are only used during the worldload process; they are not propagated to the
generated lisp.core file.



Compiler Organization
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3 Compiler Overview

The structure of the compiler may be broadly characterized by describing the compilation phases
and the data structures that they manipulate. The steps in the compilation are called phases rather
than passes since they don’t necessarily involve a full pass over the code. The data structure used
to represent the code at some point is called an intermediate representation.

Two major intermediate representations are used in the compiler:

• The Implicit Continuation Representation (ICR) represents the lisp-level semantics of the source
code during the initial phases. Partial evaluation and semantic analysis are done on this
representation. ICR is roughly equivalent to a subset of Common Lisp, but is represented as a
flow-graph rather than a syntax tree. Phases which only manipulate ICR comprise the “front
end”. It would be possible to use a different back end such as one that directly generated code
for a stack machine.

• The Virtual Machine Representation (VMR) represents the implementation of the source code
on a virtual machine. The virtual machine may vary depending on the the target hardware,
but VMR is sufficiently stylized that most of the phases which manipulate it are portable.

Each phase is briefly described here. The phases from “local call analysis” to “constraint prop-
agation” all interact; for maximum optimization, they are generally repeated until nothing new is
discovered. The source files which primarily contain each phase are listed after “Files: ”.

ICR conversion
Convert the source into ICR, doing macroexpansion and simple source-to-source trans-
formation. All names are resolved at this time, so we don’t have to worry about name
conflicts later on. Files: ir1tran, srctran, typetran

Local call analysis
Find calls to local functions and convert them to local calls to the correct entry point,
doing keyword parsing, etc. Recognize once-called functions as lets. Create external
entry points for entry-point functions. Files: locall

Find components
Find flow graph components and compute depth-first ordering. Separate top-level code
from run-time code, and determine which components are top-level components. Files:
dfo

ICR optimize
A grab-bag of all the non-flow ICR optimizations. Fold constant functions, propagate
types and eliminate code that computes unused values. Special-case calls to some
known global functions by replacing them with a computed function. Merge blocks
and eliminate IF-IFs. Substitute let variables. Files: ir1opt, ir1tran, typetran,

seqtran, vm/vm-tran

Type constraint propagation
Use global flow analysis to propagate information about lexical variable types. Elimi-
nate unnecessary type checks and tests. Files: constraint

Type check generation
Emit explicit ICR code for any necessary type checks that are too complex to be easily
generated on the fly by the back end. Files: checkgen

Event driven operations
Various parts of ICR are incrementally recomputed, either eagerly on modification of
the ICR, or lazily, when the relevant information is needed.

• Check that type assertions are satisfied, marking places where type checks need
to be done.
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• Locate let calls.

• Delete functions and variables with no references

Files: ir1util, ir1opt

ICR finalize
This phase is run after all components have been compiled. It scans the global vari-
able references, looking for references to undefined variables and incompatible function
redefinitions. Files: ir1final, main.

Environment analysis
Determine which distinct environments need to be allocated, and what context needed
to be closed over by each environment. We detect non-local exits and set closure
variables. We also emit cleanup code as funny function calls. This is the last pure ICR
pass. Files: envanal

Global TN allocation (GTN)
Iterate over all defined functions, determining calling conventions and assigning TNs
to local variables. Files: gtn

Local TN allocation (LTN)
Use type and policy information to determine which VMR translation to use for known
functions, and then create TNs for expression evaluation temporaries. We also accu-
mulate some random information needed by VMR conversion. Files: ltn

Control analysis
Linearize the flow graph in a way that minimizes the number of branches. The block-
level structure of the flow graph is basically frozen at this point. Files: control

Stack analysis
Maintain stack discipline for unknown-values continuation in the presence of local exits.
Files: stack

Entry analysis
Collect some back-end information for each externally callable function.

VMR conversion Convert ICR into VMR by translating nodes into VOPs.
Emit type checks. Files: ir2tran, vmdef

Copy propagation Use flow analysis to eliminate unnecessary copying of
TN values. Files: copyprop

Representation selection
Look at all references to each TN to determine which representation has the lowest
cost. Emit appropriate move and coerce VOPS for that representation.

Lifetime analysis
Do flow analysis to find the set of TNs whose lifetimes overlap with the lifetimes of
each TN being packed. Annotate call VOPs with the TNs that need to be saved. Files:
life

Pack Find a legal register allocation, attempting to minimize unnecessary moves. Files: pack

Code generation
Call the VOP generators to emit assembly code. Files: codegen

Pipeline reorganization On some machines, move memory references
backward in the code so that they can overlap with computation. On machines with
delayed branch instructions, locate instructions that can be moved into delay slots.
Files: assem-opt
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Assembly Resolve branches and convert into object code and fixup information. Files: assembler

Dumping Convert the compiled code into an object file or in-core function. Files: debug-dump,
dump, vm/core
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4 The Implicit Continuation Representation

The set of special forms recognized is exactly that specified in the Common Lisp manual. Everything
that is described as a macro in CLTL is a macro.

Large amounts of syntactic information are thrown away by the conversion to an anonymous flow
graph representation. The elimination of names eliminates the need to represent most environment
manipulation special forms. The explicit representation of control eliminates the need to represent
BLOCK and GO, and makes flow analysis easy. The full Common Lisp LAMBDA is implemented
with a simple fixed-arg lambda, which greatly simplifies later code.

The elimination of syntactic information eliminates the need for most of the “beta transforma-
tion” optimizations in Rabbit. There are no progns, no tagbodys and no returns. There are no
“close parens” which get in the way of determining which node receives a given value.

In ICR, computation is represented by Nodes. These are the node types:

if Represents all conditionals.

set Represents a setq.

ref Represents a constant or variable reference.

combination
Represents a normal function call.

MV-combination
Represents a multiple-value-call. This is used to implement all multiple value
receiving forms except for multiple-value-prog1, which is implicit.

bind This represents the allocation and initialization of the variables in a lambda.

return This collects the return value from a lambda and represents the control transfer on
return.

entry Marks the start of a dynamic extent that can have non-local exits to it. Dynamic state
can be saved at this point for restoration on re-entry.

exit Marks a potentially non-local exit. This node is interposed between the non-local uses
of a continuation and the dest so that code to do a non-local exit can be inserted if
necessary.

Some slots are shared between all node types (via defstruct inheritance.) This information held
in common between all nodes often makes it possible to avoid special-casing nodes on the basis of
type. This shared information is primarily concerned with the order of evaluation and destinations
and properties of results. This control and value flow is indicated in the node primarily by pointing
to continuations.

The continuation structure represents information sufficiently related to the normal notion of
a continuation that naming it so seems sensible. Basically, a continuation represents a place in the
code, or alternatively the destination of an expression result and a transfer of control. These two
notions are bound together for the same reasons that they are related in the standard functional
continuation interpretation.

A continuation may be deprived of either or both of its value or control significance. If the value
of a continuation is unused due to evaluation for effect, then the continuation will have a null dest.
If the next node for a continuation is deleted by some optimization, then next will be :none.

[### Continuation kinds...]

The block structure represents a basic block, in the the normal sense. Control transfers other
than simple sequencing are represented by information in the block structure. The continuation for
the last node in a block represents only the destination for the result.
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It is very difficult to reconstruct anything resembling the original source from ICR, so we record
the original source form in each node. The location of the source form within the input is also
recorded, allowing for interfaces such as “Edit Compiler Warnings”. See section [source-paths],
page 61.

Forms such as special-bind and catch need to have cleanup code executed at all exit points from
the form. We represent this constraint in ICR by annotating the code syntactically within the form
with a Cleanup structure describing what needs to be cleaned up. Environment analysis determines
the cleanup locations by watching for a change in the cleanup between two continuations. We can’t
emit cleanup code during ICR conversion, since we don’t know which exits will be local until after
ICR optimizations are done.

Special binding is represented by a call to the funny function %Special-Bind. The first argument
is the Global-Var structure for the variable bound and the second argument is the value to bind it
to.

Some subprimitives are implemented using a macro-like mechanism for translating %PRIMITIVE
forms into arbitrary lisp code. Subprimitives special-cased by VMR conversion are represented by
a call to the funny function %%Primitive. The corresponding Template structure is passed as the
first argument.

We check global function calls for syntactic legality with respect to any defined function type
function. If the call is illegal or we are unable to tell if it is legal due to non-constant keywords,
then we give a warning and mark the function reference as :notinline to force a full call and cause
subsequent phases to ignore the call. If the call is legal and is to a known function, then we annotate
the Combination node with the Function-Info structure that contains the compiler information for
the function.

4.1 Tail sets

#| Probably want to have a GTN-like function result equivalence class mechanism for ICR type
inference. This would be like the return value propagation being done by Propagate-From-Calls, but
more powerful, less hackish, and known to terminate. The ICR equivalence classes could probably
be used by GTN, as well.

What we do is have local call analysis eagerly maintain the equivalence classes of functions that
return the same way by annotating functions with a Tail-Info structure shared between all functions
whose value could be the value of this function. We don’t require that the calls actually be tail-
recursive, only that the call deliver its value to the result continuation. [### Actually now done
by ICR-OPTIMIZE-RETURN, which is currently making ICR optimize mandatory.]

We can then use the Tail-Set during ICR type inference. It would have a type that is the union
across all equivalent functions of the types of all the uses other than in local calls. This type would
be recomputed during optimization of return nodes. When the type changes, we would propagate
it to all calls to any of the equivalent functions. How do we know when and how to recompute the
type for a tail-set? Recomputation is driven by type propagation on the result continuation.

This is really special-casing of RETURN nodes. The return node has the type which is the
union of all the non-call uses of the result. The tail-set is found though the lambda. We can then
recompute the overall union by taking the union of the type per return node, rather than per-use.

How do result type assertions work? We can’t intersect the assertions across all functions in the
equivalence class, since some of the call combinations may not happen (or even be possible). We
can intersect the assertion of the result with the derived types for non-call uses.

When we do a tail call, we obviously can’t check that the returned value matches our assertion.
Although in principle, we would like to be able to check all assertions, to preserve system integrity,
we only need to check assertions that we depend on. We can afford to lose some assertion information
as long as we entirely lose it, ignoring it for type inference as well as for type checking.
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Things will work out, since the caller will see the tail-info type as the derived type for the call,
and will emit a type check if it needs a stronger result.

A remaining question is whether we should intersect the assertion with per-RETURN derived
types from the very beginning (i.e. before the type check pass). I think the answer is yes. We delay
the type check pass so that we can get our best guess for the derived type before we decide whether
a check is necessary. But with the function return type, we aren’t committing to doing any type
check when we intersect with the type assertion; the need to type check is still determined in the
type check pass by examination of the result continuation.

What is the relationship between the per-RETURN types and the types in the result continua-
tion? The assertion is exactly the Continuation-Asserted-Type (note that the asserted type of result
continuations will never change after ICR conversion). The per-RETURN derived type is different
than the Continuation-Derived-Type, since it is intersected with the asserted type even before Type
Check runs. Ignoring the Continuation-Derived-Type probably makes life simpler anyway, since this
breaks the potential circularity of the Tail-Info-Type will affecting the Continuation-Derived-Type,
which affects...

When a given return has no non-call uses, we represent this by using *empty-type*. This is
consistent with the interpretation that a return type of NIL means the function can’t return.

4.2 Hairy function representation

Non-fixed-arg functions are represented using Optional-Dispatch. An Optional-Dispatch has an
entry-point function for each legal number of optionals, and one for when extra args are present.
Each entry point function is a simple lambda. The entry point function for an optional is passed
the arguments which were actually supplied; the entry point function is expected to default any
remaining parameters and evaluate the actual function body.

If no supplied-p arg is present, then we can do this fairly easily by having each entry point supply
its default and call the next entry point, with the last entry point containing the body. If there are
supplied-p args, then entry point function is replaced with a function that calls the original entry
function with T’s inserted at the position of all the supplied args with supplied-p parameters.

We want to be a bit clever about how we handle arguments declared special when doing optional
defaulting, or we will emit really gross code for special optionals. If we bound the arg specially
over the entire entry-point function, then the entry point function would be caused to be non-tail-
recursive. What we can do is only bind the variable specially around the evaluation of the default,
and then read the special and store the final value of the special into a lexical variable which we
then pass as the argument. In the common case where the default is a constant, we don’t have to
special-bind at all, since the computation of the default is not affected by and cannot affect any
special bindings.

Keyword and rest args are both implemented using a LEXPR-like “more args” convention. The
More-Entry takes two arguments in addition to the fixed and optional arguments: the argument
context and count. (ARG <context> <n>) accesses the N’th additional argument. Keyword args
are implemented directly using this mechanism. Rest args are created by calling %Listify-Rest-Args
with the context and count.

The More-Entry parses the keyword arguments and passes the values to the main function as
positional arguments. If a keyword default is not constant, then we pass a supplied-p parameter
into the main entry and let it worry about defaulting the argument. Since the main entry accepts
keywords in parsed form, we can parse keywords at compile time for calls to known functions. We
keep around the original parsed lambda-list and related information so that people can figure out
how to call the main entry.
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4.3 ICR representation of non-local exits

All exits are initially represented by EXIT nodes: How about an Exit node:

(defstruct (exit (:include node))

value)

The Exit node uses the continuation that is to receive the thrown Value. During optimization,
if we discover that the Cont’s home-lambda is the same as the exit node’s, then we can delete the
Exit node, substituting the Cont for all of the Value’s uses.

The successor block of an EXIT is the entry block in the entered environment. So we use the
Exit node to mark the place where exit code is inserted. During environment analysis, we need only
insert a single block containing the entry point stub.

We ensure that all Exits that aren’t for a NLX don’t have any Value, so that local exits never
require any value massaging.

The Entry node marks the beginning of a block or tagbody:

(defstruct (entry (:include node))

(continuations nil :type list))

It contains a list of all the continuations that the body could exit to. The Entry node is used
as a marker for the place to snapshot state, including the control stack pointer. Each lambda has a
list of its Entries so that environment analysis can figure out which continuations are really being
closed over. There is no reason for optimization to delete Entry nodes, since they are harmless in
the degenerate case: we just emit no code (like a no-var let).

We represent CATCH using the lexical exit mechanism. We do a transformation like this:

(catch ’foo xxx) ==>

(block #:foo

(%catch #’(lambda () (return-from #:foo (%unknown-values))) ’foo)

(%within-cleanup :catch

xxx))

%CATCH just sets up the catch frame which points to the exit function. %Catch is an ordinary
function as far as ICR is concerned. The fact that the catcher needs to be cleaned up is expressed by
the Cleanup slots in the continuations in the body. %UNKNOWN-VALUES is a dummy function
call which represents the fact that we don’t know what values will be thrown.

%WITHIN-CLEANUP is a special special form that instantiates its first argument as the current
cleanup when converting the body. In reality, the lambda is also created by the special special form
%ESCAPE-FUNCTION, which gives the lambda a special :ESCAPE kind so that the back end
knows not to generate any code for it.

We use a similar hack in Unwind-Protect to represent the fact that the cleanup forms can be
invoked at arbitrarily random times.

(unwind-protect p c) ==>

(flet ((#:cleanup () c))

(block #:return

(multiple-value-bind

(#:next #:start #:count)

(block #:unwind

(%unwind-protect #’(lambda (x) (return-from #:unwind x)))

(%within-cleanup :unwind-protect

(return-from #:return p)))

(#:cleanup)

(%continue-unwind #:next #:start #:count))))

We use the block #:unwind to represent the entry to cleanup code in the case where we are
non-locally unwound. Calling of the cleanup function in the drop-through case (or any local exit)
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is handled by cleanup generation. We make the cleanup a function so that cleanup generation can
add calls at local exits from the protected form. #:next, #:start and #:count are state used in the
case where we are unwound. They indicate where to go after doing the cleanup and what values are
being thrown. The cleanup encloses only the protected form. As in CATCH, the escape function is
specially tagged as :ESCAPE. The cleanup function is tagged as :CLEANUP to inhibit let conversion
(since references are added in environment analysis.)

Notice that implementing these forms using closures over continuations eliminates any need to
special-case ICR flow analysis. Obviously we don’t really want to make heap-closures here. In reality
these functions are special-cased by the back-end according to their KIND.

4.4 Block compilation

One of the properties of ICR is that it supports “block compilation” by allowing arbitrarily large
amounts of code to be converted at once, with actual compilation of the code being done at will.

In order to preserve the normal semantics we must recognize that proclamations (possibly im-
plicit) are scoped. A proclamation is in effect only from the time of appearance of the proclamation
to the time it is contradicted. The current global environment at the end of a block is not nec-
essarily the correct global environment for compilation of all the code within the block. We solve
this problem by closing over the relevant information in the ICR at the time it is converted. For
example, each functional variable reference is marked as inline, notinline or don’t care. Similarly,
each node contains a structure known as a Cookie which contains the appropriate settings of the
compiler policy switches.

We actually convert each form in the file separately, creating a separate “initial component” for
each one. Later on, these components are merged as needed. The main reason for doing this is to
cause EVAL-WHEN processing to be interleaved with reading.

4.5 Entry points

#|

Since we need to evaluate potentially arbitrary code in the XEP argument forms (for type
checking), we can’t leave the arguments in the wired passing locations. Instead, it seems better to
give the XEP max-args fixed arguments, with the passing locations being the true passing locations.
Instead of using %XEP-ARG, we reference the appropriate variable.

Also, it might be a good idea to do argument count checking and dispatching with explicit
conditional code in the XEP. This would simplify both the code that creates the XEP and the
VMR conversion of XEPs. Also, argument count dispatching would automatically benefit from any
cleverness in compilation of case-like forms (jump tables, etc). On the downside, this would push
some assumptions about how arg dispatching is done into ICR. But then we are currently violating
abstraction at least as badly in VMR conversion, which is also supposed to be implementation
independent. |#

As a side-effect of finding which references to known functions can be converted to local calls,
we find any references that cannot be converted. References that cannot be converted to a local
call must evaluate to a “function object” (or function-entry) that can be called using the full call
convention. A function that can be called from outside the component is called an “entry-point”.

Lots of stuff that happens at compile-time with local function calls must be done at run-time
when an entry-point is called.

It is desirable for optimization and other purposes if all the calls to every function were directly
present in ICR as local calls. We cannot directly do this with entry-point functions, since we don’t
know where and how the entry-point will be called until run-time.

What we do is represent all the calls possible from outside the component by local calls within
the component. For each entry-point function, we create a corresponding lambda called the external
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entry point or XEP. This is a function which takes the number of arguments passed as the first
argument, followed by arguments corresponding to each required or optional argument.

If an optional argument is unsupplied, the value passed into the XEP is undefined. The XEP is
responsible for doing argument count checking and dispatching.

In the case of a fixed-arg lambda, we emit a call to the %VERIFY-ARGUMENT-COUNT funny
function (conditional on policy), then call the real function on the passed arguments. Even in this
simple case, we benefit several ways from having a separate XEP:

• The argument count checking is factored out, and only needs to be done in full calls.

• Argument type checking happens automatically as a consequence of passing the XEP arguments
in a local call to the real function. This type checking is also only done in full calls.

• The real function may use a non-standard calling convention for the benefit of recursive or block-
compiled calls. The XEP converts arguments/return values to/from the standard convention.
This also requires little special-casing of XEPs.

If the function has variable argument count (represented by an OPTIONAL-DISPATCH), then
the XEP contains a COND which dispatches off of the argument count, calling the appropriate entry-
point function (which then does defaulting). If there is a more entry (for keyword or rest args), then
the XEP obtains the more arg context and count by calling the %MORE-ARG-CONTEXT funny
function.

All non-local-call references to functions are replaced with references to the corresponding XEP.
ICR optimization may discover a local call that was previously a non-local reference. When we
delete the reference to the XEP, we may find that it has no references. In this case, we can delete
the XEP, causing the function to no longer be an entry-point.
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5 ICR conversion

5.1 Canonical forms

#|

Would be useful to have a Freeze-Type proclamation. Its primary use would be to say that the
indicated type won’t acquire any new subtypes in the future. This allows better open-coding of
structure type predicates, since the possible types that would satisfy the predicate will be constant
at compile time, and thus can be compiled as a skip-chain of EQ tests.

Of course, this is only a big win when the subtypes are few: the most important case is when
there are none. If the closure of the subtypes is much larger than the average number of supertypes
of an inferior, then it is better to grab the list of superiors out of the object’s type, and test for
membership in that list.

Should type-specific numeric equality be done by EQL rather than =? i.e. should = on two
fixnums become EQL and then convert to EQL/FIXNUM? Currently we transform EQL into =,
which is complicated, since we have to prove the operands are the class of numeric type before we
do it. Also, when EQL sees one operand is a FIXNUM, it transforms to EQ, but the generator for
EQ isn’t expecting numbers, so it doesn’t use an immediate compare.

5.1.1 Array hackery

Array type tests are transformed to %array-typep, separation of the implementation-dependent
array-type handling. This way we can transform STRINGP to:

(or (simple-string-p x)

(and (complex-array-p x)

(= (array-rank x) 1)

(simple-string-p (%array-data x))))

In addition to the similar bit-vector-p, we also handle vectorp and any type tests on which the a
dimension isn’t wild. [Note that we will want to expand into frobs compatible with those that array
references expand into so that the same optimizations will work on both.]

These changes combine to convert hairy type checks into hairy typep’s, and then convert hairyp
typeps into simple typeps.

Do we really need non-VOP templates? It seems that we could get the desired effect through
implementation-dependent ICR transforms. The main risk would be of obscuring the type semantics
of the code. We could fairly easily retain all the type information present at the time the tranform is
run, but if we discover new type information, then it won’t be propagated unless the VM also supplies
type inference methods for its internal frobs (precluding the use of %PRIMITIVE, since primitives don’t
have derive-type methods.)

I guess one possibility would be to have the call still considered “known” even though it has been
transformed. But this doesn’t work, since we start doing LET optimizations that trash the arglist
once the call has been transformed (and indeed we want to.)

Actually, I guess the overhead for providing type inference methods for the internal frobs isn’t
that great, since we can usually borrow the inference method for a Common Lisp function. For
example, in our AREF case:

(aref x y)

==>

(let ((#:len (array-dimension x 0)))

(%unchecked-aref x (%check-in-bounds y #:len)))

Now in this case, if we made %UNCHECKED-AREF have the same derive-type method as AREF,
then if we discovered something new about X’s element type, we could derive a new type for the
entire expression.
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Actually, it seems that baring this detail at the ICR level is beneficial, since it admits the pos-
sibility of optimizing away the bounds check using type information. If we discover X’s dimensions,
then #:LEN becomes a constant that can be substituted. Then %CHECK-IN-BOUNDS can notice that
the bound is constant and check it against the type for Y. If Y is known to be in range, then we can
optimize away the bounds check.

Actually in this particular case, the best thing to do would be if we discovered the bound is
constant, then replace the bounds check with an implicit type check. This way all the type check
optimization mechanisms would be brought into the act.

So we actually want to do the bounds-check expansion as soon as possible, rather than later than
possible: it should be a source-transform, enabled by the fast-safe policy.

With multi-dimensional arrays we probably want to explicitly do the index computation: this
way portions of the index computation can become loop invariants. In a scan in row-major order,
the inner loop wouldn’t have to do any multiplication: it would only do an addition. We would
use normal fixnum arithmetic, counting on * to cleverly handle multiplication by a constant, and
appropriate inline expansion.

Note that in a source transform, we can’t make any assumptions the type of the array. If it turns
out to be a complex array without declared dimensions, then the calls to ARRAY-DIMENSION will
have to turn into a VOP that can be affected. But if it is simple, then the VOP is unaffected, and
if we know the bounds, it is constant. Similarly, we would have %ARRAY-DATA and %ARRAY-
DISPLACEMENT operations. %ARRAY-DISPLACEMENT would optimize to 0 if we discover
the array is simple. [This is somewhat inefficient when the array isn’t eventually discovered to be
simple, since finding the data and finding the displacement duplicate each other. We could make
%ARRAY-DATA return both as MVs, and then optimize to (VALUES (%SIMPLE-ARRAY-DATA
x) 0), but this would require optimization of trivial VALUES uses.]

Also need (THE (ARRAY * * * ...) x) to assert correct rank.

|#

A bunch of functions have source transforms that convert them into the canonical form that
later parts of the compiler want to see. It is not legal to rely on the canonical form since source
transforms can be inhibited by a Notinline declaration. This shouldn’t be a problem, since everyone
should keep their hands off of Notinline calls.

Some transformations:

Endp ==> (NULL (THE LIST ...))

(NOT xxx) or (NULL xxx) => (IF xxx NIL T)

(typep x ’<simple type>) => (<simple predicate> x)

(typep x ’<complex type>) => ...composition of simpler operations...

TYPEP of AND, OR and NOT types turned into conditionals over multiple TYPEP calls. This
makes hairy TYPEP calls more digestible to type constraint propagation, and also means that the
TYPEP code generators don’t have to deal with these cases. [### In the case of union types we
may want to do something to preserve information for type constraint propagation.]

(apply #’foo a b c)

==>

(multiple-value-call #’foo (values a) (values b) (values-list c))

This way only MV-CALL needs to know how to do calls with unknown numbers of arguments.
It should be nearly as efficient as a special-case VMR-Convert method could be.

Make-String => Make-Array

N-arg predicates associated into two-arg versions.

Associate N-arg arithmetic ops.

Expand CxxxR and FIRST...nTH

Zerop, Plusp, Minusp, 1+, 1-, Min, Max, Rem, Mod
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(Values x), (Identity x) => (Prog1 x)

All specialized aref functions => (aref (the xxx) ...)

Convert (ldb (byte ...) ...) into internal frob that takes size and position as separate args. Other
byte functions also...

Change for-value primitive predicates into (if <pred> t nil). This isn’t particularly useful
during ICR phases, but makes life easy for VMR conversion.

This last can’t be a source transformation, since a source transform can’t tell where the form
appears. Instead, ICR conversion special-cases calls to known functions with the Predicate attribute
by doing the conversion when the destination of the result isn’t an IF. It isn’t critical that this
never be done for predicates that we ultimately discover to deliver their value to an IF, since IF
optimizations will flush unnecessary IFs in a predicate.

5.2 Inline functions

[### Inline expansion is especially powerful in the presence of good lisp-level optimization (“partial
evaluation”). Many “optimizations” usually done in Lisp compilers by special-case source-to-source
transforms can be had simply by making the source of the general case function available for inline
expansion. This is especially helpful in Common Lisp, which has many commonly used functions
with simple special cases but bad general cases (list and sequence functions, for example.)

Inline expansion of recursive functions is allowed, and is not as silly as it sounds. When expanded
in a specific context, much of the overhead of the recursive calls may be eliminated (especially if
there are many keyword arguments, etc.)

[Also have MAYBE-INLINE] ]

We only record a function’s inline expansion in the global environment when the function is in
the null lexical environment, since the expansion must be represented as source.

We do inline expansion of functions locally defined by FLET or LABELS even when the envi-
ronment is not null. Since the appearances of the local function must be nested within the desired
environment, it is possible to expand local functions inline even when they use the environment.
We just stash the source form and environments in the Functional for the local function. When we
convert a call to it, we just reconvert the source in the saved environment.

An interesting alternative to the inline/full-call dichotomy is “semi-inline” coding. Whenever we
have an inline expansion for a function, we can expand it only once per block compilation, and then
use local call to call this copied version. This should get most of the speed advantage of real inline
coding with much less code bloat. This is especially attractive for simple system functions such as
Read-Char.

The main place where true inline expansion would still be worth doing is where large amounts
of the function could be optimized away by constant folding or other optimizations that depend on
the exact arguments to the call.

5.3 Compilation policy

We want more sophisticated control of compilation safety than is offered in CL, so that we can emit
only those type checks that are likely to discover something (i.e. external interfaces.)

5.4 Notes

Generalized back-end notion provides dynamic retargeting? (for byte code)

The current node type annotations seem to be somewhat unsatisfactory, since we lose information
when we do a THE on a continuation that already has uses, or when we convert a let where the
actual result continuation has other uses.
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But the case with THE isn’t really all that bad, since the test of whether there are any uses
happens before conversion of the argument, thus THE loses information only when there are uses
outside of the declared form. The LET case may not be a big deal either.

Note also that losing user assertions isn’t really all that bad, since it won’t damage system
integrity. At worst, it will cause a bug to go undetected. More likely, it will just cause the error
to be signaled in a different place (and possibly in a less informative way). Of course, there is an
efficiency hit for losing type information, but if it only happens in strange cases, then this isn’t a
big deal.



24

6 Local call analysis

All calls to local functions (known named functions and LETs) are resolved to the exact LAMBDA
node which is to be called. If the call is syntactically illegal, then we emit a warning and mark
the reference as :notinline, forcing the call to be a full call. We don’t even think about converting
APPLY calls; APPLY is not special-cased at all in ICR. We also take care not to convert calls in
the top-level component, which would join it to normal code. Calls to functions with rest args and
calls with non-constant keywords are also not converted.

We also convert MV-Calls that look like MULTIPLE-VALUE-BIND to local calls, since we know
that they can be open-coded. We replace the optional dispatch with a call to the last optional entry
point, letting MV-Call magically default the unsupplied values to NIL.

When ICR optimizations discover a possible new local call, they explicitly invoke local call
analysis on the code that needs to be reanalyzed.

[### Let conversion. What it means to be a let. Argument type checking done by caller.
Significance of local call is that all callers are known, so special call conventions may be used.] A
lambda called in only one place is called a “let” call, since a Let would turn into one.

In addition to enabling various ICR optimizations, the let/non-let distinction has important
environment significance. We treat the code in function and all of the lets called by that function as
being in the same environment. This allows exits from lets to be treated as local exits, and makes
life easy for environment analysis.

Since we will let-convert any function with only one call, we must be careful about cleanups.
It is possible that a lexical exit from the let function may have to clean up dynamic bindings not
lexically apparent at the exit point. We handle this by annotating lets with any cleanup in effect
at the call site. The cleanup for continuations with no immediately enclosing cleanup is the lambda
that the continuation is in. In this case, we look at the lambda to see if any cleanups need to be
done.

Let conversion is disabled for entry-point functions, since otherwise we might convert the call
from the XEP to the entry point into a let. Then later on, we might want to convert a non-local
reference into a local call, and not be able to, since once a function has been converted to a let, we
can’t convert it back.

A function’s return node may also be deleted if it is unreachable, which can happen if the function
never returns normally. Such functions are not lets.
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7 Find components

This is a post-pass to ICR conversion that massages the flow graph into the shape subsequent phases
expect. Things done: Compute the depth-first ordering for the flow graph. Find the components
(disconnected parts) of the flow graph.

This pass need only be redone when newly converted code has been added to the flow graph.
The reanalyze flag in the component structure should be set by people who mess things up.

We create the initial DFO using a variant of the basic algorithm. The initial DFO computation
breaks the ICR up into components, which are parts that can be compiled independently. This
is done to increase the efficiency of large block compilations. In addition to improving locality of
reference and reducing the size of flow analysis problems, this allows back-end data structures to be
reclaimed after the compilation of each component.

ICR optimization can change the connectivity of the flow graph by discovering new calls or
eliminating dead code. Initial DFO determination splits up the flow graph into separate components,
but does so conservatively, ensuring that parts that might become joined (due to local call conversion)
are joined from the start. Initial DFO computation also guarantees that all code which shares a
lexical environment is in the same component so that environment analysis needs to operate only
on a single component at a time.

[This can get a bit hairy, since code seemingly reachable from the environment entry may be
reachable from a NLX into that environment. Also, function references must be considered as links
joining components even though the flow graph doesn’t represent these.]

After initial DFO determination, components are neither split nor joined. The standard DFO
computation doesn’t attempt to split components that have been disconnected.
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8 ICR optimize

Somewhere describe basic ICR utilities: continuation-type, constant-continuation-p, etc. Perhaps
group by type in ICR description?

We are conservative about doing variable-for-variable substitution in ICR optimization, since if we
substitute a variable with a less restrictive type, then we may prevent use of a “good” representation
within the scope of the inner binding.

Note that variable-variable substitutions aren’t really crucial in ICR, since they don’t create
opportunities for new optimizations (unlike substitution of constants and functions). A spurious
variable-variable binding will show up as a Move operation in VMR. This can be optimized away by
reaching-definitions and also by targeting. [### But actually, some optimizers do see if operands
are the same variable.]

#|

The IF-IF optimization can be modeled as a value driven optimization, since adding a use
definitely is cause for marking the continuation for reoptimization. [When do we add uses? Let
conversion is the only obvious time.] I guess IF-IF conversion could also be triggered by a non-
immediate use of the test continuation becoming immediate, but to allow this to happen would
require Delete-Block (or somebody) to mark block-starts as needing to be reoptimized when a
predecessor changes. It’s not clear how important it is that IF-IF conversion happen under all
possible circumstances, as long as it happens to the obvious cases.

[### It isn’t totally true that code flushing never enables other worthwhile optimizations.
Deleting a functional reference can cause a function to cease being an XEP, or even trigger let
conversion. It seems we still want to flush code during ICR optimize, but maybe we want to
interleave it more intimately with the optimization pass.

Ref-flushing works just as well forward as backward, so it could be done in the forward pass. Call
flushing doesn’t work so well, but we could scan the block backward looking for any new flushable
stuff if we flushed a call on the forward pass.

When we delete a variable due to lack of references, we leave the variable in the lambda-list so
that positional references still work. The initial value continuation is flushed, though (replaced with
NIL) allowing the initial value for to be deleted (modulo side-effects.)

Note that we can delete vars with no refs even when they have sets. I guess when there are no
refs, we should also flush all sets, allowing the value expressions to be flushed as well.

Squeeze out single-reference unset let variables by changing the dest of the initial value continu-
ation to be the node that receives the ref. This can be done regardless of what the initial value form
is, since we aren’t actually moving the evaluation. Instead, we are in effect using the continuation’s
locations in place of the temporary variable.

Doing this is of course, a wild violation of stack discipline, since the ref might be inside a loop,
etc. But with the VMR back-end, we only need to preserve stack discipline for unknown-value
continuations; this ICR transformation must be already inhibited when the DEST of the REF is
a multiple-values receiver (EXIT, RETURN or MV-COMBINATION), since we must preserve the
single-value semantics of the let-binding in this case.

The REF and variable must be deleted as part of this operation, since the ICR would otherwise
be left in an inconsistent state; we can’t wait for the REF to be deleted due to being unused, since
we have grabbed the arg continuation and substituted it into the old DEST.

The big reason for doing this transformation is that in macros such as INCF and PSETQ,
temporaries are squeezed out, and the new value expression is evaluated directly to the setter,
allowing any result type assertion to be applied to the expression evaluation. Unlike in the case
of substitution, there is no point in inhibiting this transformation when the initial value type is
weaker than the variable type. Instead, we intersect the asserted type for the old REF’s CONT with
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the type assertion on the initial value continuation. Note that the variable’s type has already been
asserted on the initial-value continuation.

Of course, this transformation also simplifies the ICR even when it doesn’t discover interesting
type assertions, so it makes sense to do it whenever possible. This reduces the demands placed on
register allocation, etc.

There are three dead-code flushing rules:

1. Refs with no DEST may be flushed.

2. Known calls with no dest that are flushable may be flushed. We null the DEST in all the args.

3. If a lambda-var has no refs, then it may be deleted. The flushed argument continuations have
their DEST nulled.

These optimizations all enable one another. We scan blocks backward, looking for nodes whose
CONT has no DEST, then type-dispatching off of the node. If we delete a ref, then we check to see
if it is a lambda-var with no refs. When we flush an argument, we mark the blocks for all uses of
the CONT as needing to be reoptimized.

8.1 Goals for ICR optimizations

#|

When an optimization is disabled, code should still be correct and not ridiculously inefficient.
Phases shouldn’t be made mandatory when they have lots of non-required stuff jammed into them.

|#

This pass is optional, but is desirable if anything is more important than compilation speed.

This phase is a grab-bag of optimizations that concern themselves with the flow of values through
the code representation. The main things done are type inference, constant folding and dead ex-
pression elimination. This phase can be understood as a walk of the expression tree that propagates
assertions down the tree and propagates derived information up the tree. The main complication is
that there isn’t any expression tree, since ICR is flow-graph based.

We repeat this pass until we don’t discover anything new. This is a bit of feat, since we dispatch to
arbitrary functions which may do arbitrary things, making it hard to tell if anything really happened.
Even if we solve this problem by requiring people to flag when they changed or by checking to see if
they changed something, there are serious efficiency problems due to massive redundant computation,
since in many cases the only way to tell if anything changed is to recompute the value and see if it
is different from the old one.

We solve this problem by requiring that optimizations for a node only depend on the properties
of the CONT and the continuations that have the node as their DEST. If the continuations haven’t
changed since the last pass, then we don’t attempt to re-optimize the node, since we know nothing
interesting will happen.

We keep track of which continuations have changed by a REOPTIMIZE flag that is set whenever
something about the continuation’s value changes.

When doing the bottom up pass, we dispatch to type specific code that knows how to tell when
a node needs to be reoptimized and does the optimization. These node types are special-cased:
COMBINATION, IF, RETURN, EXIT, SET.

The REOPTIMIZE flag in the COMBINATION-FUN is used to detect when the function infor-
mation might have changed, so that we know when there are new assertions that could be propagated
from the function type to the arguments.

When we discover something about a leaf, or substitute for leaf, we reoptimize the CONT for all
the REF and SET nodes.

We have flags in each block that indicate when any nodes or continuations in the block need to
be re-optimized, so we don’t have to scan blocks where there is no chance of anything happening.
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It is important for efficiency purposes that optimizers never say that they did something when
they didn’t, but this by itself doesn’t guarantee timely termination. I believe that with the type
system implemented, type inference will converge in finite time, but as a practical matter, it can
take far too long to discover not much. For this reason, ICR optimization is terminated after three
consecutive passes that don’t add or delete code. This premature termination only happens 2% of
the time.

8.2 Flow graph simplification

Things done:

• Delete blocks with no predecessors.

• Merge blocks that can be merged.

• Convert local calls to Let calls.

• Eliminate degenerate IFs.

We take care not to merge blocks that are in different functions or have different cleanups. This
guarantees that non-local exits are always at block ends and that cleanup code never needs to be
inserted within a block.

We eliminate IFs with identical consequent and alternative. This would most likely happen if
both the consequent and alternative were optimized away.

[Could also be done if the consequent and alternative were different blocks, but computed the
same value. This could be done by a sort of cross-jumping optimization that looked at the prede-
cessors for a block and merged code shared between predecessors. IFs with identical branches would
eventually be left with nothing in their branches.]

We eliminate IF-IF constructs:

(IF (IF A B C) D E) ==>

(IF A (IF B D E) (IF C D E))

In reality, what we do is replicate blocks containing only an IF node where the predicate contin-
uation is the block start. We make one copy of the IF node for each use, leaving the consequent and
alternative the same. If you look at the flow graph representation, you will see that this is really the
same thing as the above source to source transformation.

8.3 Forward ICR optimizations

In the forward pass, we scan the code in forward depth-first order. We examine each call to a known
function, and:

• Eliminate any bindings for unused variables.

• Do top-down type assertion propagation. In local calls, we propagate asserted and derived
types between the call and the called lambda.

• Replace calls of foldable functions with constant arguments with the result. We don’t have
to actually delete the call node, since Top-Down optimize will delete it now that its value is
unused.

• Run any Optimizer for the current function. The optimizer does arbitrary transformations by
hacking directly on the IR. This is useful primarily for arithmetic simplification and similar
things that may need to examine and modify calls other than the current call. The optimizer
is responsible for recording any changes that it makes. An optimizer can inhibit further opti-
mization of the node during the current pass by returning true. This is useful when deleting
the node.

• Do ICR transformations, replacing a global function call with equivalent inline lisp code.



Chapter 8: ICR optimize 29

• Do bottom-up type propagation/inferencing. For some functions such as Coerce we will dispatch
to a function to find the result type. The Derive-Type function just returns a type structure,
and we check if it is different from the old type in order to see if there was a change.

• Eliminate IFs with predicates known to be true or false.

• Substitute the value for unset let variables that are bound to constants, unset lambda variables
or functionals.

• Propagate types from local call args to var refs.

We use type info from the function continuation to find result types for functions that don’t have
a derive-type method.

8.3.1 ICR transformation

ICR transformation does “source to source” transformations on known global functions, taking ad-
vantage of semantic information such as argument types and constant arguments. Transformation
is optional, but should be done if speed or space is more important than compilation speed. Trans-
formations which increase space should pass when space is more important than speed.

A transform is actually an inline function call where the function is computed at compile time.
The transform gets to peek at the continuations for the arguments, and computes a function using
the information gained. Transforms should be cautious about directly using the values of constant
continuations, since the compiler must preserve eqlness of named constants, and it will have a hard
time if transforms go around randomly copying constants.

The lambda that the transform computes replaces the original function variable reference as the
function for the call. This lets the compiler worry about evaluating each argument once in the right
order. We want to be careful to preserve type information when we do a transform, since it may be
less than obvious what the transformed code does.

There can be any number of transforms for a function. Each transform is associated with a
function type that the call must be compatible with. A transform is only invoked if the call has the
right type. This provides a way to deal with the common case of a transform that only applies when
the arguments are of certain types and some arguments are not specified. We always use the derived
type when determining whether a transform is applicable. Type check is responsible for setting the
derived type to the intersection of the asserted and derived types.

If the code in the expansion has insufficient explicit or implicit argument type checking, then it
should cause checks to be generated by making declarations.

A transformation may decide to pass if it doesn’t like what it sees when it looks at the args.
The Give-Up function unwinds out of the transform and deals with complaining about inefficiency if
speed is more important than brevity. The format args for the message are arguments to Give-Up.
If a transform can’t be done, we just record the message where ICR finalize can find it. note. We
can’t complain immediately, since it might get transformed later on.

8.4 Backward ICR optimizations

In the backward pass, we scan each block in reverse order, and eliminate any effectless nodes with
unused values. In ICR this is the only way that code is deleted other than the elimination of
unreachable blocks.
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9 Type checking

% Somehow split this section up into three parts: % – Conceptual: how we know a check is necessary,
and who is responsible for % doing checks. % – Incremental: intersection of derived and asserted
types, checking for % non-subtype relationship. % – Check generation phase.

We need to do a pretty good job of guessing when a type check will ultimately need to be done.
Generic arithmetic, for example: In the absence of declarations, we will use the safe variant, but if
we don’t know this, we will generate a check for NUMBER anyway. We need to look at the fast-safe
templates and guess if any of them could apply.

We compute a function type from the VOP arguments and assertions on those arguments. This
can be used with Valid-Function-Use to see which templates do or might apply to a particular call.
If we guess that a safe implementation will be used, then we mark the continuation so as to force
a safe implementation to be chosen. [This will happen if ICR optimize doesn’t run to completion,
so the ICR optimization after type check generation can discover new type information. Since we
won’t redo type check at that point, there could be a call that has applicable unsafe templates, but
isn’t type checkable.]

[### A better and more general optimization of structure type checks: in type check conversion,
we look at the *original derived* type of the continuation: if the difference between the proven type
and the asserted type is a simple type check, then check for the negation of the difference. e.g. if
we want a FOO and we know we’ve got (OR FOO NULL), then test for (NOT NULL). This is a
very important optimization for linked lists of structures, but can also apply in other situations.]

If after ICR phases, we have a continuation with check-type set in a context where it seems likely
a check will be emitted, and the type is too hairy to be easily checked (i.e. no CHECK-xxx VOP),
then we do a transformation on the ICR equivalent to:

(... (the hair <foo>) ...)

==>

(... (funcall #’(lambda (#:val)

(if (typep #:val ’hair)

#:val

(%type-check-error #:val ’hair)))

<foo>)

...)

This way, we guarantee that VMR conversion never has to emit type checks for hairy types.

[Actually, we need to do a MV-bind and several type checks when there is a MV continuation.
And some values types are just too hairy to check. We really can’t check any assertion for a non-fixed
number of values, since there isn’t any efficient way to bind arbitrary numbers of values. (could be
done with MV-call of a more-arg function, I guess...) ]

[Perhaps only use CHECK-xxx VOPs for types equivalent to a ptype? Exceptions for CONS and
SYMBOL? Anyway, no point in going to trouble to implement and emit rarely used CHECK-xxx
vops.]

One potential lose in converting a type check to explicit conditionals rather than to a CHECK-
xxx VOP is that VMR code motion optimizations won’t be able to do anything. This shouldn’t be
much of an issue, though, since type constraint propagation has already done global optimization of
type checks.

This phase is optional, but should be done if anything is more important than compile speed.

Type check is responsible for reconciling the continuation asserted and derived types, emitting
type checks if appropriate. If the derived type is a subtype of the asserted type, then we don’t need
to do anything.

If there is no intersection between the asserted and derived types, then there is a manifest type
error. We print a warning message, indicating that something is almost surely wrong. This will
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inhibit any transforms or generators that care about their argument types, yet also inhibits further
error messages, since NIL is a subtype of every type.

If the intersection is not null, then we set the derived type to the intersection of the asserted
and derived types and set the Type-Check flag in the continuation. We always set the flag when
we can’t prove that the type assertion is satisfied, regardless of whether we will ultimately actually
emit a type check or not. This is so other phases such as type constraint propagation can use the
Type-Check flag to detect an interesting type assertion, instead of having to duplicate much of the
work in this phase. [### 7 extremely random values for CONTINUATION-TYPE-CHECK.]

Type checks are generated on the fly during VMR conversion. When VMR conversion generates
the check, it prints an efficiency note if speed is important. We don’t flame now since type constraint
progpagation may decide that the check is unnecessary. [### Not done now, maybe never.]

In local function call, it is the caller that is in effect responsible for checking argument types.
This happens in the same way as any other type check, since ICR optimize propagates the declared
argument types to the type assertions for the argument continuations in all the calls.

Since the types of arguments to entry points are unknown at compile time, we want to do runtime
checks to ensure that the incoming arguments are of the correct type. This happens without any
special effort on the part of type check, since the XEP is represented as a local call with unknown
type arguments. These arguments will be marked as needing to be checked.
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10 Constraint propagation

New lambda-var-slot:

constraints: a list of all the constraints on this var for either X or Y.

How to maintain consistency? Does it really matter if there are constraints with deleted vars
lying around? Note that whatever mechanism we use for getting the constraints in the first place
should tend to keep them up to date. Probably we would define optimizers for the interesting
relations that look at their CONT’s dest and annotate it if it is an IF.

But maybe it is more trouble then it is worth trying to build up the set of constraints during
ICR optimize (maintaining consistency in the process). Since ICR optimize iterates a bunch of times
before it converges, we would be wasting time recomputing the constraints, when nobody uses them
till constraint propagation runs.

It seems that the only possible win is if we re-ran constraint propagation (which we might want to
do.) In that case, we wouldn’t have to recompute all the constraints from scratch. But it seems that
we could do this just as well by having ICR optimize invalidate the affected parts of the constraint
annotation, rather than trying to keep them up to date. This also fits better with the optional
nature of constraint propagation, since we don’t want ICR optimize to commit to doing a lot of the
work of constraint propagation.

For example, we might have a per-block flag indicating that something happened in that block
since the last time constraint propagation ran. We might have different flags to represent the
distinction between discovering a new type assertion inside the block and discovering something new
about an if predicate, since the latter would be cheaper to update and probably is more common.

It’s fairly easy to see how we can build these sets of restrictions and propagate them using flow
analysis, but actually using this information seems a bit more ad-hoc.

Probably the biggest thing we do is look at all the refs. If we have proven that the value is EQ
(EQL for a number) to some other leaf (constant or lambda-var), then we can substitute for that
reference. In some cases, we will want to do special stuff depending on the DEST. If the dest is an
IF and we proved (not null), then we can substitute T. And if the dest is some relation on the same
two lambda-vars, then we want to see if we can show that relation is definitely true or false.

Otherwise, we can do our best to invert the set of restrictions into a type. Since types hold
only constant info, we have to ignore any constraints between two vars. We can make some use of
negated type restrictions by using TYPE-DIFFERENCE to remove the type from the ref types. If
our inferred type is as good as the type assertion, then the continuation’s type-check flag will be
cleared.

It really isn’t much of a problem that we don’t infer union types on joins, since union types are
relatively easy to derive without using flow information. The normal bottom-up type inference done
by ICR optimize does this for us: it annotates everything with the union of all of the things it might
possibly be. Then constraint propagation subtracts out those types that can’t be in effect because
of predicates or checks.

This phase is optional, but is desirable if anything is more important than compilation speed.
We use an algorithm similar to available expressions to propagate variable type information that
has been discovered by implicit or explicit type tests, or by type inference.

We must do a pre-pass which locates set closure variables, since we cannot do flow analysis
on such variables. We set a flag in each set closure variable so that we can quickly tell that it is
losing when we see it again. Although this may seem to be wastefully redundant with environment
analysis, the overlap isn’t really that great, and the cost should be small compared to that of the
flow analysis that we are preparing to do. [Or we could punt on set variables...]

A type constraint is a structure that includes sset-element and has the type and variable. [Also
a not-p flag indicating whether the sense is negated.]



33

Each variable has a list of its type constraints. We create a type constraint when we see a type
test or check. If there is already a constraint for the same variable and type, then we just re-use it.
If there is already a weaker constraint, then we generate both the weak constraints and the strong
constraint so that the weak constraints won’t be lost even if the strong one is unavailable.

We find all the distinct type constraints for each variable during the pre-pass over the lambda
nesting. Each constraint has a list of the weaker constraints so that we can easily generate them.

Every block generates all the type constraints in it, but a constraint is available in a successor
only if it is available in all predecessors. We determine the actual type constraint for a variable at
a block by intersecting all the available type constraints for that variable.

This isn’t maximally tense when there are constraints that are not hierarchically related, e.g. (or
a b) (or b c). If these constraints were available from two predecessors, then we could infer that we
have an (or a b c) constraint, but the above algorithm would come up with none. This probably
isn’t a big problem.

[### Do we want to deal with (if (eq <var> ’<foo>) ...) indicating singleton member
type?]

We detect explicit type tests by looking at type test annotation in the IF node. If there is a type
check, the OUT sets are stored in the node, with different sets for the consequent and alternative.
Implicit type checks are located by finding Ref nodes whose Cont has the Type-Check flag set. We
don’t actually represent the GEN sets, we just initialize OUT to it, and then form the union in
place.

When we do the post-pass, we clear the Type-Check flags in the continuations for Refs when we
discover that the available constraints satisfy the asserted type. Any explicit uses of typep should
be cleaned up by the ICR optimizer for typep. We can also set the derived type for Refs to the
intersection of the available type assertions. If we discover anything, we should consider redoing
ICR optimization, since better type information might enable more optimizations.
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11 ICR finalize

This pass looks for interesting things in the ICR so that we can forget about them. Used and not
defined things are flamed about.

We postpone these checks until now because the ICR optimizations may discover errors that are
not initially obvious. We also emit efficiency notes about optimizations that we were unable to do.
We can’t emit the notes immediately, since we don’t know for sure whether a repeated attempt at
optimization will succeed.

We examine all references to unknown global function variables and update the approximate
type accordingly. We also record the names of the unknown functions so that they can be flamed
about if they are never defined. Unknown normal variables are flamed about on the fly during ICR
conversion, so we ignore them here.

We check each newly defined global function for compatibility with previously recorded type
information. If there is no :defined or :declared type, then we check for compatibility with any
approximate function type inferred from previous uses.



35

12 Environment analysis

A related change would be to annotate ICR with information about tail-recursion relations. What
we would do is add a slot to the node structure that points to the corresponding Tail-Info when a
node is in a TR position. This annotation would be made in a final ICR pass that runs after cleanup
code is generated (part of environment analysis). When true, the node is in a true TR position
(modulo return-convention incompatibility). When we determine return conventions, we null out
the tail-p slots in XEP calls or known calls where we decided not to preserve tail-recursion.

In this phase, we also check for changes in the dynamic binding environment that require cleanup
code to be generated. We just check for changes in the Continuation-Cleanup on local control trans-
fers. If it changes from an inner dynamic context to an outer one that is in the same environment,
then we emit code to clean up the dynamic bindings between the old and new continuation. We
represent the result of cleanup detection to the back end by interposing a new block containing a call
to a funny function. Local exits from CATCH or UNWIND-PROTECT are detected in the same
way.

|#

The primary activity in environment analysis is the annotation of ICR with environment struc-
tures describing where variables are allocated and what values the environment closes over.

Each lambda points to the environment where its variables are allocated, and the environments
point back. We always allocate the environment at the Bind node for the sole non-let lambda in
the environment, so there is a close relationship between environments and functions. Each “real
function” (i.e. not a LET) has a corresponding environment.

We attempt to share the same environment among as many lambdas as possible so that unnec-
essary environment manipulation is not done. During environment analysis the only optimization of
this sort is realizing that a Let (a lambda with no Return node) cannot need its own environment,
since there is no way that it can return and discover that its old values have been clobbered.

When the function is called, values from other environments may need to be made available in
the function’s environment. These values are said to be “closed over”.

Even if a value is not referenced in a given environment, it may need to be closed over in that
environment so that it can be passed to a called function that does reference the value. When we
discover that a value must be closed over by a function, we must close over the value in all the
environments where that function is referenced. This applies to all references, not just local calls,
since at other references we must have the values on hand so that we can build a closure. This
propagation must be applied recursively, since the value must also be available in *those* functions’
callers.

If a closure reference is known to be “safe” (not an upward funarg), then the closure structure
may be allocated on the stack.

Closure analysis deals only with closures over values, while Common Lisp requires closures over
variables. The difference only becomes significant when variables are set. If a variable is not set,
then we can freely make copies of it without keeping track of where they are. When a variable is
set, we must maintain a single value cell, or at least the illusion thereof. We achieve this by creating
a heap-allocated “value cell” structure for each set variable that is closed over. The pointer to this
value cell is passed around as the “value” corresponding to that variable. References to the variable
must explicitly indirect through the value cell.

When we are scanning over the lambdas in the component, we also check for bound but not
referenced variables.

Environment analysis emits cleanup code for local exits and markers for non-local exits.

A non-local exit is a control transfer from one environment to another. In a non-local exit, we
must close over the continuation that we transfer to so that the exiting function can find its way
back. We indicate the need to close a continuation by placing the continuation structure in the
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closure and also pushing it on a list in the environment structure for the target of the exit. [###
To be safe, we would treat the continuation as a set closure variable so that we could invalidate it
when we leave the dynamic extent of the exit point. Transferring control to a meaningless stack
pointer would be apt to cause horrible death.]

Each local control transfer may require dynamic state such as special bindings to be undone. We
represent cleanup actions by funny function calls in a new block linked in as an implicit MV-PROG1.
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13 Virtual Machine Representation Introduction
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14 Global TN assignment

The basic mechanism for closing over values is to pass the values as additional implicit arguments
in the function call. This technique is only applicable when:

• the calling function knows which values the called function wants to close over, and

• the values to be closed over are available in the calling environment.

The first condition is always true of local function calls. Environment analysis can guarantee
that the second condition holds by closing over any needed values in the calling environment.

If the function that closes over values may be called in an environment where the closed over
values are not available, then we must store the values in a “closure” so that they are always
accessible. Closures are called using the “full call” convention. When a closure is called, control is
transferred to the “external entry point”, which fetches the values out of the closure and then does
a local call to the real function, passing the closure values as implicit arguments.

In this scheme there is no such thing as a “heap closure variable” in code, since the closure values
are moved into TNs by the external entry point. There is some potential for pessimization here, since
we may end up moving the values from the closure into a stack memory location, but the advantages
are also substantial. Simplicity is gained by always representing closure values the same way, and
functions with closure references may still be called locally without allocating a closure. All the
TN based VMR optimizations will apply to closure variables, since closure variables are represented
in the same way as all other variables in VMR. Closure values will be allocated in registers where
appropriate.

Closures are created at the point where the function is referenced, eliminating the need to be
able to close over closures. This lazy creation of closures has the additional advantage that when
a closure reference is conditionally not done, then the closure consing will never be done at all.
The corresponding disadvantage is that a closure over the same values may be created multiple
times if there are multiple references. Note however, that VMR loop and common subexpression
optimizations can eliminate redundant closure consing. In any case, multiple closures over the same
variables doesn’t seem to be that common.

#| Having the Tail-Info would also make return convention determination trivial. We could
just look at the type, checking to see if it represents a fixed number of values. To determine if the
standard return convention is necessary to preserve tail-recursion, we just iterate over the equivalent
functions, looking for XEPs and uses in full calls. |#

The Global TN Assignment pass (GTN) can be considered a post-pass to environment analysis.
This phase assigns the TNs used to hold local lexical variables and pass arguments and return values
and determines the value-passing strategy used in local calls.

To assign return locations, we look at the function’s tail-set.

If the result continuation for an entry point is used as the continuation for a full call, then we
may need to constrain the continuation’s values passing convention to the standard one. This is
not necessary when the call is known not to be part of a tail-recursive loop (due to being a known
function).

Once we have figured out where we must use the standard value passing strategy, we can use a
more flexible strategy to determine the return locations for local functions. We determine the possible
numbers of return values from each function by examining the uses of all the result continuations in
the equivalence class of the result continuation.

If the tail-set type is for a fixed number of values, then we return that fixed number of values
from all the functions whose result continuations are equated. If the number of values is not fixed,
then we must use the unknown-values convention, although we are not forced to use the standard
locations. We assign the result TNs at this time.

We also use the tail-sets to see what convention we want to use. What we do is use the full
convention for any function that has a XEP its tail-set, even if we aren’t required to do so by a
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tail-recursive full call, as long as there are no non-tail-recursive local calls in the set. This prevents
us from gratuitously using a non-standard convention when there is no reason to.
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15 Local TN assignment

[Want a different name for this so as not to be confused with the different local/global TN rep-
resentations. The really interesting stuff in this phase is operation selection, values representation
selection, return strategy, etc. Maybe this phase should be conceptually lumped with GTN as
“implementation selection”, since GTN determines call strategies and locations.]

#|

[### I guess I believe that it is OK for VMR conversion to dick the ICR flow graph. An
alternative would be to give VMR its very own flow graph, but that seems like overkill.

In particular, it would be very nice if a TR local call looked exactly like a jump in VMR. This
would allow loop optimizations to be done on loops written as recursions. In addition to making the
call block transfer to the head of the function rather than to the return, we would also have to do
something about skipping the part of the function prolog that moves arguments from the passing
locations, since in a TR call they are already in the right frame.

In addition to directly indicating whether a call should be coded with a TR variant, the Tail-P
annotation flags non-call nodes that can directly return the value (an “advanced return”), rather
than moving the value to the result continuation and jumping to the return code. Then (according
to policy), we can decide to advance all possible returns. If all uses of the result are Tail-P, then
LTN can annotate the result continuation as :Unused, inhibiting emission of the default return code.

[### But not really. Now there is a single list of templates, and a given template has only one
policy.]

In LTN, we use the :Safe template as a last resort even when the policy is unsafe. Note that we
don’t try :Fast-Safe; if this is also a good unsafe template, then it should have the unsafe policies
explicitly specified.

With a :Fast-Safe template, the result type must be proven to satisfy the output type assertion.
This means that a fast-safe template with a fixnum output type doesn’t need to do fixnum overflow
checking. [### Not right to just check against the Node-Derived-Type, since type-check intersects
with this.]

It seems that it would be useful to have a kind of template where the args must be checked to
be fixnum, but the template checks for overflow and signals an error. In the case where an output
assertion is present, this would generate better code than conditionally branching off to make a
bignum, and then doing a type check on the result.

How do we deal with deciding whether to do a fixnum overflow check? This is perhaps a more
general problem with the interpretation of result type restrictions in templates. It would be useful
to be able to discriminate between the case where the result has been proven to be a fixnum and
where it has simply been asserted to be so.

The semantics of result type restriction is that the result must be proven to be of that type
*except* for safe generators, which are assumed to verify the assertion. That way “is-fixnum” case
can be a fast-safe generator and the “should-be-fixnum” case is a safe generator. We could choose
not to have a safe “should-be-fixnum” generator, and let the unrestricted safe generator handle it.
We would then have to do an explicit type check on the result.

In other words, for all template except Safe, a type restriction on either an argument or result
means “this must be true; if it is not the system may break.” In contrast, in a Safe template, the
restriction means “If this is not true, I will signal an error.”

Since the node-derived-type only takes into consideration stuff that can be proved from the
arguments, we can use the node-derived-type to select fast-safe templates. With unsafe policies, we
don’t care, since the code is supposed to be unsafe.

|#

Local TN assignment (LTN) assigns all the TNs needed to represent the values of continuations.
This pass scans over the code for the component, examining each continuation and its destination.
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A number of somewhat unrelated things are also done at the same time so that multiple passes
aren’t necessary. – Determine the Primitive-Type for each continuation value and assigns TNs to
hold the values. – Use policy information to determine the implementation strategy for each call
to a known function. – Clear the type-check flags in continuations whose destinations have safe
implementations. – Determine the value-passing strategy for each continuation: known or unknown.
– Note usage of unknown-values continuations so that stack analysis can tell when stack values must
be discarded.

If safety is more important than speed and space, then we consider generating type checks on the
values of nodes whose CONT has the Type-Check flag set. If the destination for the continuation
value is safe, then we don’t need to do a check. We assume that all full calls are safe, and use the
template information to determine whether inline operations are safe.

This phase is where compiler policy switches have most of their effect. The speed/space/safety
tradeoff can determine which of a number of coding strategies are used. It is important to make
the policy choice in VMR conversion rather than in code generation because the cost and storage
requirement information which drives TNBIND will depend strongly on what actual VOP is chosen.
In the case of +/FIXNUM, there might be three or more implementations, some optimized for speed,
some for space, etc. Some of these VOPS might be open-coded and some not.

We represent the implementation strategy for a call by either marking it as a full call or annotating
it with a “template” representing the open-coding strategy. Templates are selected using a two-way
dispatch off of operand primitive-types and policy. The general case of LTN is handled by the LTN-
Annotate function in the function-info, but most functions are handled by a table-driven mechanism.
There are four different translation policies that a template may have:

Safe The safest implementation; must do argument type checking.

Small The (unsafe) smallest implementation.

Fast The (unsafe) fastest implementation.

Fast-Safe An implementation optimized for speed, but which does any necessary checks exclusive
of argument type checking. Examples are array bounds checks and fixnum overflow
checks.

Usually a function will have only one or two distinct templates. Either or both of the safe and
fast-safe templates may be omitted; if both are specified, then they should be distinct. If there is
no safe template and our policy is safe, then we do a full call.

We use four different coding strategies, depending on the policy:

Safe: safety $>$ space $>$ speed, or we want to use the fast-safe template, but there isn’t
one.

Small: space $>$ (max speed safety)

Fast: speed $>$ (max space safety)

Fast-Safe (and type check):
safety $>$ speed $>$ space, or we want to use the safe template, but there isn’t one.

“Space” above is actually the maximum of space and cspeed, under the theory that less code will
take less time to generate and assemble. [### This could lose if the smallest case is out-of-line,
and must allocate many linkage registers.]



42

16 Control optimization

In this phase we annotate blocks with drop-throughs. This controls how code generation linearizes
code so that drop-throughs are used most effectively. We totally linearize the code here, allowing
code generation to scan the blocks in the emit order.

There are basically two aspects to this optimization:

1. Dynamically reducing the number of branches taken v.s. branches not taken under the assump-
tion that branches not taken are cheaper.

2. Statically minimizing the number of unconditional branches, saving space and presumably time.

These two goals can conflict, but if they do it seems pretty clear that the dynamic optimization
should get preference. The main dynamic optimization is changing the sense of a conditional test so
that the more commonly taken branch is the fall-through case. The problem is determining which
branch is more commonly taken.

The most clear-cut case is where one branch leads out of a loop and the other is within. In this
case, clearly the branch within the loop should be preferred. The only added complication is that
at some point in the loop there has to be a backward branch, and it is preferable for this branch to
be conditional, since an unconditional branch is just a waste of time.

In the absence of such good information, we can attempt to guess which branch is more popular
on the basis of difference in the cost between the two cases. Min-max strategy suggests that we should
choose the cheaper alternative, since the percentagewise improvement is greater when the branch
overhead is significant with respect to the cost of the code branched to. A tractable approximation
of this is to compare only the costs of the two blocks immediately branched to, since this would avoid
having to do any hairy graph walking to find all the code for the consequent and the alternative. It
might be worthwhile discriminating against ultra-expensive functions such as ERROR.

For this to work, we have to detect when one of the options is empty. In this case, the next
for one branch is a successor of the other branch, making the comparison meaningless. We use
dominator information to detect this situation. When a branch is empty, one of the predecessors of
the first block in the empty branch will be dominated by the first block in the other branch. In such
a case we favor the empty branch, since that’s about as cheap as you can get.

Statically minimizing branches is really a much more tractable problem, but what literature there
is makes it look hard. Clearly the thing to do is to use a non-optimal heuristic algorithm.

A good possibility is to use an algorithm based on the depth first ordering. We can modify the
basic DFO algorithm so that it chooses an ordering which favors any drop-thrus that we may choose
for dynamic reasons. When we are walking the graph, we walk the desired drop-thru arc last, which
will place it immediately after us in the DFO unless the arc is a retreating arc.

We scan through the DFO and whenever we find a block that hasn’t been done yet, we build a
straight-line segment by setting the drop-thru to the unreached successor block which has the lowest
DFN greater than that for the block. We move to the drop-thru block and repeat the process until
there is no such block. We then go back to our original scan through the DFO, looking for the head
of another straight-line segment.

This process will automagically implement all of the dynamic optimizations described above as
long as we favor the appropriate IF branch when creating the DFO. Using the DFO will prevent us
from making the back branch in a loop the drop-thru, but we need to be clever about favoring IF
branches within loops while computing the DFO. The IF join will be favored without any special
effort, since we follow through the most favored path until we reach the end.

This needs some knowledge about the target machine, since on most machines non-tail-recursive
calls will use some sort of call instruction. In this case, the call actually wants to drop through to
the return point, rather than dropping through to the beginning of the called function.
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17 VMR conversion

#| Single-use let var continuation substitution not really correct, since it can cause a spurious type
error. Maybe we do want stuff to prove that an NLX can’t happen after all. Or go back to the idea
of moving a combination arg to the ref location, and having that use the ref cont (with its output
assertion.) This lossage doesn’t seem very likely to actually happen, though. [### must-reach
stuff wouldn’t work quite as well as combination substitute in psetq, etc., since it would fail when
one of the new values is random code (might unwind.)]

Is this really a general problem with eager type checking? It seems you could argue that there
was no type error in this code:

(+ :foo (throw ’up nil))

But we would signal an error.

Emit explicit you-lose operation when we do a move between two non-T ptypes, even when type
checking isn’t on. Can this really happen? Seems we should treat continuations like this as though
type-check was true. Maybe LTN should leave type-check true in this case, even when the policy is
unsafe. (Do a type check against NIL?)

At continuation use time, we may in general have to do both a coerce-to-t and a type check,
allocating two temporary TNs to hold the intermediate results.

17.1 VMR Control representation

We represent all control transfer explicitly. In particular, :Conditional VOPs take a single Tar-
get continuation and a Not-P flag indicating whether the sense of the test is negated. Then an
unconditional Branch VOP will be emitted afterward if the other path isn’t a drop-through.

So we linearize the code before VMR-conversion. This isn’t a problem, since there isn’t much
change in control flow after VMR conversion (none until loop optimization requires introduction
of header blocks.) It does make cost-based branch prediction a bit ucky, though, since we don’t
have any cost information in ICR. Actually, I guess we do have pretty good cost information after
LTN even before VMR conversion, since the most important thing to know is which functions are
open-coded.

|#

VMR preserves the block structure of ICR, but replaces the nodes with a target dependent virtual
machine (VM) representation. Different implementations may use different VMs without making
major changes in the back end. The two main components of VMR are Temporary Names (TNs)
and Virtual OPerations (VOPs). TNs represent the locations that hold values, and VOPs represent
the operations performed on the values.

A “primitive type” is a type meaningful at the VM level. Examples are Fixnum, String-Char,
Short-Float. During VMR conversion we use the primitive type of an expression to determine
both where we can store the result of the expression and which type-specific implementations of
an operation can be applied to the value. [Ptype is a set of SCs == representation choices and
representation specific operations]

The VM specific definitions provide functions that do stuff like find the primitive type corre-
sponding to a type and test for primitive type subtypep. Usually primitive types will be disjoint
except for T, which represents all types.

The primitive type T is special-cased. Not only does it overlap with all the other types, but
it implies a descriptor (“boxed” or “pointer”) representation. For efficiency reasons, we sometimes
want to use alternate representations for some objects such as numbers. The majority of operations
cannot exploit alternate representations, and would only be complicated if they had to be able
to convert alternate representations into descriptors. A template can require an operand to be a
descriptor by constraining the operand to be of type T.
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A TN can only represent a single value, so we bare the implementation of MVs at this point.
When we know the number of multiple values being handled, we use multiple TNs to hold them.
When the number of values is actually unknown, we use a convention that is compatible with full
function call.

Everything that is done is done by a VOP in VMR. Calls to simple primitive functions such
as + and CAR are translated to VOP equivalents by a table-driven mechanism. This translation
is specified by the particular VM definition; VMR conversion makes no assumptions about which
operations are primitive or what operand types are worth special-casing. The default calling mech-
anisms and other miscellaneous builtin features are implemented using standard VOPs that must
be implemented by each VM.

Type information can be forgotten after VMR conversion, since all type-specific operation selec-
tions have been made.

Simple type checking is explicitly done using CHECK-xxx VOPs. They act like innocuous
effectless/unaffected VOPs which return the checked thing as a result. This allows loop-invariant
optimization and common subexpression elimination to remove redundant checks. All type checking
is done at the time the continuation is used.

Note that we need only check asserted types, since if type inference works, the derived types will
also be satisfied. We can check whichever is more convenient, since both should be true.

Constants are turned into special Constant TNs, which are wired down in a SC that is determined
by their type. The VM definition provides a function that returns a constant TN to represent a
Constant Leaf.

Each component has a constant pool. There is a register dedicated to holding the constant pool
for the current component. The back end allocates non-immediate constants in the constant pool
when it discovers them during translation from ICR.

[### Check that we are describing what is actually implemented. But this really isn’t very
good in the presence of interesting unboxed representations...] Since LTN only deals with values
from the viewpoint of the receiver, we must be prepared during the translation pass to do stuff to
the continuation at the time it is used. – If a VOP yields more values than are desired, then we
must create TNs to hold the discarded results. An important special-case is continuations whose
value is discarded. These continuations won’t be annotated at all. In the case of a Ref, we can
simply skip evaluation of the reference when the continuation hasn’t been annotated. Although this
will eliminate bogus references that for some reason weren’t optimized away, the real purpose is to
handle deferred references. – If a VOP yields fewer values than desired, then we must default the
extra values to NIL. – If a continuation has its type-check flag set, then we must check the type of
the value before moving it into the result location. In general, this requires computing the result
in a temporary, and having the type-check operation deliver it in the actual result location. – If
the template’s result type is T, then we must generate a boxed temporary to compute the result in
when the continuation’s type isn’t T.

We may also need to do stuff to the arguments when we generate code for a template. If an
argument continuation isn’t annotated, then it must be a deferred reference. We use the leaf’s TN
instead. We may have to do any of the above use-time actions also. Alternatively, we could avoid
hair by not deferring references that must be type-checked or may need to be boxed.

17.2 Stack analysis

Think of this as a lifetime problem: a values generator is a write and a values receiver is a read.
We want to annotate each VMR-Block with the unknown-values continuations that are live at that
point. If we do a control transfer to a place where fewer continuations are live, then we must
deallocate the newly dead continuations.

We want to convince ourselves that values deallocation based on lifetime analysis actually works.
In particular, we need to be sure that it doesn’t violate the required stack discipline. It is clear that
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it is impossible to deallocate the values before they become dead, since later code may decide to use
them. So the only thing we need to ensure is that the “right” time isn’t later than the time that the
continuation becomes dead.

The only reason why we couldn’t deallocate continuation A as soon as it becomes dead would be
that there is another continuation B on top of it that isn’t dead (since we can only deallocate the
topmost continuation).

The key to understanding why this can’t happen is that each continuation has only one read
(receiver). If B is on top of A, then it must be the case that A is live at the receiver for B. This
means that it is impossible for B to be live without A being live.

The reason that we don’t solve this problem using a normal iterative flow analysis is that we also
need to know the ordering of the continuations on the stack so that we can do deallocation. When
it comes time to discard values, we want to know which discarded continuation is on the bottom so
that we can reset SP to its start.

[I suppose we could also decrement SP by the aggregate size of the discarded continuations.]
Another advantage of knowing the order in which we expect continuations to be on the stack is
that it allows us to do some consistency checking. Also doing a localized graph walk around the
values-receiver is likely to be much more efficient than doing an iterative flow analysis problem over
all the code in the component (not that big a consideration.)

#| Actually, what we do is a backward graph walk from each unknown-values receiver. As we
go, we mark each walked block with the ordered list of continuations we believe are on the stack.
Starting with an empty stack, we: – When we encounter another unknown-values receiver, we push
that continuation on our simulated stack. – When we encounter a receiver (which had better be
for the topmost continuation), we pop that continuation. – When we pop all continuations, we
terminate our walk.

[### not quite right... It seems we may run into “dead values” during the graph walk too. It
seems that we have to check if the pushed continuation is on stack top, and if not, add it to the
ending stack so that the post-pass will discard it.]

[### Also, we can’t terminate our walk just because we hit a block previously walked. We
have to compare the End-Stack with the values received along the current path: if we have more
values on our current walk than on the walk that last touched the block, then we need to re-walk the
subgraph reachable from that block, using our larger set of continuations. It seems that our actual
termination condition is reaching a block whose End-Stack is already EQ to our current stack.]

If at the start, the block containing the values receiver has already been walked, we skip the
walk for that continuation, since it has already been handled by an enclosing values receiver. Once
a walk has started, we ignore any signs of a previous walk, clobbering the old result with our own,
since we enclose that continuation, and the previous walk doesn’t take into consideration the fact
that our values block underlies its own.

When we are done, we have annotated each block with the stack current both at the beginning
and at the end of that block. Blocks that aren’t walked don’t have anything on the stack either
place (although they may hack MVs internally).

We then scan all the blocks in the component, looking for blocks that have predecessors with a
different ending stack than that block’s starting stack. (The starting stack had better be a tail of
the predecessor’s ending stack.) We insert a block intervening between all of these predecessors that
sets SP to the end of the values for the continuation that should be on stack top. Of course, this
pass needn’t be done if there aren’t any global unknown MVs.

Also, if we find any block that wasn’t reached during the walk, but that USEs an outside
unknown-values continuation, then we know that the DEST can’t be reached from this point, so the
values are unused. We either insert code to pop the values, or somehow mark the code to prevent
the values from ever being pushed. (We could cause the popping to be done by the normal pass if
we iterated over the pushes beforehand, assigning a correct END-STACK.)
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[### But I think that we have to be a bit clever within blocks, given the possibility of blocks
being joined. We could collect some unknown MVs in a block, then do a control transfer out of the
receiver, and this control transfer could be squeezed out by merging blocks. How about:

(tagbody

(return

(multiple-value-prog1 (foo)

(when bar

(go UNWIND))))

UNWIND

(return

(multiple-value-prog1 (baz)

bletch)))

But the problem doesn’t happen here (can’t happen in general?) since a node buried within a
block can’t use a continuation outside of the block. In fact, no block can have more then one PUSH
continuation, and this must always be the last continuation. So it is trivially (structurally) true that
all pops come before any push.

[### But not really: the DEST of an embedded continuation may be outside the block. There
can be multiple pushes, and we must find them by iterating over the uses of MV receivers in LTN.
But it would be hard to get the order right this way. We could easily get the order right if we added
the generators as we saw the uses, except that we can’t guarantee that the continuations will be
annotated at that point. (Actually, I think we only need the order for consistency checks, but that
is probably worthwhile). I guess the thing to do is when we process the receiver, add the generator
blocks to the Values-Generators, then do a post-pass that re-scans the blocks adding the pushes.]

I believe that above concern with a dead use getting mashed inside a block can’t happen, since
the use inside the block must be the only use, and if the use isn’t reachable from the push, then the
use is totally unreachable, and should have been deleted, which would prevent it from ever being
annotated. ] ] |#

We find the partial ordering of the values globs for unknown values continuations in each en-
vironment. We don’t have to scan the code looking for unknown values continuations since LTN
annotates each block with the continuations that were popped and not pushed or pushed and not
popped. This is all we need to do the inter-block analysis.

After we have found out what stuff is on the stack at each block boundary, we look for blocks
with predecessors that have junk on the stack. For each such block, we introduce a new block
containing code to restore the stack pointer. Since unknown-values continuations are represented as
<start, count>, we can easily pop a continuation using the Start TN.

Note that there is only doubt about how much stuff is on the control stack, since only it is used
for unknown values. Any special stacks such as number stacks will always have a fixed allocation.

17.3 Non-local exit

If the starting and ending continuations are not in the same environment, then the control transfer
is a non-local exit. In this case just call Unwind with the appropriate stack pointer, and let the code
at the re-entry point worry about fixing things up.

It seems like maybe a good way to organize VMR conversion of NLX would be to have environ-
ment analysis insert funny functions in new interposed cleanup blocks. The thing is that we need
some way for VMR conversion to: 1] Get its hands on the returned values. 2] Do weird control shit.
3] Deliver the values to the original continuation destination. I.e. we need some way to interpose
arbitrary code in the path of value delivery.
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What we do is replace the NLX uses of the continuation with another continuation that is received
by a MV-Call to %NLX-VALUES in a cleanup block that is interposed between the NLX uses and
the old continuation’s block. The MV-Call uses the original continuation to deliver its values to.

[Actually, it’s not really important that this be an MV-Call, since it has to be special-cased by
LTN anyway. Or maybe we would want it to be an MV call. If we did normal LTN analysis of an
MV call, it would force the returned values into the unknown values convention, which is probably
pretty convenient for use in NLX.

Then the entry code would have to use some special VOPs to receive the unknown values. But
we probably need special VOPs for NLX entry anyway, and the code can share with the call VOPs.
Also we probably need the technology anyway, since THROW will use truly unknown values.]

On entry to a dynamic extent that has non-local-exists into it (always at an ENTRY node), we
take a complete snapshot of the dynamic state:

• the top pointers for all stacks

• current Catch and Unwind-Protect

• current special binding (binding stack pointer in shallow binding)

We insert code at the re-entry point which restores the saved dynamic state. All TNs live at an
NLX EP are forced onto the stack, so we don’t have to restore them, and we don’t have to worry
about getting them saved.
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18 Copy propagation

File: copyprop

This phase is optional, but should be done whenever speed or space is more important than
compile speed. We use global flow analysis to find the reaching definitions for each TN. This
information is used here to eliminate unnecessary TNs, and is also used later on by loop invariant
optimization.

In some cases, VMR conversion will unnecessarily copy the value of a TN into another TN, since
it may not be able to tell that the initial TN has the same value at the time the second TN is
referenced. This can happen when ICR optimize is unable to eliminate a trivial variable binding,
or when the user does a setq, or may also result from creation of expression evaluation temporaries
during VMR conversion. Whatever the cause, we would like to avoid the unnecessary creation and
assignment of these TNs.

What we do is replace TN references whose only reaching definition is a Move VOP with a
reference to the TN moved from, and then delete the Move VOP if the copy TN has no remaining
references. There are several restrictions on copy propagation:

• The TNs must be “ordinary” TNs, not restricted or otherwise unusual. Extending the life of
restricted (or wired) TNs can make register allocation impossible. Some other TN kinds have
hidden references.

• We don’t want to defeat source-level debugging by replacing named variables with anonymous
temporaries.

• We can’t delete moves that representation selected might want to change into a representation
conversion, since we need the primitive types of both TNs to select a conversion.

Some cleverness reduces the cost of flow analysis. As for lifetime analysis, we only need to do
flow analysis on global packed TNs. We can’t do the real local TN assignment pass before this, since
we allocate TNs afterward, so we do a pre-pass that marks the TNs that are local for our purposes.
We don’t care if block splitting eventually causes some of them to be considered global.

Note also that we are really only interested in knowing if there is a unique reaching definition,
which we can mash into our flow analysis rules by doing an intersection. Then a definition only
appears in the set when it is unique. We then propagate only definitions of TNs with only one write,
which allows the TN to stand for the definition.
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19 Representation selection

File: represent

Some types of object (such as single-float) have multiple possible representations. Multiple
representations are useful mainly when there is a particularly efficient non-descriptor representa-
tion. In this case, there is the normal descriptor representation, and an alternate non-descriptor
representation.

This possibility brings up two major issues:

• The compiler must decide which representation will be most efficient for any given value, and

• Representation conversion code must be inserted where the representation of a value is changed.

First, the representations for TNs are selected by examining all the TN references and attempting
to minimize reference costs. Then representation conversion code is introduced.

This phase is in effect a pre-pass to register allocation. The main reason for its existence is that
representation conversions may be farily complex (e.g. involving memory allocation), and thus must
be discovered before register allocation.

VMR conversion leaves stubs for representation specific move operations. Representation selec-
tion recognizes move by name. Argument and return value passing for call VOPs is controlled by
the :move-arguments option to define-vop.

Representation selection is also responsible for determining what functions use the number stack.
If any representation is chosen which could involve packing into the non-descriptor-stack SB, then
we allocate the NFP register throughout the component. As an optimization, permit the decision
of whether a number stack frame needs to be allocated to be made on a per-function basis. If a
function doesn’t use the number stack, and isn’t in the same tail-set as any function that uses the
number stack, then it doesn’t need a number stack frame, even if other functions in the component
do.
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20 Lifetime analysis

File: life

This phase is a preliminary to Pack. It involves three passes: – A pre-pass that computes the
DEF and USE sets for live TN analysis, while also assigning local TN numbers, splitting blocks if
necessary. ### But not really... – A flow analysis pass that does backward flow analysis on the
component to find the live TNs at each block boundary. – A post-pass that finds the conflict set for
each TN.

#| Exploit the fact that a single VOP can only exhaust LTN numbers when there are large
more operands. Since more operand reference cannot be interleaved with temporary reference, the
references all effectively occur at the same time. This means that we can assign all the more args
and all the more results the same LTN number and the same lifetime info. |#

20.1 Flow analysis

It seems we could use the global-conflicts structures during compute the inter-block lifetime infor-
mation. The pre-pass creates all the global-conflicts for blocks that global TNs are referenced in.
The flow analysis pass just adds always-live global-conflicts for the other blocks the TNs are live
in. In addition to possibly being more efficient than SSets, this would directly result in the desired
global-conflicts information, rather than having to create it from another representation.

The DFO sorted per-TN global-conflicts thread suggests some kind of algorithm based on the
manipulation of the sets of blocks each TN is live in (which is what we really want), rather than the
set of TNs live in each block.

If we sorted the per-TN global-conflicts in reverse DFO (which is just as good for determining
conflicts between TNs), then it seems we could scan though the conflicts simultaneously with our
flow-analysis scan through the blocks.

The flow analysis step is the following: If a TN is always-live or read-before-written in a successor
block, then we make it always-live in the current block unless there are already global-conflicts
recorded for that TN in this block.

The iteration terminates when we don’t add any new global-conflicts during a pass.

We may also want to promote TNs only read within a block to always-live when the TN is live in
a successor. This should be easy enough as long as the global-conflicts structure contains this kind
of info.

The critical operation here is determining whether a given global TN has global conflicts in a
given block. Note that since we scan the blocks in DFO, and the global-conflicts are sorted in DFO,
if we give each global TN a pointer to the global-conflicts for the last block we checked the TN was
in, then we can guarantee that the global-conflicts we are looking for are always at or after that
pointer. If we need to insert a new structure, then the pointer will help us rapidly find the place to
do the insertion.]

20.2 Conflict detection

[### Environment, :more TNs.]

This phase makes use of the results of lifetime analysis to find the set of TNs that have lifetimes
overlapping with those of each TN. We also annotate call VOPs with information about the live
TNs so that code generation knows which registers need to be saved.

The basic action is a backward scan of each block, looking at each TN-Ref and maintaining a
set of the currently live TNs. When we see a read, we check if the TN is in the live set. If not, we:
– Add the TN to the conflict set for every currently live TN, – Union the set of currently live TNs
with the conflict set for the TN, and – Add the TN to the set of live TNs.
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When we see a write for a live TN, we just remove it from the live set. If we see a write to a
dead TN, then we update the conflicts sets as for a read, but don’t add the TN to the live set. We
have to do this so that the bogus write doesn’t clobber anything.

[We don’t consider always-live TNs at all in this process, since the conflict of always-live TNs
with other TNs in the block is implicit in the global-conflicts structures.

Before we do the scan on a block, we go through the global-conflicts structures of TNs that
change liveness in the block, assigning the recorded LTN number to the TN’s LTN number for the
duration of processing of that block.]

Efficiently computing and representing this information calls for some cleverness. It would be
prohibitively expensive to represent the full conflict set for every TN with sparse sets, as is done at
the block-level. Although it wouldn’t cause non-linear behavior, it would require a complex linked
structure containing tens of elements to be created for every TN. Fortunately we can improve on
this if we take into account the fact that most TNs are “local” TNs: TNs which have all their uses
in one block.

First, many global TNs will be either live or dead for the entire duration of a given block. We
can represent the conflict between global TNs live throughout the block and TNs local to the block
by storing the set of always-live global TNs in the block. This reduces the number of global TNs
that must be represented in the conflicts for local TNs.

Second, we can represent conflicts within a block using bit-vectors. Each TN that changes liveness
within a block is assigned a local TN number. Local conflicts are represented using a fixed-size bit-
vector of 64 elements or so which has a 1 for the local TN number of every TN live at that time. The
block has a simple-vector which maps from local TN numbers to TNs. Fixed-size vectors reduce the
hassle of doing allocations and allow operations to be open-coded in a maximally tense fashion.

We can represent the conflicts for a local TN by a single bit-vector indexed by the local TN
numbers for that block, but in the global TN case, we need to be able to represent conflicts with
arbitrary TNs. We could use a list-like sparse set representation, but then we would have to either
special-case global TNs by using the sparse representation within the block, or convert the local
conflicts bit-vector to the sparse representation at the block end. Instead, we give each global TN a
list of the local conflicts bit-vectors for each block that the TN is live in. If the TN is always-live in
a block, then we record that fact instead. This gives us a major reduction in the amount of work we
have to do in lifetime analysis at the cost of some increase in the time to iterate over the set during
Pack.

Since we build the lists of local conflict vectors a block at a time, the blocks in the lists for each
TN will be sorted by the block number. The structure also contains the local TN number for the
TN in that block. These features allow pack to efficiently determine whether two arbitrary TNs
conflict. You just scan the lists in order, skipping blocks that are in only one list by using the block
numbers. When we find a block that both TNs are live in, we just check the local TN number of
one TN in the local conflicts vector of the other.

In order to do these optimizations, we must do a pre-pass that finds the always-live TNs and
breaks blocks up into small enough pieces so that we don’t run out of local TN numbers. If we
can make a block arbitrarily small, then we can guarantee that an arbitrarily small number of TNs
change liveness within the block. We must be prepared to make the arguments to unbounded arg
count VOPs (such as function call) always-live even when they really aren’t. This is enabled by a
panic mode in the block splitter: if we discover that the block only contains one VOP and there are
still too many TNs that aren’t always-live, then we promote the arguments (which we’d better be
able to do...).

This is done during the pre-scan in lifetime analysis. We can do this because all TNs that change
liveness within a block can be found by examining that block: the flow analysis only adds always-live
TNs.
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When we are doing the conflict detection pass, we set the LTN number of global TNs. We can
easily detect global TNs that have not been locally mapped because this slot is initially null for
global TNs and we null it out after processing each block. We assign all Always-Live TNs to the
same local number so that we don’t need to treat references to them specially when making the
scan.

We also annotate call VOPs that do register saving with the TNs that are live during the call,
and thus would need to be saved if they are packed in registers.

We adjust the costs for TNs that need to be saved so that TNs costing more to save and restore
than to reference get packed on the stack. We would also like more often saved TNs to get higher
costs so that they are packed in more savable locations.
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21 Packing

File: pack

#|

Add lifetime/pack support for pre-packed save TNs.

Fix GTN/VMR conversion to use pre-packed save TNs for old-cont and return-PC. (Will prevent
preference from passing location to save location from ever being honored?)

We will need to make packing of passing locations smarter before we will be able to target the
passing location on the stack in a tail call (when that is where the callee wants it.) Currently, we
will almost always pack the passing location in a register without considering whether that is really
a good idea. Maybe we should consider schemes that explicitly understand the parallel assignment
semantics, and try to do the assignment with a minimum number of temporaries. We only need
assignment temps for TNs that appear both as an actual argument value and as a formal parameter
of the called function. This only happens in self-recursive functions.

Could be a problem with lifetime analysis, though. The write by a move-arg VOP would look like
a write in the current env, when it really isn’t. If this is a problem, then we might want to make the
result TN be an info arg rather than a real operand. But this would only be a problem in recursive
calls, anyway. [This would prevent targeting, but targeting across passing locations rarely seems to
work anyway.] [### But the :ENVIRONMENT TN mechanism would get confused. Maybe put
env explicitly in TN, and have it only always-live in that env, and normal in other envs (or blocks
it is written in.) This would allow targeting into environment TNs.

I guess we would also want the env/PC save TNs normal in the return block so that we can
target them. We could do this by considering env TNs normal in read blocks with no successors.

ENV TNs would be treated totally normally in non-env blocks, so we don’t have to worry
about lifetime analysis getting confused by variable initializations. Do some kind of TN costing to
determine when it is more trouble than it is worth to allocate TNs in registers.

Change pack ordering to be less pessimal. Pack TNs as they are seen in the LTN map in DFO,
which at least in non-block compilations has an effect something like packing main trace TNs first,
since control analysis tries to put the good code first. This could also reduce spilling, since it makes
it less likely we will clog all registers with global TNs.

If we pack a TN with a specified save location on the stack, pack in the specified location.

Allow old-cont and return-pc to be kept in registers by adding a new “keep around” kind of TN.
These are kind of like environment live, but are only always-live in blocks that they weren’t referenced
in. Lifetime analysis does a post-pass adding always-live conflicts for each “keep around” TN to those
blocks with no conflict for that TN. The distinction between always-live and keep-around allows us
to successfully target old-cont and return-pc to passing locations. MAKE-KEEP-AROUND-TN
(ptype), PRE-PACK-SAVE-TN (tn scn offset). Environment needs a KEEP-AROUND-TNS slot so
that conflict analysis can find them (no special casing is needed after then, they can be made with
:NORMAL kind). VMR-component needs PRE-PACKED-SAVE-TNS so that conflict analysis or
somebody can copy conflict info from the saved TN.

Note that having block granularity in the conflict information doesn’t mean that a localized
packing scheme would have to do all moves at block boundaries (which would clash with the desire
to have saving done as part of this mechanism.) All that it means is that if we want to do a move
within the block, we would need to allocate both locations throughout that block (or something).

Load TN pack:

A location is out for load TN packing if:

The location has TN live in it after the VOP for a result, or before the VOP for an argument, or

The location is used earlier in the TN-ref list (after) the saved results ref or later in the TN-Ref
list (before) the loaded argument’s ref.
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To pack load TNs, we advance the live-tns to the interesting VOP, then repeatedly scan the
vop-refs to find vop-local conflicts for each needed load TN. We insert move VOPs and change over
the TN-Ref-TNs as we go so the TN-Refs will reflect conflicts with already packed load-TNs.

If we fail to pack a load-TN in the desired SC, then we scan the Live-TNs for the SB, looking for
a TN that can be packed in an unbounded SB. This TN must then be repacked in the unbounded
SB. It is important the load-TNs are never packed in unbounded SBs, since that would invalidate
the conflicts info, preventing us from repacking TNs in unbounded SBs. We can’t repack in a finite
SB, since there might have been load TNs packed in that SB which aren’t represented in the original
conflict structures.

Is it permissible to “restrict” an operand to an unbounded SC? Not impossible to satisfy as long
as a finite SC is also allowed. But in practice, no restriction would probably be as good.

We assume all locations can be used when an sc is based on an unbounded sb.

]

TN-Refs are convenient structures to build the target graph out of. If we allocated space in
every TN-Ref, then there would certainly be enough to represent arbitrary target graphs. Would it
be enough to allocate a single Target slot? If there is a target path through a given VOP, then the
Target of the write ref would be the read, and vice-versa. To find all the TNs that target us, we
look at the TN for the target of all our write refs.

We separately chain together the read refs and the write refs for a TN, allowing easy determina-
tion of things such as whether a TN has only a single definition or has no reads. It would also allow
easier traversal of the target graph.

Represent per-location conflicts as vectors indexed by block number of per-block conflict info.
To test whether a TN conflicts on a location, we would then have to iterate over the TNs global-
conflicts, using the block number and LTN number to check for a conflict in that block. But since
most TNs are local, this test actually isn’t much more expensive than indexing into a bit-vector by
GTN numbers.

The big win of this scheme is that it is much cheaper to add conflicts into the conflict set for a
location, since we never need to actually compute the conflict set in a list-like representation (which
requires iterating over the LTN conflicts vectors and unioning in the always-live TNs). Instead, we
just iterate over the global-conflicts for the TN, using BIT-IOR to combine the conflict set with
the bit-vector for that block in that location, or marking that block/location combination as being
always-live if the conflict is always-live.

Generating the conflict set is inherently more costly, since although we believe the conflict set
size to be roughly constant, it can easily contain tens of elements. We would have to generate these
moderately large lists for all TNs, including local TNs. In contrast, the proposed scheme does work
proportional to the number of blocks the TN is live in, which is small on average (1 for local TNs).
This win exists independently from the win of not having to iterate over LTN conflict vectors.

[### Note that since we never do bitwise iteration over the LTN conflict vectors, part of the
motivation for keeping these a small fixed size has been removed. But it would still be useful to
keep the size fixed so that we can easily recycle the bit-vectors, and so that we could potentially
have maximally tense special primitives for doing clear and bit-ior on these vectors.]

This scheme is somewhat more space-intensive than having a per-location bit-vector. Each vector
entry would be something like 150 bits rather than one bit, but this is mitigated by the number of
blocks being 5-10x smaller than the number of TNs. This seems like an acceptable overhead, a small
fraction of the total VMR representation.

The space overhead could also be reduced by using something equivalent to a two-dimensional
bit array, indexed first by LTN numbers, and then block numbers (instead of using a simple-vector
of separate bit-vectors.) This would eliminate space wastage due to bit-vector overheads, which
might be 50% or more, and would also make efficient zeroing of the vectors more straightforward.
We would then want efficient operations for OR’ing LTN conflict vectors with rows in the array.
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This representation also opens a whole new range of allocation algorithms: ones that store
allocate TNs in different locations within different portions of the program. This is because we can
now represent a location being used to hold a certain TN within an arbitrary subset of the blocks
the TN is referenced in.

Pack goals:

Pack should:

Subject to resource constraints: – Minimize use costs – “Register allocation” Allocate as many
values as possible in scarce “good” locations, attempting to minimize the aggregate use cost for the
entire program. – “Save optimization” Don’t allocate values in registers when the save/restore costs
exceed the expected gain for keeping the value in a register. (Similar to “opening costs” in RAOC.)
[Really just a case of representation selection.]

– Minimize preference costs Eliminate as many moves as possible.

“Register allocation” is basically an attempt to eliminate moves between registers and memory.
“Save optimization” counterbalances “register allocation” to prevent it from becoming a pessimiza-
tion, since saves can introduce register/memory moves.

Preference optimization reduces the number of moves within an SC. Doing a good job of honoring
preferences is important to the success of the compiler, since we have assumed in many places that
moves will usually be optimized away.

The scarcity-oriented aspect of “register allocation” is handled by a greedy algorithm in pack.
We try to pack the “most important” TNs first, under the theory that earlier packing is more likely
to succeed due to fewer constraints.

The drawback of greedy algorithms is their inability to look ahead. Packing a TN may mess up
later “register allocation” by precluding packing of TNs that are individually “less important,” but
more important in aggregate. Packing a TN may also prevent preferences from being honored.

Initial packing:

Pack all TNs restricted to a finite SC first, before packing any other TNs.

One might suppose that Pack would have to treat TNs in different environments differently, but
this is not the case. Pack simply assigns TNs to locations so that no two conflicting TNs are in
the same location. In the process of implementing call semantics in conflict analysis, we cause TNs
in different environments not to conflict. In the case of passing TNs, cross environment conflicts
do exist, but this reflects reality, since the passing TNs are live in both the caller and the callee.
Environment semantics has already been implemented at this point.

This means that Pack can pack all TNs simultaneously, using one data structure to represent the
conflicts for each location. So we have only one conflict set per SB location, rather than separating
this information by environment.

Load TN packing:

We create load TNs as needed in a post-pass to the initial packing. After TNs are packed, it
may be that some references to a TN will require it to be in a SC other than the one it was packed
in. We create load-TNs and pack them on the fly during this post-pass.

What we do is have an optional SC restriction associated with TN-refs. If we pack the TN in
an SC which is different from the required SC for the reference, then we create a TN for each such
reference, and pack it into the required SC.

In many cases we will be able to pack the load TN with no hassle, but in general we may need
to spill a TN that has already been packed. We choose a TN that isn’t in use by the offending VOP,
and then spill that TN onto the stack for the duration of that VOP. If the VOP is a conditional,
then we must insert a new block interposed before the branch target so that the TN value is restored
regardless of which branch is taken.

Instead of remembering lifetime information from conflict analysis, we rederive it. We scan each
block backward while keeping track of which locations have live TNs in them. When we find a
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reference that needs a load TN packed, we try to pack it in an unused location. If we can’t, we
unpack the currently live TN with the lowest cost and force it into an unbounded SC.

The per-location and per-TN conflict information used by pack doesn’t need to be updated when
we pack a load TN, since we are done using those data structures.

We also don’t need to create any TN-Refs for load TNs. [??? How do we keep track of load-tn
lifetimes? It isn’t really that hard, I guess. We just remember which load TNs we created at each
VOP, killing them when we pass the loading (or saving) step. This suggests we could flush the Refs
thread if we were willing to sacrifice some flexibility in explicit temporary lifetimes. Flushing the
Refs would make creating the VMR representation easier.]

The lifetime analysis done during load-TN packing doubles as a consistency check. If we see a
read of a TN packed in a location which has a different TN currently live, then there is a packing
bug. If any of the TNs recorded as being live at the block beginning are packed in a scarce SB, but
aren’t current in that location, then we also have a problem.

The conflict structure for load TNs is fairly simple, the load TNs for arguments and results all
conflict with each other, and don’t conflict with much else. We just try packing in targeted locations
before trying at random.
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22 Code generation

This is fairly straightforward. We translate VOPs into instruction sequences on a per-block basis.

After code generation, the VMR representation is gone. Everything is represented by the assem-
bler data structures.



58

23 Assembly

In effect, we do much of the work of assembly when the compiler is compiled.

The assembler makes one pass fixing up branch offsets, then squeezes out the space left by branch
shortening and dumps out the code along with the load-time fixup information. The assembler also
deals with dumping unboxed non-immediate constants and symbols. Boxed constants are created
by explicit constructor code in the top-level form, while immediate constants are generated using
inline code.

[### The basic output of the assembler is: A code vector A representation of the fixups along
with indices into the code vector for the fixup locations A PC map translating PCs into source paths

This information can then be used to build an output file or an in-core function object. ]

The assembler is table-driven and supports arbitrary instruction formats. As far as the assembler
is concerned, an instruction is a bit sequence that is broken down into subsequences. Some of the
subsequences are constant in value, while others can be determined at assemble or load time.

Assemble Node Form*

Allow instructions to be emitted during the evaluation of the Forms by

defining Inst as a local macro. This macro caches various global

information in local variables. Node tells the assembler what node

ultimately caused this code to be generated. This is used to create the

pc=>source map for the debugger.

Assemble-Elsewhere Node Form*

Similar to Assemble, but the current assembler location is changed to

somewhere else. This is useful for generating error code and similar

things. Assemble-Elsewhere may not be nested.

Inst Name Arg*

Emit the instruction Name with the specified arguments.

Gen-Label

Emit-Label (Label)

Gen-Label returns a Label object, which describes a place in the code.

Emit-Label marks the current position as being the location of Label.
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24 Dumping

So far as input to the dumper/loader, how about having a list of Entry-Info structures in the
VMR-Component? These structures contain all information needed to dump the associated func-
tion objects, and are only implicitly associated with the functional/XEP data structures. Load-time
constants that reference these function objects should specify the Entry-Info, rather than the func-
tional (or something). We would then need to maintain some sort of association so VMR conversion
can find the appropriate Entry-Info. Alternatively, we could initially reference the functional, and
then later clobber the reference to the Entry-Info.

We have some kind of post-pass that runs after assembly, going through the functions and
constants, annotating the VMR-Component for the benefit of the dumper: Resolve :Label load-time
constants. Make the debug info. Make the entry-info structures.

Fasl dumper and in-core loader are implementation (but not instruction set) dependent, so we
want to give them a clear interface.

open-fasl-file name => fasl-file

Returns a ‘‘fasl-file’’ object representing all state needed by the dumper.

We objectify the state, since the fasdumper should be reentrant. (but

could fail to be at first.)

close-fasl-file fasl-file abort-p

Close the specified fasl-file.

fasl-dump-component component code-vector length fixups fasl-file

Dump the code, constants, etc. for component. Code-Vector is a vector

holding the assembled code. Length is the number of elements of Vector

that are actually in use. Fixups is a list of conses (offset . fixup)

describing the locations and things that need to be fixed up at load time.

If the component is a top-level component, then the top-level lambda will

be called after the component is loaded.

load-component component code-vector length fixups

Like Fasl-Dump-Component, but directly installs the code in core, running

any top-level code immediately. (???) but we need some way to glue

together the componenents, since we don’t have a fasl table.

Dumping:

Dump code for each component after compiling that component, but defer dumping of other
stuff. We do the fixups on the code vectors, and accumulate them in the table.

We have to grovel the constants for each component after compiling that component so that
we can fix up load-time constants. Load-time constants are values needed by the code that are
computed after code generation/assembly time. Since the code is fixed at this point, load-time
constants are always represented as non-immediate constants in the constant pool. A load-time
constant is distinguished by being a cons (Kind . What), instead of a Constant leaf. Kind is a
keyword indicating how the constant is computed, and What is some context.

Some interesting load-time constants:

(:label . <label>)

Is replaced with the byte offset of the label within the code-vector.

(:code-vector . <component>)

Is replaced by the component’s code-vector.
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(:entry . <function>)

(:closure-entry . <function>)

Is replaced by the function-entry structure for the specified function.

:Entry is how the top-level component gets a handle on the function

definitions so that it can set them up.

We also need to remember the starting offset for each entry, although these don’t in general
appear as explicit constants.

We then dump out all the :Entry and :Closure-Entry objects, leaving any constant-pool pointers
uninitialized. After dumping each :Entry, we dump some stuff to let genesis know that this is a
function definition. Then we dump all the constant pools, fixing up any constant-pool pointers in
the already-dumped function entry structures.

The debug-info *is* a constant: the first constant in every constant pool. But the creation of
this constant must be deferred until after the component is compiled, so we leave a (:debug-info)
placeholder. [Or maybe this is implicitly added in by the dumper, being supplied in a VMR-
component slot.]

Work out details of the interface between the back-end and the assembler/dumper.

Support for multiple assemblers concurrently loaded? (for byte code)

We need various mechanisms for getting information out of the assembler.

We can get entry PCs and similar things into function objects by making a Constant leaf,
specifying that it goes in the closure, and then setting the value after assembly.

We have an operation Label-Value which can be used to get the value of a label after assembly
and before the assembler data structures are deallocated.

The function map can be constructed without any special help from the assembler. Codegen just
has to note the current label when the function changes from one block to the next, and then use
the final value of these labels to make the function map.

Probably we want to do the source map this way too. Although this will make zillions of spurious
labels, we would have to effectively do that anyway.

With both the function map and the source map, getting the locations right for uses of Elsewhere
will be a bit tricky. Users of Elsewhere will need to know about how these maps are being built,
since they must record the labels and corresponding information for the elsewhere range. It would
be nice to have some cooperation from Elsewhere so that this isn’t necessary, otherwise some VOP
writer will break the rules, resulting in code that is nowhere.

The Debug-Info and related structures are dumped by consing up the structure and making it
be the value of a constant.

Getting the code vector and fixups dumped may be a bit more interesting. I guess we want a
Dump-Code-Vector function which dumps the code and fixups accumulated by the current assembly,
returning a magic object that will become the code vector when it is dumped as a constant. ]
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25 User Interface of the Compiler

25.1 Error Message Utilities

25.2 Source Paths





Compiler Retargeting





65

26 Retargeting the Compiler

[###

In general, it is a danger sign if a generator references a TN that isn’t an operand or temporary,
since lifetime analysis hasn’t been done for that use. We are doing weird stuff for the old-cont and
return-pc passing locations, hoping that the conflicts at the called function have the desired effect.
Other stuff? When a function returns unknown values, we don’t reference the values locations when
a single-value return is done. But nothing is live at a return point anyway.

Have a way for template conversion to special-case constant arguments? How about: If an arg
restriction is (:satisfies [<predicate function>]), and the corresponding argument is constant, with
the constant value satisfying the predicate, then (if any other restrictions are satisfied), the template
will be emitted with the literal value passed as an info argument. If the predicate is omitted, then
any constant will do.

We could sugar this up a bit by allowing (:member <object>*) for (:satisfies (lambda (x) (member
x ’(<object>*))))

We could allow this to be translated into a Lisp type by adding a new Constant type specifier.
This could only appear as an argument to a function type. To satisfy (Constant <type>), the
argument must be a compile-time constant of the specified type. Just Constant means any constant
(i.e. (Constant *)). This would be useful for the type constraints on ICR transforms.

Constant TNs: we count on being able to indirect to the leaf, and don’t try to wedge the
information into the offset. We set the FSC to an appropriate immediate SC.

Allow “more operands” to VOPs in define-vop. You can’t do much with the more operands:
define-vop just fills in the cost information according to the loading costs for a SC you specify. You
can’t restrict more operands, and you can’t make local preferences. In the generator, the named
variable is bound to the TN-ref for the first extra operand. This should be good enough to handle
all the variable arg VOPs (primarily function call and return). Usually more operands are used just
to get TN lifetimes to work out; the generator actually ignores them.

Variable-arg VOPs can’t be used with the VOP macro. You must use VOP*. VOP* doesn’t do
anything with these extra operand except stick them on the ends of the operand lists passed into
the template. VOP* is often useful within the convert functions for non-VOP templates, since it
can emit a VOP using an already prepared TN-Ref list.

It is pretty basic to the whole primitive-type idea that there is only one primitive-type for a
given lisp type. This is really the same as saying primitive types are disjoint. A primitive type
serves two somewhat unrelated purposes: – It is an abstraction of a Lisp type used to select type
specific operations. Originally kind of an efficiency hack, but it lets a template’s type signature be
used both for selection and operand representation determination. – It represents a set of possible
representations for a value (SCs). The primitive type is used to determine the legal SCs for a TN,
and is also used to determine which type-coercion/move VOP to use.

]

There are basically three levels of target dependence:

– Code in the “front end” (before VMR conversion) deals only with Lisp semantics, and is totally
target independent.

– Code after VMR conversion and before code generation depends on the VM, but should work
with little modification across a wide range of “conventional” architectures.

– Code generation depends on the machine’s instruction set and other implementation details, so
it will have to be redone for each implementation. Most of the work here is in defining the translation
into assembly code of all the supported VOPs.



66

27 Storage bases and classes

New interface: instead of CURRENT-FRAME-SIZE, have CURRENT-SB-SIZE <name> which re-
turns the current element size of the named SB.

How can we have primitive types that overlap, i.e. (UNSIGNED-BYTE 32), (SIGNED-BYTE
32), FIXNUM? Primitive types are used for two things: Representation selection: which SCs can
be used to represent this value? For this purpose, it isn’t necessary that primitive types be disjoint,
since any primitive type can choose an arbitrary set of representations. For moves between the
overlapping representations, the move/load operations can just be noops when the locations are the
same (vanilla MOVE), since any bad moves should be caught out by type checking. VOP selection:
Is this operand legal for this VOP? When ptypes overlap in interesting ways, there is a problem
with allowing just a simple ptype restriction, since we might want to allow multiple ptypes. This
could be handled by allowing “union primitive types”, or by allowing multiple primitive types to be
specified (only in the operand restriction.) The latter would be along the lines of other more flexible
VOP operand restriction mechanisms, (constant, etc.)

Ensure that load/save-operand never need to do representation conversion.

The PRIMITIVE-TYPE more/coerce info would be moved into the SC. This could perhaps go
along with flushing the TN-COSTS. We would annotate the TN with best SC, which implies the
representation (boxed or unboxed). We would still need to represent the legal SCs for restricted
TNs somehow, and also would have to come up with some other way for pack to keep track of which
SCs we have already tried.

An SC would have a list of “alternate” SCs and a boolean SAVE-P value that indicates it needs
to be saved across calls in some non-SAVE-P SC. A TN is initially given its “best” SC. The SC is
annotated with VOPs that are used for moving between the SC and its alternate SCs (load/save
operand, save/restore register). It is also annotated with the “move” VOPs used for moving between
this SC and all other SCs it is possible to move between. We flush the idea that there is only c-to-t
and c-from-t.

But how does this mesh with the idea of putting operand load/save back into the generator?
Maybe we should instead specify a load/save function? The load/save functions would also differ
from the move VOPs in that they would only be called when the TN is in fact in that particular
alternate SC, whereas the move VOPs will be associated with the primary SC, and will be emitted
before it is known whether the TN will be packed in the primary SC or an alternate.

I guess a packed SC could also have immediate SCs as alternate SCs, and constant loading
functions could be associated with SCs using this mechanism.

So given a TN packed in SC X and an SC restriction for Y and Z, how do we know which load
function to call? There would be ambiguity if X was an alternate for both Y and Z and they specified
different load functions. This seems unlikely to arise in practice, though, so we could just detect the
ambiguity and give an error at define-vop time. If they are doing something totally weird, they can
always inhibit loading and roll their own.

Note that loading costs can be specified at the same time (same syntax) as association of loading
functions with SCs. It seems that maybe we will be rolling DEFINE-SAVE-SCS and DEFINE-
MOVE-COSTS into DEFINE-STORAGE-CLASS.

Fortunately, these changes will affect most VOP definitions very little.

A Storage Base represents a physical storage resource such as a register set or stack frame.
Storage bases for non-global resources such as the stack are relativized by the environment that the
TN is allocated in. Packing conflict information is kept in the storage base, but non-packed storage
resources such as closure environments also have storage bases. Some storage bases:

General purpose registers

Floating point registers

Boxed (control) stack environment
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Unboxed (number) stack environment

Closure environment

A storage class is a potentially arbitrary set of the elements in a storage base. Although concep-
tually there may be a hierarchy of storage classes such as “all registers”, “boxed registers”, “boxed
scratch registers”, this doesn’t exist at the implementation level. Such things can be done by speci-
fying storage classes whose locations overlap. A TN shouldn’t have lots of overlapping SC’s as legal
SC’s, since time would be wasted repeatedly attempting to pack in the same locations.

There will be some SC’s whose locations overlap a great deal, since we get Pack to do our
representation analysis by having lots of SC’s. An SC is basically a way of looking at a storage
resource. Although we could keep a fixnum and an unboxed representation of the same number in
the same register, they correspond to different SC’s since they are different representation choices.

TNs are annotated with the primitive type of the object that they hold: T: random boxed object
with only one representation. Fixnum, Integer, XXX-Float: Object is always of the specified numeric
type. String-Char: Object is always a string-char.

When a TN is packed, it is annotated with the SC it was packed into. The code generator for a
VOP must be able to uniquely determine the representation of its operands from the SC. (debugger
also...)

Some SCs: Reg: any register (immediate objects) Save-Reg: a boxed register near r15 (registers
easily saved in a call) Boxed-Reg: any boxed register (any boxed object) Unboxed-Reg: any unboxed
register (any unboxed object) Float-Reg, Double-Float-Reg: float in FP register. Stack: boxed object
on the stack (on cstack) Word: any 32bit unboxed object on nstack. Double: any 64bit unboxed
object on nstack.

We have a number of non-packed storage classes which serve to represent access costs associated
with values that are not allocated using conflicts information. Non-packed TNs appear to already
be packed in the appropriate storage base so that Pack doesn’t get confused. Costs for relevant
non-packed SC’s appear in the TN-Ref cost information, but need not ever be summed into the TN
cost vectors, since TNs cannot be packed into them.

There are SCs for non-immediate constants and for each significant kind of immediate operand
in the architecture. On the RT, 4, 8 and 20 bit integer SCs are probably worth having.

Non-packed SCs:

Constant

Immediate constant SCs:

Signed-Byte-<N>, Unsigned-Byte-<N>, for various architecture dependent

values of <N>

String-Char

XXX-Float

Magic values: T, NIL, 0.
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28 Type system parameterization

The main aspect of the VM that is likely to vary for good reason is the type system:

– Different systems will have different ways of representing dynamic type information. The
primary effect this has on the compiler is causing VMR conversion of type tests and checks to be
implementation dependent. Rewriting this code for each implementation shouldn’t be a big problem,
since the portable semantics of types has already been dealt with.

– Different systems will have different specialized number and array types, and different VOPs
specialized for these types. It is easy to add this kind of knowledge without affecting the rest of the
compiler. All you have to do is define the VOPs and translations.

– Different systems will offer different specialized storage resources such as floating-point registers,
and will have additional kinds of primitive-types. The storage class mechanism handles a large part
of this, but there may be some problem in getting VMR conversion to realize the possibly large
hidden costs in implicit moves to and from these specialized storage resources. Probably the answer
is to have some sort of general mechanism for determining the primitive-type for a TN given the
Lisp type, and then to have some sort of mechanism for automatically using specialized Move VOPs
when the source or destination has some particular primitive-type.

#| How to deal with list/null(symbol)/cons in primitive-type structure? Since cons and symbol
aren’t used for type-specific template selection, it isn’t really all that critical. Probably Primitive-
Type should return the List primitive type for all of Cons, List and Null (indicating when it is
exact). This would allow type-dispatch for simple sequence functions (such as length) to be done
using the standard template-selection mechanism. [Not a wired assumption] |#
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29 VOP Definition

Before the operand TN-refs are passed to the emit function, the following stuff is done: – The refs in
the operand and result lists are linked together in order using the Across slot. This list is properly
NIL terminated. – The TN slot in each ref is set, and the ref is linked into that TN’s refs using the
Next slot. – The Write-P slot is set depending on whether the ref is an argument or result. – The
other slots have the default values.

The template emit function fills in the Vop, Costs, Cost-Function, SC-Restriction and Preference
slots, and links together the Next-Ref chain as appropriate.

29.1 Lifetime model

#| Note in doc that the same TN may not be used as both a more operand and as any other operand
to the same VOP, to simplify more operand LTN number coalescing. |#

It seems we need a fairly elaborate model for intra-VOP conflicts in order to allocate temporaries
without introducing spurious conflicts. Consider the important case of a VOP such as a miscop that
must have operands in certain registers. We allocate a wired temporary, create a local preference
for the corresponding operand, and move to (or from) the temporary. If all temporaries conflict
with all arguments, the result will be correct, but arguments could never be packed in the actual
passing register. If temporaries didn’t conflict with any arguments, then the temporary for an earlier
argument might get packed in the same location as the operand for a later argument; loading would
then destroy an argument before it was read.

A temporary’s intra-VOP lifetime is represented by the times at which its life starts and ends.
There are various instants during the evaluation that start and end VOP lifetimes. Two TNs conflict
if the live intervals overlap. Lifetimes are open intervals: if one TN’s lifetime begins at a point where
another’s ends, then the TNs don’t conflict.

The times within a VOP are the following:

:Load This is the beginning of the argument’s lives, as far as intra-vop conflicts are concerned.
If load-TNs are allocated, then this is the beginning of their lives.

(:Argument <n>) The point at which the N’th argument is read for the last time (by this VOP).
If the argument is dead after this VOP, then the argument becomes dead at this time, and may be
reused as a temporary or result load-TN.

(:Eval <n>) The N’th evaluation step. There may be any number of evaluation steps, but it is
unlikely that more than two are needed.

(:Result <n>) The point at which the N’th result is first written into. This is the point at which
that result becomes live.

:Save Similar to :Load, but marks the end of time. This is the point at which result load-TNs
are stored back to the actual location.

In any of the list-style time specifications, the keyword by itself stands for the first such time,
i.e.

:argument <==> (:argument 0)

Note that argument/result read/write times don’t actually have to be in the order specified, but
they must *appear* to happen in that order as far as conflict analysis is concerned. For example,
the arguments can be read in any order as long as no TN is written that has a life beginning at or
after (:Argument <n>), where N is the number of an argument whose reading was postponed.

[### (???)

We probably also want some syntactic sugar in Define-VOP for automatically moving operands
to/from explicitly allocated temporaries so that this kind of thing is somewhat easy. There isn’t
really any reason to consider the temporary to be a load-TN, but we want to compute costs as
though it was and want to use the same operand loading routines.
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We also might consider allowing the lifetime of an argument/result to be extended
forward/backward. This would in many cases eliminate the need for temporaries when operands
are read/written out of order. ]

29.2 VOP Cost model

Note that in this model, if an operand has no restrictions, it has no cost. This makes sense, since
the purpose of the cost is to indicate the relative value of packing in different SCs. If the operand
isn’t required to be in a good SC (i.e. a register), then we might as well leave it in memory. The
SC restriction mechanism can be used even when doing a move into the SC is too complex to be
generated automatically (perhaps requiring temporary registers), since Define-VOP allows operand
loading to be done explicitly.

29.3 Efficiency notes

In addition to being used to tell whether a particular unsafe template might get emitted, we can
also use it to give better efficiency notes: – We can say what is wrong with the call types, rather
than just saying we failed to open-code. – We can tell whether any of the “better” templates could
possibly apply, i.e. is the inapplicability of a template because of inadequate type information or
because the type is just plain wrong. We don’t want to flame people when a template that couldn’t
possibly match doesn’t match, e.g. complaining that we can’t use fixnum+ when the arguments are
known to be floats.

This is how we give better efficiency notes:

The Template-Note is a short noun-like string without capitalization or punctuation that de-
scribes what the template “does”, i.e. we say “Unable to do ~A, doing ~A instead.”

The Cost is moved from the Vop-Info to the Template structure, and is used to determine the
“goodness” of possibly applicable templates. [Could flush Template/Vop-Info distinction] The cost
is used to choose the best applicable template to emit, and also to determine what better templates
we might have been able to use.

A template is possibly applicable if there is an intersection between all of the arg/result types
and the corresponding arg/result restrictions, i.e. the template is not clearly impossible: more
declarations might allow it to be emitted.
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30 Assembler Retargeting
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31 Writing Assembly Code

VOP writers expect:

MOVE You write when you port the assembler.)

EMIT-LABEL
Assembler interface like INST. Takes a label you made and says “stick it here.”

GEN-LABEL
Returns a new label suitable for use with EMIT-LABEL exactly once and for referenc-
ing as often as necessary.

INST Recognizes and dispatches to instructions you defined for assembler.

ALIGN This takes the number of zero bits you want in the low end of the address of the next
instruction.

ASSEMBLE
ASSEMBLE-ELSEWHERE

Get ready for assembling stuff. Takes a VOP and arbitrary PROGN-style body. Wrap
these around instruction emission code announcing the first pass of our assembler.

CURRENT-NFP-TN
This returns a TN for the NFP if the caller uses the number stack, or nil.

SB-ALLOCATED-SIZE
This returns the size of some storage base used by the currently compiling component.

...

;;; ;;; VOP idioms ;;;

STORE-STACK-TN
LOAD-STACK-TN

These move a value from a register to the control stack, or from the control stack to a
register. They take care of checking the TN types, modifying offsets according to the
address units per word, etc.
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32 Required VOPS

Note: the move VOP cannot have any wired temps. (Move-Argument also?) This is so we can move
stuff into wired TNs without stepping on our toes.

We create set closure variables using the Value-Cell VOP, which takes a value and returns a value
cell containing the value. We can basically use this instead of a Move VOP when initializing the
variable. Value-Cell-Set and Value-Cell-Ref are used to access the value cell. We can have a special
effect for value cells so that value cells references can be discovered to be common subexpressions
or loop invariants.

Represent unknown-values continuations as (start, count). Unknown values continuations are
always outside of the current frame (on stack top). Within a function, we always set up and receive
values in the standard passing locations. If we receive stack values, then we must BLT them down
to the start of our frame, filling in any unsupplied values. If we generate unknown values (i.e.
PUSH-VALUES), then we set the values up in the standard locations, then BLT them to stack top.
When doing a tail-return of MVs, we just set them up in the standard locations and decrement SP:
no BLT is necessary.

Unknown argument call (MV-CALL) takes its arguments on stack top (is given a base pointer).
If not a tail call, then we just set the arg pointer to the base pointer and call. If a tail call, we must
BLT the arguments down to the beginning of the current frame.

Implement more args by BLT’ing the more args *on top* of the current frame. This solves two
problems:

• Any register more arguments can be made uniformly accessibly by copying them into memory.
[We can’t store the registers in place, since the beginning of the frame gets double use for
storing the old-cont, return-pc and env.]

• It solves the deallocation problem: the arguments will be deallocated when the frame is returned
from or a tail full call is done out of it. So keyword args will be properly tail-recursive without
any special mechanism for squeezing out the more arg once the parsing is done. Note that a
tail local call won’t blast the more arg, since in local call the callee just takes the frame it is
given (in this case containing the more arg).

More args in local call??? Perhaps we should not attempt local call conversion in this case. We
already special-case keyword args in local call. It seems that the main importance of more args is
primarily related to full call: it is used for defining various kinds of frobs that need to take arbitrary
arguments:

• Keyword arguments

• Interpreter stubs

• “Pass through” applications such as dispatch functions

Given the marginal importance of more args in local call, it seems unworth going to any imple-
mentation difficulty. In fact, it seems that it would cause complications both at the VMR level and
also in the VM definition. This being the case, we should flush it.

32.1 Function Call

32.1.1 Registers and frame format

These registers are used in function call and return:

A0..An In full call, the first three arguments. In unknown values return, the first three return
values.

CFP The current frame pointer. In full call, this initially points to a partial frame large enough
to hold the passed stack arguments (zero-length if none).
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CSP The current control stack top pointer.

OCFP In full call, the passing location for the frame to return to.

In unknown-values return of other than one value, the pointer to returned stack values. In such
a return, OCFP is always initialized to point to the frame returned from, even when no stack values
are returned. This allows OCFP to be used to restore CSP.

LRA In full call, the passing location for the return PC.

NARGS In full call, the number of arguments passed. In unknown-values return of other than
one value, the number of values returned.

32.1.2 Full call

What is our usage of CFP, OCFP and CSP?

It is an invariant that CSP always points after any useful information so that at any time an
interrupt can come and allocate stuff in the stack.

TR call is also a constraint: we can’t deallocate the caller’s frame before the call, since it holds
the stack arguments for the call.

What we do is have the caller set up CFP, and have the callee set CSP to CFP plus the frame
size. The caller leaves CSP alone: the callee is the one who does any necessary stack deallocation.

In a TR call, we don’t do anything: CFP is left as CFP, and CSP points to the end of the frame,
keeping the stack arguments from being trashed.

In a normal call, CFP is set to CSP, causing the callee’s frame to be allocated after the current
frame.

32.1.3 Unknown values return

The unknown values return convention is always used in full call, and is used in local call when the
compiler either can’t prove that a fixed number of values are returned, or decides not to use the
fixed values convention to allow tail-recursive XEP calls.

The unknown-values return convention has variants: single value and variable values. We make
this distinction to optimize the important case of a returner who knows exactly one value is being
returned. Note that it is possible to return a single value using the variable-values convention, but
it is less efficient.

We indicate single-value return by returning at the return-pc+4; variable value return is indicated
by returning at the return PC.

Single-value return makes only the following guarantees: A0 holds the value returned. CSP has
been reset: there is no garbage on the stack.

In variable value return, more information is passed back: A0..A2 hold the first three return
values. If fewer than three values are returned, then the unused registers are initialized to NIL.

OCFP points to the frame returned from. Note that because of our tail-recursive implementation
of call, the frame receiving the values is always immediately under the frame returning the values.
This means that we can use OCFP to index the values when we access them, and to restore CSP
when we want to discard them.

NARGS holds the number of values returned.

CSP is always (+ OCFP (* NARGS 4)), i.e. there is room on the stack allocated for all returned
values, even if they are all actually passed in registers.

32.1.4 External Entry Points

Things that need to be done on XEP entry: 1] Allocate frame 2] Move more arg above the frame,
saving context 3] Set up env, saving closure pointer if closure 4] Move arguments from closure to local
home Move old-cont and return-pc to the save locations 5] Argument count checking and dispatching
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XEP VOPs:

Allocate-Frame

Copy-More-Arg <nargs-tn> ’fixed {in a3} => <context>, <count>

Setup-Environment

Setup-Closure-Environment => <closure>

Verify-Argument-Count <nargs-tn> ’count {for fixed-arg lambdas}

Argument-Count-Error <nargs-tn> {Drop-thru on hairy arg dispatching}

Use fast-if-=/fixnum and fast-if-</fixnum for dispatching.

Closure vops:

make-closure <fun entry> <slot count> => <closure>

closure-init <closure> <values> ’slot

Things that need to be done on all function entry:

• Move arguments to the variable home (consing value cells as necessary)

• Move environment values to the local home

• Move old-cont and return-pc to the save locations

32.2 Calls

Calling VOP’s are a cross product of the following sets (with some members missing): Return values
multiple (all values) fixed (calling with unknown values conventions, wanting a certain number.)
known (only in local call where caller/callee agree on number of values.) tail (doesn’t return but
does tail call) What function local named (going through symbol, like full but stash fun name for
error sys) full (have a function) Args fixed (number of args are known at compile-time) variable
(MULTIPLE-VALUE-CALL and APPLY)

Note on all jumps for calls and returns that we want to put some instruction in the jump’s delay
slot(s).

Register usage at the time of the call:

LEXENV This holds the lexical environment to use during the call if it’s a closure, and it is
undefined otherwise.

CNAME This holds the symbol for a named call and garbage otherwise.

OCFP This holds the frame pointer, which the system restores upon return. The callee saves
this if necessary; this is passed as a pseudo-argument.

A0 ... An These holds the first n+1 arguments.

NARGS This holds the number of arguments, as a fixnum.

LRA This holds the lisp-return-address object which indicates where to return. For a tail call,
this retains its current value. The callee saves this if necessary; this is passed as a pseudo-argument.

CODE This holds the function object being called.

CSP The caller ignores this. The callee sets it as necessary based on CFP.

CFP This holds the callee’s frame pointer. Caller sets this to the new frame pointer, which it
remembered when it started computing arguments; this is CSP if there were no stack arguments.
For a tail call CFP retains its current value.

NSP The system uses this within a single function. A function using NSP must allocate and
deallocate before returning or making a tail call.

Register usage at the time of the return for single value return, which goes with the unknown-
values convention the caller used.

A0 This holds the value.

CODE This holds the lisp-return-address at which the system continues executing.

CSP This holds the CFP. That is, the stack is guaranteed to be clean, and there is no code at
the return site to adjust the CSP.
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CFP This holds the OCFP.

Additional register usage for multiple value return:

NARGS This holds the number of values returned.

A0 ... An These holds the first n+1 values, or NIL if there are less than n+1 values.

CSP Returner stores CSP to hold its CFP + NARGS * <address units per word>

OCFP Returner stores this as its CFP, so the returnee has a handle on either the start of the
returned values on the stack.

ALLOCATE FULL CALL FRAME.

If the number of call arguments (passed to the VOP as an info argument) indicates that there
are stack arguments, then it makes some callee frame for arguments:

VOP-result <- CSP

CSP <- CSP + value of VOP info arg times address units per word.

In a call sequence, move some arguments to the right places.

There’s a variety of MOVE-ARGUMENT VOP’s.

FULL CALL VOP’S (variations determined by whether it’s named, it’s a tail call, there is a
variable arg count, etc.)

if variable number of arguments

NARGS <- (CSP - value of VOP argument) shift right by address units per word.

A0...An <- values off of VOP argument (just fill them all)

else

NARGS <- value of VOP info argument (always a constant)

if tail call

OCFP <- value from VOP argument

LRA <- value from VOP argument

CFP stays the same since we reuse the frame

NSP <- NFP

else

OCFP <- CFP

LRA <- compute LRA by adding an assemble-time determined constant to

CODE.

CFP <- new frame pointer (remembered when starting to compute args)

This is CSP if no stack args.

when (current-nfp-tn VOP-self-pointer)

stack-temp <- NFP

if named

CNAME <- function symbol name

the-fun <- function object out of symbol

LEXENV <- the-fun (from previous line or VOP argument)

CODE <- function-entry (the first word after the-fun)

LIP <- calc first instruction addr (CODE + constant-offset)

jump and run off temp

<emit Lisp return address data-block>

<default and move return values OR receive return values>

when (current-nfp-tn VOP-self-pointer)

NFP <- stack-temp

Callee:
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XEP-ALLOCATE-FRAME

emit function header (maybe initializes offset back to component start,

but other pointers are set up at load-time. Pads

to dual-word boundary.)

CSP <- CFP + compile-time determined constant (frame size)

if the function uses the number stack

NFP <- NSP

NSP <- NSP + compile-time determined constant (number stack frame size)

SETUP-ENVIRONMENT

(either use this or the next one)

CODE <- CODE - assembler-time determined offset from function-entry back to

the code data-block address.

SETUP-CLOSURE-ENVIRONMENT

(either use this or the previous one)

After this the CLOSURE-REF VOP can reference closure variables.

VOP-result <- LEXENV

CODE <- CODE - assembler-time determined offset from function-entry back to

the code data-block address.

Return VOP’s RETURN and RETURN-MULTIPLE are for the unknown-values return conven-
tion. For some previous caller this is either it wants n values (and it doesn’t know how many are
coming), or it wants all the values returned (and it doesn’t know how many are coming).

RETURN (known fixed number of values, used with the unknown-values convention in the caller.)
When compiler invokes VOP, all values are already where they should be; just get back to caller.

when (current-nfp-tn VOP-self-pointer)

;; The number stack grows down in memory.

NSP <- NFP + number stack frame size for calls within the currently

compiling component

times address units per word

CODE <- value of VOP argument with LRA

if VOP info arg is 1 (number of values we know we’re returning)

CSP <- CFP

LIP <- calc target addr

(CODE + skip over LRA header word + skip over address units per branch)

(The branch is in the caller to skip down to the MV code.)

else

NARGS <- value of VOP info arg

nil out unused arg regs

OCFP <- CFP (This indicates the start of return values on the stack,

but you leave space for those in registers for convenience.)

CSP <- CFP + NARGS * address-units-per-word

LIP <- calc target addr (CODE + skip over LRA header word)

CFP <- value of VOP argument with OCFP

jump and run off LIP

RETURN-MULTIPLE (unknown number of values, used with the unknown-values convention
in the caller.) When compiler invokes VOP, it gets TN’s representing a pointer to the values on the
stack and how many values were computed.

when (current-nfp-tn VOP-self-pointer)

;; The number stack grows down in memory.

NSP <- NFP + number stack frame size for calls within the currently
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compiling component

times address units per word

NARGS <- value of VOP argument

copy the args to the beginning of the current (returner’s) frame.

Actually some go into the argument registers. When putting the rest at

the beginning of the frame, leave room for those in the argument registers.

CSP <- CFP + NARGS * address-units-per-word

nil out unused arg regs

OCFP <- CFP (This indicates the start of return values on the stack,

but you leave space for those in registers for convenience.)

CFP <- value of VOP argument with OCFP

CODE <- value of VOP argument with LRA

LIP <- calc target addr (CODE + skip over LRA header word)

jump and run off LIP

Returnee The call VOP’s call DEFAULT-UNKNOWN-VALUES or RECEIVE-UNKNOWN-
VALUES after spitting out transfer control to get stuff from the returner.

DEFAULT-UNKNOWN-VALUES (We know what we want and we got something.) If returnee
wants one value, it never does anything to deal with a shortage of return values. However, if start
at PC, then it has to adjust the stack pointer to dump extra values (move OCFP into CSP). If it
starts at PC+N, then it just goes along with the “want one value, got it” case. If the returnee wants
multiple values, and there’s a shortage of return values, there are two cases to handle. One, if the
returnee wants fewer values than there are return registers, and we start at PC+N, then it fills in
return registers A1..A<desired values necessary>; if we start at PC, then the returnee is fine
since the returning conventions have filled in the unused return registers with nil, but the returnee
must adjust the stack pointer to dump possible stack return values (move OCFP to CSP). Two, if
the returnee wants more values than the number of return registers, and it starts at PC+N (got one
value), then it sets up returnee state as if an unknown number of values came back:

A0 has the one value

A1..An get nil

NARGS gets 1

OCFP gets CSP, so general code described below can move OCFP into CSP

If we start at PC, then branch down to the general ‘‘got k values, wanted n’’

code which takes care of the following issues:

If k < n, fill in stack return values of nil for shortage of return

values and move OCFP into CSP

If k >= n, move OCFP into CSP

This also restores CODE from LRA by subtracting an assemble-time constant.

RECEIVE-UKNOWN-VALUES (I want whatever I get.) We want these at the end of our frame.
When the returnee starts at PC, it moves the return value registers to OCFP..OCFP[An] ignoring
where the end of the stack is and whether all the return value registers had values. The returner
left room on the stack before the stack return values for the register return values. When the
returnee starts at PC+N, bump CSP by 1 and copy A0 there. This also restores CODE from LRA
by subtracting an assemble-time constant.

Local call

There are three flavors: 1] KNOWN-CALL-LOCAL Uses known call convention where caller and
callee agree where all the values are, and there’s a fixed number of return values. 2] CALL-LOCAL
Uses the unknown-values convention, but we expect a particular number of values in return. 3]
MULTIPLE-CALL-LOCAL Uses the unknown-values convention, but we want all values returned.

ALLOCATE-FRAME
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If the number of call arguments (passed to the VOP as an info argument) indicates that there
are stack arguments, then it makes some callee frame for arguments:

VOP-result1 <- CSP

CSP <- CSP + control stack frame size for calls within the currently

compiling component

times address units per word.

when (callee-nfp-tn <VOP info arg holding callee>)

;; The number stack grows down.

;; May have to round to dual-word boundary if machines C calling

;; conventions demand this.

NSP <- NSP - number stack frame size for calls within the currently

compiling component

times address units per word

VOP-result2 <- NSP

KNOWN-CALL-LOCAL, CALL-LOCAL, MULTIPLE-CALL-LOCAL KNOWN-CALL-LOCAL
has no need to affect CODE since CODE is the same for the caller/returnee and the returner. This
uses KNOWN-RETURN. With CALL-LOCAL and MULTIPLE-CALL-LOCAL, the caller/returnee
must fixup CODE since the callee may do a tail full call. This happens in the code emitted by
DEFAULT-UNKNOWN-VALUES and RECEIVE-UNKNOWN-VALUES. We use these return con-
ventions since we don’t know what kind of values the returner will give us. This could happen due
to a tail full call to an unknown function, or because the callee had different return points that
returned various numbers of values.

when (current-nfp-tn VOP-self-pointer) ;Get VOP self-pointer with

;DEFINE-VOP switch :vop-var.

stack-temp <- NFP

CFP <- value of VOP arg

when (callee-nfp-tn <VOP info arg holding callee>)

<where-callee-wants-NFP-tn> <- value of VOP arg

<where-callee-wants-LRA-tn> <- compute LRA by adding an assemble-time

determined constant to CODE.

jump and run off VOP info arg holding start instruction for callee

<emit Lisp return address data-block>

<case call convention

known: do nothing

call: default and move return values

multiple: receive return values

>

when (current-nfp-tn VOP-self-pointer)

NFP <- stack-temp

KNOWN-RETURN

CSP <- CFP

when (current-nfp-tn VOP-self-pointer)

;; number stack grows down in memory.

NSP <- NFP + number stack frame size for calls within the currently

compiling component

times address units per word

LIP <- calc target addr (value of VOP arg + skip over LRA header word)

CFP <- value of VOP arg

jump and run off LIP
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33 Standard Primitives
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34 Customizing VMR Conversion

Another way in which different implementations differ is in the relative cost of operations. On
machines without an integer multiply instruction, it may be desirable to convert multiplication by
a constant into shifts and adds, while this is surely a bad idea on machines with hardware support
for multiplication. Part of the tuning process for an implementation will be adding implementation
dependent transforms and disabling undesirable standard transforms.

When practical, ICR transforms should be used instead of VMR generators, since transforms
are more portable and less error-prone. Note that the Lisp code need not be implementation inde-
pendent: it may contain all sorts of sub-primitives and similar stuff. Generally a function should be
implemented using a transform instead of a VMR translator unless it cannot be implemented as a
transform due to being totally evil or it is just as easy to implement as a translator because it is so
simple.

34.1 Constant Operands

If the code emitted for a VOP when an argument is constant is very different than the non-constant
case, then it may be desirable to special-case the operation in VMR conversion by emitting different
VOPs. An example would be if SVREF is only open-coded when the index is a constant, and turns
into a miscop call otherwise. We wouldn’t want constant references to spuriously allocate all the
miscop linkage registers on the off chance that the offset might not be constant. See the :constant
feature of VOP primitive type restrictions.

34.2 Supporting Multiple Hardware Configurations

A winning way to change emitted code depending on the hardware configuration, i.e. what FPA is
present is to do this using primitive types. Note that the Primitive-Type function is VM supplied,
and can look at any appropriate hardware configuration switches. Short-Float can become 6881-
Short-Float, AFPA-Short-Float, etc. There would be separate SBs and SCs for the registers of each
kind of FP hardware, with each hardware-specific primitive type using the appropriate float register
SC. Then the hardware specific templates would provide AFPA-Short-Float as the argument type
restriction.

Primitive type changes:

The primitive-type structure is given a new %Type slot, which is the CType structure that is
equivalent to this type. There is also a Guard slot, which, if true is a function that control whether
this primitive type is allowed (due to hardware configuration, etc.)

We add new :Type and :Guard keywords to Def-Primitive-Type. Type is the type specifier that
is equivalent (default to the primitive-type name), and Guard is an expression evaluated in the null
environment that controls whether this type applies (default to none, i.e. constant T).

The Primitive-Type-Type function returns the Lisp CType corresponding to a primitive type.
This is the %Type unless there is a guard that returns false, in which case it is the empty type (i.e.
NIL).

[But this doesn’t do what we want it to do, since we will compute the function type for a
template at load-time, so they will correspond to whatever configuration was in effect then. Maybe
we don’t want to dick with guards here (if at all). I guess we can defer this issue until we actually
support different FP configurations. But it would seem pretty losing to separately flame about
all the different FP configurations that could be used to open-code + whenever we are forced to
closed-code +.

If we separately report each better possibly applicable template that we couldn’t use, then it
would be reasonable to report any conditional template allowed by the configuration.
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But it would probably also be good to give some sort of hint that perhaps it would be a good
time to make sure you understand how to tell the compiler to compile for a particular configuration.
Perhaps if there is a template that applies *but for the guard*, then we could give a note. This way,
if someone thinks they are being efficient by throwing in lots of declarations, we can let them know
that they may have to do more.

I guess the guard should be associated with the template rather than the primitive type. This
would allow LTN and friends to easily tell whether a template applies in this configuration. It is also
probably more natural for some sorts of things: with some hardware variants, it may be that the
SBs and representations (SCs) are really the same, but there are some different allowed operations.
In this case, we could easily conditionalize VOPs without the increased complexity due to bogus
SCs. If there are different storage resources, then we would conditionalize Primitive-Type as well.

34.3 Special-case VMR convert methods

(defun continuation-tn (cont &optional (check-p t)) ...) Return the TN which holds Continuation’s
first result value. In general this may emit code to load the value into a TN. If Check-P is true,
then when policy indicates, code should be emitted to check that the value satisfies the continuation
asserted type.

(defun result-tn (cont) ...) Return the TN that Continuation’s first value is delivered in. In
general, may emit code to default any additional values to NIL.

(defun result-tns (cont n) ...) Similar to Result-TN, except that it returns a list of N result TNs,
one for each of the first N values.

Nearly all open-coded functions should be handled using standard template selection. Some
(all?) exceptions:

• List, List* and Vector take arbitrary numbers of arguments. Could implement Vector as a
source transform. Could even do List in a transform if we explicitly represent the stack args
using %More-Args or something.

• %Typep varies a lot depending on the type specifier. We don’t want to transform it, since we
want %Typep as a canonical form so that we can do type optimizations.

• Apply is weird.

• Funny functions emitted by the compiler: %Listify-Rest-Args, Arg, %More-Args, %Special-
Bind, %Catch, %Unknown-Values (?), %Unwind-Protect, %Unwind, %%Primitive.
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35 The Type System
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36 The Info Database

The info database provides a functional interface to global information about named things in cmucl.
Information is considered to be global if it must persist between invocations of the compiler. The
use of a functional interface eliminates the need for the compiler to worry about the details of
the representation. The info database also handles the need to multiple “global” environments,
which makes it possible to change something in the compiler without trashing the running Lisp
environment.

The info database contains arbitrary lisp values, addressed by a combination of name, class and
type. The Name is an EQUAL-thing which is the name of the thing that we are recording information
about. Class is the kind of object involved: typical classes are Function, Variable, Type. A type
names a particular piece of information within a given class. Class and Type are symbols, but are
compared with STRING=.
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37 The IR1 Interpreter

May be worth having a byte-code representation for interpreted code. This way, an entire system
could be compiled into byte-code for debugging (the “check-out” compiler?).

Given our current inclination for using a stack machine to interpret IR1, it would be straightfor-
ward to layer a byte-code interpreter on top of this.

Instead of having no interpreter, or a more-or-less conventional interpreter, or byte-code inter-
preter, how about directly executing IR1?

We run through the IR1 passes, possibly skipping optional ones, until we get through environment
analysis. Then we run a post-pass that annotates IR1 with information about where values are kept,
i.e. the stack slot.

We can lazily convert functions by having FUNCTION make an interpreted function object that
holds the code (really a closure over the interpreter). The first time that we try to call the function,
we do the conversion and processing. Also, we can easily keep track of which interpreted functions
we have expanded macros in, so that macro redefinition automatically invalidates the old expansion,
causing lazy reconversion.

Probably the interpreter will want to represent MVs by a recognizable structure that is always
heap-allocated. This way, we can punt the stack issues involved in trying to spread MVs. So a
continuation value can always be kept in a single cell.

The compiler can have some special frobs for making the interpreter efficient, such as a call
operation that extracts arguments from the stack slots designated by a continuation list. Perhaps

(values-mapcar fun . lists)

<==>

(values-list (mapcar fun . lists))

This would be used with MV-CALL.

This scheme seems to provide nearly all of the advantages of both the compiler and conventional
interpretation. The only significant disadvantage with respect to a conventional interpreter is that
there is the one-time overhead of conversion, but doing this lazily should make this quite acceptable.

With respect to a conventional interpreter, we have major advantages: + Full syntax checking:
safety comparable to compiled code. + Semantics similar to compiled code due to code sharing.
Similar diagnostic messages, etc. Reduction of error-prone code duplication. + Potential for full
type checking according to declarations (would require running IR1 optimize?) + Simplifies debugger
interface, since interpreted code can look more like compiled code: source paths, edit definition, etc.

For all non-run-time symbol annotations (anything other than SYMBOL-FUNCTION and
SYMBOL-VALUE), we use the compiler’s global database. MACRO-FUNCTION will use INFO,
rather than vice-versa.

When doing the IR1 phases for the interpreter, we probably want to suppress optimizations that
change user-visible function calls: – Don’t do local call conversion of any named functions (even
lexical ones). This is so that a call will appear on the stack that looks like the call in the original
source. The keyword and optional argument transformations done by local call mangle things quite
a bit. Also, note local-call converting prevents unreferenced arguments from being deleted, which
is another non-obvious transformation. – Don’t run source-transforms, IR1 transforms and IR1
optimizers. This way, TRACE and BACKTRACE will show calls with the original arguments,
rather than the “optimized” form, etc. Also, for the interpreter it will actually be faster to call the
original function (which is compiled) than to “inline expand” it. Also, this allows implementation-
dependent transforms to expand into %PRIMITIVE uses.

There are some problems with stepping, due to our non-syntactic IR1 representation. The source
path information is the key that makes this conceivable. We can skip over the stepping of a subform
by quietly evaluating nodes whose source path lies within the form being skipped.
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One problem with determining what value has been returned by a form. With a function call, it
is theoretically possible to precisely determine this, since if we complete evaluation of the arguments,
then we arrive at the Combination node whose value is synonymous with the value of the form. We
can even detect this case, since the Node-Source will be EQ to the form. And we can also detect
when we unwind out of the evaluation, since we will leave the form without having ever reached this
node.

But with macros and special-forms, there is no node whose value is the value of the form, and
no node whose source is the macro call or special form. We can still detect when we leave the form,
but we can’t be sure whether this was a normal evaluation result or an explicit RETURN-FROM.

But does this really matter? It seems that we can print the value returned (if any), then just
print the next form to step. In the rare case where we did unwind, the user should be able to figure
it out.

[We can look at this as a side-effect of CPS: there isn’t any difference between a “normal” return
and a non-local one.]

[Note that in any control transfer (normal or otherwise), the stepper may need to unwind out of
an arbitrary number of levels of stepping. This is because a form in a TR position may yield its to
a node arbitrarily far out.]

Another problem is with deciding what form is being stepped. When we start evaluating a node,
we dive into code that is nested somewhere down inside that form. So we actually have to do a loop
of asking questions before we do any evaluation. But what do we ask about?

If we ask about the outermost enclosing form that is a subform of the last form that the user
said to execute, then we might offer a form that isn’t really evaluated, such as a LET binding list.

But once again, is this really a problem? It is certainly different from a conventional stepper,
but a pretty good argument could be made that it is superior. Haven’t you ever wanted to skip the
evaluation of all the LET bindings, but not the body? Wouldn’t it be useful to be able to skip the
DO step forms?

All of this assumes that nobody ever wants to step through the guts of a macroexpansion. This
seems reasonable, since steppers are for weenies, and weenies don’t define macros (hence don’t debug
them). But there are probably some weenies who don’t know that they shouldn’t be writing macros.

We could handle this by finding the “source paths” in the expansion of each macro by sticking
some special frob in the source path marking the place where the expansion happened. When we hit
code again that is in the source, then we revert to the normal source path. Something along these
lines might be a good idea anyway (for compiler error messages, for example).

The source path hack isn’t guaranteed to work quite so well in generated code, though, since
macros return stuff that isn’t freshly consed. But we could probably arrange to win as long as any
given expansion doesn’t return two EQ forms.

It might be nice to have a command that skipped stepping of the form, but printed the results of
each outermost enclosed evaluated subform, i.e. if you used this on the DO step-list, it would print
the result of each new-value form. I think this is implementable. I guess what you would do is print
each value delivered to a DEST whose source form is the current or an enclosing form. Along with
the value, you would print the source form for the node that is computing the value.

The stepper can also have a “back” command that “unskips” or “unsteps”. This would allow
the evaluation of forms that are pure (modulo lexical variable setting) to be undone. This is useful,
since in stepping it is common that you skip a form that you shouldn’t have, or get confused and
want to restart at some earlier point.

What we would do is remember the current node and the values of all local variables. heap
before doing each step or skip action. We can then back up the state of all lexical variables and
the “program counter”. To make this work right with set closure variables, we would copy the cell’s
value, rather than the value cell itself.
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[To be fair, note that this could easily be done with our current interpreter: the stepper could
copy the environment alists.]

We can’t back up the “program counter” when a control transfer leaves the current function,
since this state is implicitly represented in the interpreter’s state, and is discarded when we exit. We
probably want to ask for confirmation before leaving the function to give users a chance to “unskip”
the forms in a TR position.

Another question is whether the conventional stepper is really a good thing to imitate... How
about an editor-based mouse-driven interface? Instead of “skipping” and “stepping”, you would just
designate the next form that you wanted to stop at. Instead of displaying return values, you replace
the source text with the printed representation of the value.

It would show the “program counter” by highlighting the *innermost* form that we are about
to evaluate, i.e. the source form for the node that we are stopped at. It would probably also be
useful to display the start of the form that was used to designate the next stopping point, although
I guess this could be implied by the mouse position.

Such an interface would be a little harder to implement than a dumb stepper, but it would be
much easier to use. [It would be impossible for an evalhook stepper to do this.]

37.1 Use of %PRIMITIVE

Note: %PRIMITIVE can only be used in compiled code. It is a trapdoor into the compiler, not a
general syntax for accessing “sub-primitives”. It’s main use is in implementation-dependent compiler
transforms. It saves us the effort of defining a “phony function” (that is not really defined), and
also allows direct communication with the code generator through codegen-info arguments.

Some primitives may be exported from the VM so that %PRIMITIVE can be used to make it
explicit that an escape routine or interpreter stub is assuming an operation is implemented by the
compiler.
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38 Debugger

Two classes of errors are handled by the Lisp debugger. These are synchronous errors caused by
something erring in program code and asynchronous errors caused by some external context of
execution (clock interrupts, control-c interrupts). Asynchronous errors can often be postponed if
they are delivered at an inconvenient time.

Synchronous errors are frequently handled by directly invoking the debugger. However, there
are several places where the strategy of jumping into the debugger is not used. In those situations
the compiler emits a stylized breakpoint; a breakpoint instruction (usually an INT3) followed by
several bytes of argument data. This will cause a trip through the operating system and ultimately
the invocation of the C-level SIGTRAP handler which, in turn, interprets the argument bytes
following the breakpoint and dispatches to the correct handler. There is a switch statement in
“sigtrap handler” which gives the whole story on what types of errors rely on this mechanism. The
most commonly invoked handler is probably “interrupt internal error” as it fields such common
exceptions as the use of unbound symbols. To familiarize with the context these traps are created
in, one can disassemble just about any function and look at the bottom of the disassembly for blocks
of error handling code. There will often be “BREAK 10” opcodes followed by several “BYTE”
opcodes with the meaning of the arguments in neatly decoded form off in the right-hand column.

The other types of synchronous errors are those errors delivered by the operating system such
as FPU traps and SIGSEGVs. The invocation of those signals should be funneled through a C-level
trampoline which makes a callback into Lisp passing all of the signal handler arguments. That code
is pretty straight forward and the “interrupt handle now” function is pretty much where all of the
runtime logic is localized.

Handling asynchronous errors and deferred asynchronous errors is a bit more involved...

38.1 Tracing and Breakpoints

Here are a few notes on how tracing of compiled code works.

When a function is traced, a breakpoint instruction is placed at the start of the function, replacing
the instruction that was there. (This is a :function-start breakpoint.) (This appears to be
one instruction after the no-arg parsing entry point.) The breakpoint instruction is, of course,
architecture-specific, but it must signal a trap_Breakpoint trap.

When the code is run, the breakpoint instruction is executed causing a trap. The trap handler
runs HANDLE-BREAKPOINT to process it. After doing the appropriate processing, we now need to
continue. Of course, since the real instruction has been replaced, we to run the original instruction.
This is done by now inserting a new breakpoint after the original breakpoint. This breakpoint
must be of the type trap_AfterBreakpoint. The original instruction is restored and execution
continues from there. Then the trap_AfterBreakpoint instruction gets executed. The handler
for this puts back the original breakpoint, thereby preserving the breakpoint. Then we replace the
AfterBreakpoint with the original instruction and continue from there.

That’s all pretty straightforward in concept.

When tracing, additional information is needed. Breakpoints have the ability to run arbitrary
lisp code to process the breakpoint. Tracing uses this feature.

When this breakpoint is reached, HANDLE-BREAKPOINT runs the breakpoint hook function. This
function figures out where this function would return to and creates a new return area and replaces
the original return address with this new address. Thus, when the function returns, it returns to
this new location instead of the original.

This new return address is a specially created bogus LRA object. It is a code-component whose
body consists of a code template copied from an assembly routine into the body. The assembly
routine is the code in function_end_breakpoint_guts. This bogus LRA object stores the real LRA
for the function, and also an indication if the known-return convention is used for this function.
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The bogus LRA object contains a function-end breakpoint (trap_FunctionEndBreakpoint).
When it’s executed the trap handler handles this breakpoint. It figures out where this trap come
from and calls HANDLE-BREAKPOINT to handle it. HANDLE-BREAKPOINT returns and the trap handler
arranges it so that this bogus LRA returns to the real LRA.

Thus, we can do something when a Lisp function returns, like printing out the return value for
the function for tracing.

There are lots of internal details left out here, but gives a short overview of how this works.
For more info, look at code/debug-int.lisp and lisp/breakpoint.c, and, of course, the various
<foo>-arch.c files.
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39 Debugger Information

Although the compiler’s great freedom in choice of function call conventions and variable represen-
tations has major efficiency advantages, it also has unfortunate consequences for the debugger. The
debug information that we need is even more elaborate than for conventional “compiled” languages,
since we cannot even do a simple backtrace without some debug information. However, once having
gone this far, it is not that difficult to go the extra distance, and provide full source level debugging
of compiled code.

Full debug information has a substantial space penalty, so we allow different levels of debug
information to be specified. In the extreme case, we can totally omit debug information.

39.1 The Debug-Info Structure

The Debug-Info structure directly represents information about the source code, and points to other
structures that describe the layout of run-time data structures.

Make some sort of minimal debug-info format that would support at least the common cases of
level 1 (since that is what we would release), and perhaps level 0. Actually, it seems it wouldn’t be
hard to crunch nearly all of the debug-function structure and debug-info function map into a single
byte-vector. We could have an uncrunch function that restored the current format. This would be
used by the debugger, and also could be used by purify to delete parts of the debug-info even when
the compiler dumps it in crunched form. [Note that this isn’t terribly important if purify is smart
about debug-info...]

Compiled source map representation:

[### store in debug-function PC at which env is properly initialized, i.e. args (and return-pc,
etc.) in internal locations. This is where a :function-start breakpoint would break.]

[### Note that that we can easily cache the form-number => source-path or form-number =>
form translation using a vector indexed by form numbers that we build during a walk.]

Instead of using source paths in the debug-info, use “form numbers”. The form number of a form
is the number of forms that we walk to reach that form when doing a pre-order walk of the source
form. [Might want to use a post-order walk, as that would more closely approximate evaluation
order.]

We probably want to continue using source-paths in the compiler, since they are quick to compute
and to get you to a particular form. [### But actually, I guess we don’t have to precompute the
source paths and annotate nodes with them: instead we could annotate the nodes with the actual
original source form. Then if we wanted to find the location of that form, we could walk the root
source form, looking that original form. But we might still need to enter all the forms in a hashtable
so that we can tell during IR1 conversion that a given form appeared in the original source.]

Note that form numbers have an interesting property: it is quite efficient to determine whether
an arbitrary form is a subform of some other form, since the form number of B will be > than A’s
number and < A’s next sibling’s number iff B is a subform of A.

This should be quite useful for doing the source=>pc mapping in the debugger, since that
problem reduces to finding the subset of the known locations that are for subforms of the specified
form.

Assume a byte vector with a standard variable-length integer format, something like this:

0..253 => the integer

254 => read next two bytes for integer

255 => read next four bytes for integer

Then a compiled debug block is just a sequence of variable-length integers in a particular order,
something like this:

number of successors
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...offsets of each successor in the function’s blocks vector...

first PC

[offset of first top-level form (in forms) (only if not component default)]

form number of first source form

first live mask (length in bytes determined by number of VARIABLES)

...more <PC, top-level form offset, form-number, live-set> tuples...

We determine the number of locations recorded in a block by finding the start of the next
compiled debug block in the blocks vector.

[### Actually, only need 2 bits for number of successors {0,1,2}. We might want to use other
bits in the first byte to indicate the kind of location.] [### We could support local packing by
having a general concept of “alternate locations” instead of just regular and save locations. The
location would have a bit indicating that there are alternate locations, in which case we read the
number of alternate locations and then that many more SC-OFFSETs. In the debug-block, we
would have a second bit mask with bits set for TNs that are in an alternate location. We then
read a number for each such TN, with the value being interpreted as an index into the Location’s
alternate locations.]

It looks like using structures for the compiled-location-info is too bulky. Instead we need some
packed binary representation.

First, let’s represent an SC/offset pair with an “SC-Offset”, which is an integer with the SC in
the low 5 bits and the offset in the remaining bits:

----------------------------------------------------

| Offset (as many bits as necessary) | SC (5 bits) |

----------------------------------------------------

Probably the result should be constrained to fit in a fixnum, since it will be more efficient and
gives more than enough possible offsets.

We can then represent a compiled location like this:

single byte of boolean flags:

uninterned name

packaged name

environment-live

has distinct save location

has ID (name not unique in this fun)

name length in bytes (as var-length integer)

...name bytes...

[if packaged, var-length integer that is package name length]

...package name bytes...]

[If has ID, ID as var-length integer]

SC-Offset of primary location (as var-length integer)

[If has save SC, SC-Offset of save location (as var-length integer)]

But for a whizzy breakpoint facility, we would need a good source=>code map. Dumping a
complete code=>source map might be as good a way as any to represent this, due to the one-to-
many relationship between source and code locations.

We might be able to get away with just storing the source locations for the beginnings of blocks
and maintaining a mapping from code ranges to blocks. This would be fine both for the profiler
and for the “where am I running now” indication. Users might also be convinced that it was most
interesting to break at block starts, but I don’t really know how easily people could develop an
understanding of basic blocks.

It could also be a bit tricky to map an arbitrary user-designated source location to some “closest”
source location actually in the debug info. This problem probably exists to some degree even with
a full source map, since some forms will never appear as the source of any node. It seems you might
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have to negotiate with the user. He would mouse something, and then you would highlight some
source form that has a common prefix (i.e. is a prefix of the user path, or vice-versa.) If they aren’t
happy with the result, they could try something else. In some cases, the designated path might be
a prefix of several paths. This ambiguity might be resolved by picking the shortest path or letting
the user choose.

At the primitive level, I guess what this means is that the structure of source locations (i.e. source
paths) must be known, and the source=>code operation should return a list of <source,code> pairs,
rather than just a list of code locations. This allows the debugger to resolve the ambiguity however
it wants.

I guess the formal definition of which source paths we would return is:

All source paths in the debug info that have a maximal common prefix with the specified
path. i.e. if several paths have the complete specified path as a prefix, we return them
all. Otherwise, all paths with an equally large common prefix are returned: if the path
with the most in common matches only the first three elements, then we return all
paths that match in the first three elements. As a degenerate case (which probably
shouldn’t happen), if there is no path with anything in common, then we return *all*
of the paths.

In the DEBUG-SOURCE structure we may ultimately want a vector of the start positions of
each source form, since that would make it easier for the debugger to locate the source. It could
just open the file, FILE-POSITION to the form, do a READ, then loop down the source path. Of
course, it could read each form starting from the beginning, but that might be too slow.

Do XEPs really need Debug-Functions? The only time that we will commonly end up in the
debugger on an XEP is when an argument type check fails. But I suppose it would be nice to be
able to print the arguments passed...

Note that assembler-level code motion such as pipeline reorganization can cause problems with
our PC maps. The assembler needs to know that debug info markers are different from real labels
anyway, so I suppose it could inhibit motion across debug markers conditional on policy. It seems
unworthwhile to remember the node for each individual instruction.

For tracing block-compiled calls:

Info about return value passing locations?

Info about where all the returns are?

We definitely need the return-value passing locations for debug-return. The question is what the
interface should be. We don’t really want to have a visible debug-function-return-locations operation,
since there are various value passing conventions, and we want to paper over the differences.

Probably should be a compiler option to initialize stack frame to a special uninitialized object
(some random immediate type). This would aid debugging, and would also help GC problems. For
the latter reason especially, this should be locally-turn-onable (off of policy? the new debug-info
quality?).

What about the interface between the evaluator and the debugger? (i.e. what happens on an
error, etc.) Compiler error handling should be integrated with run-time error handling. Ideally the
error messages should look the same. Practically, in some cases the run-time errors will have less
information. But the error should look the same to the debugger (or at least similar).

39.1.1 Debugger Interface

How does the debugger interface to the “evaluator” (where the evaluator means all of native code,
byte-code and interpreted IR1)? It seems that it would be much more straightforward to have
a consistent user interface to debugging all code representations if there was a uniform debugger
interface to the underlying stuff, and vice-versa.

Of course, some operations might not be supported by some representations, etc. For example,
fine-control stepping might not be available in native code. In other cases, we might reduce an
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operation to the lowest common denominator, for example fetching lexical variables by string and
admitting the possibility of ambiguous matches. [Actually, it would probably be a good idea to store
the package if we are going to allow variables to be closed over.]

Some objects we would need:

Location:

The constant information about the place where a value is stored,

everything but which particular frame it is in. Operations:

location name, type, etc.

location-value frame location (setf’able)

monitor-location location function

Function is called whenever location is set with the location,

frame and old value. If active values aren’t supported, then we

dummy the effect using breakpoints, in which case the change won’t

be noticed until the end of the block (and intermediate changes

will be lost.)

debug info:

All the debug information for a component.

Frame:

frame-changed-locations frame => location*

Return a list of the locations in frame that were changed since the

last time this function was called. Or something. This is for

displaying interesting state changes at breakpoints.

save-frame-state frame => frame-state

restore-frame-state frame frame-state

These operations allow the debugger to back up evaluation, modulo

side-effects and non-local control transfers. This copies and

restores all variables, temporaries, etc, local to the frame, and

also the current PC and dynamic environment (current catch, etc.)

At the time of the save, the frame must be for the running function

(not waiting for a call to return.) When we restore, the frame

becomes current again, effectively exiting from any frames on top.

(Of course, frame must not already be exited.)

Thread:

Representation of which stack to use, etc.

Block:

What successors the block has, what calls there are in the block.

(Don’t need to know where calls are as long as we know called function,

since can breakpoint at the function.) Whether code in this block is

wildly out of order due to being the result of loop-invariant

optimization, etc. Operations:

block-successors block => code-location*

block-forms block => (source-location code-location)*

Return the corresponding source locations and code locations for

all forms (and form fragments) in the block.

39.1.2 Variable maps

There are about five things that the debugger might want to know about a variable:

• Name Although a lexical variable’s name is “really” a symbol (package and all), in practice
it doesn’t seem worthwhile to require all the symbols for local variable names to be retained.
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There is much less VM and GC overhead for a constant string than for a symbol. (Also it
is useful to be able to access gensyms in the debugger, even though they are theoretically
ineffable).

• ID Which variable with the specified name is this? It is possible to have multiple variables with
the same name in a given function. The ID is something that makes Name unique, probably
a small integer. When variables aren’t unique, we could make this be part of the name, e.g.
“FOO#1”, “FOO#2”. But there are advantages to keeping this separate, since in many cases
lifetime information can be used to disambiguate, making qualification unnecessary.

• SC When unboxed representations are in use, we must have type information to properly read
and write a location. We only need to know the SC for this, which would be amenable to a
space-saving numeric encoding.

• Location Simple: the offset in SC. [Actually, we need the save location too.]

• Lifetime In what parts of the program does this variable hold a meaningful value? It seems
prohibitive to record precise lifetime information, both in space and compiler effort, so we will
have to settle for some sort of approximation.

The finest granularity at which it is easy to determine liveness is the block: we can regard the
variable lifetime as the set of blocks that the variable is live in. Of course, the variable may be
dead (and thus contain meaningless garbage) during arbitrarily large portions of the block.

Note that this subsumes the notion of which function a variable belongs to. A given block is
only in one function, so the function is implicit.

The variable map should represent this information space-efficiently and with adequate compu-
tational efficiency.

The SC and ID can be represented as small integers. Although the ID can in principle be
arbitrarily large, it should be $<$100 in practice. The location can be represented by just the offset
(a moderately small integer), since the SB is implicit in the SC.

The lifetime info can be represented either as a bit-vector indexed by block numbers, or by a
list of block numbers. Which is more compact depends both on the size of the component and
on the number of blocks the variable is live in. In the limit of large component size, the sparse
representation will be more compact, but it isn’t clear where this crossover occurs. Of course, it
would be possible to use both representations, choosing the more compact one on a per-variable
basis. Another interesting special case is when the variable is live in only one block: this may be
common enough to be worth picking off, although it is probably rarer for named variables than for
TNs in general.

If we dump the type, then a normal list-style type descriptor is fine: the space overhead is small,
since the shareability is high.

We could probably save some space by cleverly representing the var-info as parallel vectors of
different types, but this would be more painful in use. It seems better to just use a structure, encoding
the unboxed fields in a fixnum. This way, we can pass around the structure in the debugger, perhaps
even exporting it from the low-level debugger interface.

[### We need the save location too. This probably means that we need two slots of bits, since
we need the save offset and save SC. Actually, we could let the save SC be implied by the normal
SC, since at least currently, we always choose the same save SC for a given SC. But even so, we
probably can’t fit all that stuff in one fixnum without squeezing a lot, so we might as well split and
record both SCs.

In a localized packing scheme, we would have to dump a different var-info whenever either the
main location or the save location changes. As a practical matter, the save location is less likely to
change than the main location, and should never change without the main location changing.

One can conceive of localized packing schemes that do saving as a special case of localized packing.
If we did this, then the concept of a save location might be eliminated, but this would require major
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changes in the IR2 representation for call and/or lifetime info. Probably we will want saving to
continue to be somewhat magical.]

How about:

(defstruct var-info

;;

;; This variable’s name. (symbol-name of the symbol)

(name nil :type simple-string)

;;

;; The SC, ID and offset, encoded as bit-fields.

(bits nil :type fixnum)

;;

;; The set of blocks this variable is live in. If a bit-vector, then it has

;; a 1 when indexed by the number of a block that it is live in. If an

;; I-vector, then it lists the live block numbers. If a fixnum, then that is

;; the number of the sole live block.

(lifetime nil :type (or vector fixnum))

;;

;; The variable’s type, represented as list-style type descriptor.

type)

Then the debug-info holds a simple-vector of all the var-info structures for that component. We
might as well make it sorted alphabetically by name, so that we can binary-search to find the variable
corresponding to a particular name.

We need to be able to translate PCs to block numbers. This can be done by an I-Vector in the
component that contains the start location of each block. The block number is the index at which
we find the correct PC range. This requires that we use an emit-order block numbering distinct
from the IR2-Block-Number, but that isn’t any big deal. This seems space-expensive, but it isn’t
too bad, since it would only be a fraction of the code size if the average block length is a few words
or more.

An advantage of our per-block lifetime representation is that it directly supports keeping a
variable in different locations when in different blocks, i.e. multi-location packing. We use a different
var-info for each different packing, since the SC and offset are potentially different. The Name and
ID are the same, representing the fact that it is the same variable. It is here that the ID is most
significant, since the debugger could otherwise make same-name variables unique all by itself.

39.1.3 Stack parsing

[### Probably not worth trying to make the stack parseable from the bottom up. There are too
many complications when we start having variable sized stuff on the stack. It seems more profitable
to work on making top-down parsing robust. Since we are now planning to wire the bottom-up
linkage info, scanning from the bottom to find the top frame shouldn’t be too inefficient, even when
there was a runaway recursion. If we somehow jump into hyperspace, then the debugger may get
confused, but we can debug this sort of low-level system lossage using ADB.]

There are currently three relevant context pointers:

• The PC. The current PC is wired (implicit in the machine). A saved PC (RETURN-PC) may
be anywhere in the current frame.

• The current stack context (CONT). The current CONT is wired. A saved CONT (OLD-CONT)
may be anywhere in the current frame.

• The current code object (ENV). The current ENV is wired. When saved, this is extra-difficult
to locate, since it is saved by the caller, and is thus at an unknown offset in OLD-CONT, rather
than anywhere in the current frame.
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We must have all of these to parse the stack.

With the proposed Debug-Function, we parse the stack (starting at the top) like this:

1. Use ENV to locate the current Debug-Info

2. Use the Debug-Info and PC to determine the current Debug-Function.

3. Use the Debug-Function to find the OLD-CONT and RETURN-PC.

4. Find the old ENV by searching up the stack for a saved code object containing the RETURN-
PC.

5. Assign old ENV to ENV, OLD-CONT to CONT, RETURN-PC to PC and goto 1.

If we changed the function representation so that the code and environment were a single object,
then the location of the old ENV would be simplified. But we still need to represent ENV as separate
from PC, since interrupts and errors can happen when the current PC isn’t positioned at a valid
return PC.

It seems like it might be a good idea to save OLD-CONT, RETURN-PC and ENV at the
beginning of the frame (before any stack arguments). Then we wouldn’t have to search to locate
ENV, and we also have a hope of parsing the stack even if it is damaged. As long as we can locate
the start of some frame, we can trace the stack above that frame. We can recognize a probable
frame start by scanning the stack for a code object (presumably a saved ENV).

Probably we want some fairly general mechanism for specifying that a TN should be considered
to be live for the duration of a specified environment. It would be somewhat easier to specify that
the TN is live for all time, but this would become very space-inefficient in large block compilations.

This mechanism could be quite useful for other debugger-related things. For example, when de-
buggability is important, we could make the TNs holding arguments live for the entire environment.
This would guarantee that a backtrace would always get the right value (modulo setqs).

Note that in this context, “environment” means the Environment structure (one per non-let
function). At least according to current plans, even when we do inter-routine register allocation,
the different functions will have different environments: we just “equate” the environments. So the
number of live per-environment TNs is bounded by the size of a “function”, and doesn’t blow up in
block compilation.

The implementation is simple: per-environment TNs are flagged by the :Environment kind.
:Environment TNs are treated the same as :Normal TNs by everyone except for lifetime/conflict
analysis. An environment’s TNs are also stashed in a list in the IR2-Environment structure. During
the conflict analysis post-pass, we look at each block’s environment, and make all the environment’s
TNs always-live in that block.

We can implement the “fixed save location” concept needed for lazy frame creation by allocating
the save TNs as wired TNs at IR2 conversion time. We would use the new “environment lifetime”
concept to specify the lifetimes of the save locations. There isn’t any run-time overhead if we never
get around to using the save TNs. [Pack would also have to notice TNs with pre-allocated save TNs,
packing the original TN in the stack location if its FSC is the stack.]

We want a standard (recognizable) format for an “escape” frame. We must make an escape
frame whenever we start running another function without the current function getting a chance to
save its registers. This may be due either to a truly asynchronous event such as a software interrupt,
or due to an “escape” from a miscop. An escape frame marks a brief conversion to a callee-saves
convention.

Whenever a miscop saves registers, it should make an escape frame. This ensures that the
“current” register contents can always be located by the debugger. In this case, it may be desirable
to be able to indicate that only partial saving has been done. For example, we don’t want to have
to save all the FP registers just so that we can use a couple extra general registers.

When the debugger see an escape frame, it knows that register values are located in the escape
frame’s “register save” area, rather than in the normal save locations.
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It would be nice if there was a better solution to this internal error concept. One problem is
that it seems there is a substantial space penalty for emitting all that error code, especially now
that we don’t share error code between errors because we want to preserve the source context in
the PC. But this probably isn’t really all that bad when considered as a fraction of the code. For
example, the check part of a type check is 12 bytes, whereas the error part is usually only 6. In this
case, we could never reduce the space overhead for type checks by more than 1/3, thus the total
code size reduction would be small. This will be made even less important when we do type check
optimizations to reduce the number of type checks.

Probably we should stick to the same general internal error mechanism, but make it interact with
the debugger better by allocating linkage registers and allowing proceedable errors. We could support
shared error calls and non-proceedable errors when space is more important than debuggability, but
this is probably more complexity than is worthwhile.

We jump or trap to a routine that saves the context (allocating at most the return PC register).
We then encode the error and context in the code immediately following the jump/trap. (On the
MIPS, the error code can be encoded in the trap itself.) The error arguments would be encoded as
SC-offsets relative to the saved context. This could solve both the arg-trashing problem and save
space, since we could encode the SC-offsets more tersely than the corresponding move instructions.
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40 Object Format

40.1 Tagging

The following is a key of the three bit low-tagging scheme:

000 even fixnum

001 function pointer

010 even other-immediate (header-words, characters, symbol-value trap value, etc.)

011 list pointer

100 odd fixnum

101 structure pointer

110 odd other immediate

111 other-pointer to data-blocks (other than conses, structures, and functions)

This tagging scheme forces a dual-word alignment of data-blocks on the heap, but this can be
pretty negligible:

• RATIOS and COMPLEX must have a header-word anyway since they are not a major type.
This wastes one word for these infrequent data-blocks since they require two words for the data.

• BIGNUMS must have a header-word and probably contain only one other word anyway, so we
probably don’t waste any words here. Most bignums just barely overflow fixnums, that is by a
bit or two.

• Single and double FLOATS? no waste, or one word wasted

• SYMBOLS have a pad slot (current called the setf function, but unused.)

Everything else is vector-like including code, so these probably take up so many words that one
extra one doesn’t matter.

40.2 GC Comments

Data-Blocks comprise only descriptors, or they contain immediate data and raw bits interpreted by
the system. GC must skip the latter when scanning the heap, so it does not look at a word of raw
bits and interpret it as a pointer descriptor. These data-blocks require headers for GC as well as
for operations that need to know how to interpret the raw bits. When GC is scanning, and it sees
a header-word, then it can determine how to skip that data-block if necessary. Header-Words are
tagged as other-immediates. See [sec-other-immediates], page 101, and [sec-data-blocks-and-header],
page 102, for comments on distinguishing header-words from other-immediate data. This distinction
is necessary since we scan through data-blocks containing only descriptors just as we scan through
the heap looking for header-words introducing data-blocks.

Data-Blocks containing only descriptors do not require header-words for GC since the entire data-
block can be scanned by GC a word at a time, taking whatever action is necessary or appropriate
for the data in that slot. For example, a cons is referenced by a descriptor with a specific tag, and
the system always knows the size of this data-block. When GC encounters a pointer to a cons, it can
transport it into the new space, and when scanning, it can simply scan the two words manifesting
the cons interpreting each word as a descriptor. Actually there is no cons tag, but a list tag, so we
make sure the cons is not nil when appropriate. A header may still be desired if the pointer to the
data-block does not contain enough information to adequately maintain the data-block. An example
of this is a simple-vector containing only descriptor slots, and we attach a header-word because the
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descriptor pointing to the vector lacks necessary information – the type of the vector’s elements, its
length, etc.

There is no need for a major tag for GC forwarding pointers. Since the tag bits are in the low
end of the word, a range check on the start and end of old space tells you if you need to move the
thing. This is all GC overhead.

40.3 Structures

A structure descriptor has the structure lowtag type code, making structurep a fast operation. A
structure data-block has the following format:

-------------------------------------------------------

| length (24 bits) | Structure header type (8 bits) |

-------------------------------------------------------

| structure type name (a symbol) |

-------------------------------------------------------

| structure slot 0 |

-------------------------------------------------------

| ... structure slot length - 2 |

-------------------------------------------------------

The header word contains the structure length, which is the number of words (other than the
header word.) The length is always at least one, since the first word of the structure data is the
structure type name.

40.4 Fixnums

A fixnum has one of the following formats in 32 bits:

-------------------------------------------------------

| 30 bit 2’s complement even integer | 0 0 0 |

-------------------------------------------------------

or

-------------------------------------------------------

| 30 bit 2’s complement odd integer | 1 0 0 |

-------------------------------------------------------

Effectively, there is one tag for immediate integers, two zeros. This buys one more bit for fixnums,
and now when these numbers index into simple-vectors or offset into memory, they point to word
boundaries on 32-bit, byte-addressable machines. That is, no shifting need occur to use the number
directly as an offset.

This format has another advantage on byte-addressable machines when fixnums are offsets into
vector-like data-blocks, including structures. Even though we previously mentioned data-blocks
are dual-word aligned, most indexing and slot accessing is word aligned, and so are fixnums with
effectively two tag bits.

Two tags also allow better usage of special instructions on some machines that can deal with
two low-tag bits but not three.

Since the two bits are zeros, we avoid having to mask them off before using the words for
arithmetic, but division and multiplication require special shifting.

40.5 Other-immediates

As for fixnums, there are two different three-bit lowtag codes for other-immediate, allowing 64
other-immediate types:

----------------------------------------------------------------
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| Data (24 bits) | Type (8 bits with low-tag) | 1 0 |

----------------------------------------------------------------

The type-code for an other-immediate type is considered to include the two lowtag bits. This
supports the concept of a single “type code” namespace for all descriptors, since the normal lowtag
codes are disjoint from the other-immediate codes.

For other-pointer objects, the full eight bits of the header type code are used as the type code
for that kind of object. This is why we use two lowtag codes for other-immediate types: each
other-pointer object needs a distinct other-immediate type to mark its header.

The system uses the other-immediate format for characters, the symbol-value unbound trap
value, and header-words for data-blocks on the heap. The type codes are laid out to facilitate range
checks for common subtypes; for example, all numbers will have contiguous type codes which are
distinct from the contiguous array type codes. See [sec-data-blocks-and-o-i], page 103, for details.

40.6 Data-Blocks and Header-Word Format

Pointers to data-blocks have the following format:

----------------------------------------------------------------

| Dual-word address of data-block (29 bits) | 1 1 1 |

----------------------------------------------------------------

The word pointed to by the above descriptor is a header-word, and it has the same format as an
other-immediate:

----------------------------------------------------------------

| Data (24 bits) | Type (8 bits with low-tag) | 0 1 0 |

----------------------------------------------------------------

This is convenient for scanning the heap when GC’ing, but it does mean that whenever GC
encounters an other-immediate word, it has to do a range check on the low byte to see if it is a
header-word or just a character (for example). This is easily acceptable performance hit for scanning.

The system interprets the data portion of the header-word for non-vector data-blocks as the word
length excluding the header-word. For example, the data field of the header for ratio and complex
numbers is two, one word each for the numerator and denominator or for the real and imaginary
parts.

For vectors and data-blocks representing Lisp objects stored like vectors, the system (usually)
ignores the data portion of the header-word:

----------------------------------------------------------------

| Unused Data (24 bits) | Type (8 bits with low-tag) | 0 1 0 |

----------------------------------------------------------------

| Element Length of Vector (30 bits) | 0 0 |

----------------------------------------------------------------

Using a separate word allows for much larger vectors, and it allows length to simply access a
single word without masking or shifting. Similarly, the header for complex arrays and vectors has a
second word, following the header-word, the system uses for the fill pointer, so computing the length
of any array is the same code sequence.

For normal Lisp vectors, the data portion MUST be zero. For hash tables, a vector is used to
store information about the hash key and value, and the data portion is non-zero to indicate to GC
that this is the key/value vector for the hash table. GENCGC uses this to determine scavenge the
key/value pairs correctly. Cheney GC also uses this to determine if rehashing (for EQ hash tables)
is needed.
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40.7 Data-Blocks and Other-immediates Typing

These are the other-immediate types. We specify them including all low eight bits, including the
other-immediate tag, so we can think of the type bits as one type – not an other-immediate major
type and a subtype. Also, fetching a byte and comparing it against a constant is more efficient than
wasting even a small amount of time shifting out the other-immediate tag to compare against a five
bit constant. (The current values can be obtained from the generated internals.h file.)

HEX

Number (< 36)

bignum 10 0A

ratio 14 0E

single-float 18 12

double-float 22 16

double-double-float 26 1A

complex 30 1E

(complex single-float) 34 22

(complex double-float) 38 26

(complex double-double-float) 42 2A

Array (<= 46 code 118)

Simple-Array (<= 46 code 118)

simple-array 46 2E

Vector (<= 50 code 118)

simple-string 50 32

simple-bit-vector 54 36

simple-vector 58 3A

(simple-array (unsigned-byte 2) (*)) 62 3E

(simple-array (unsigned-byte 4) (*)) 66 42

(simple-array (unsigned-byte 8) (*)) 70 46

(simple-array (unsigned-byte 16) (*)) 74 4A

(simple-array (unsigned-byte 32) (*)) 78 4E

(simple-array (signed-byte 8) (*)) 82 52

(simple-array (signed-byte 16) (*)) 86 56

(simple-array (signed-byte 30) (*)) 90 5A

(simple-array (signed-byte 32) (*)) 94 5E

(simple-array single-float (*)) 98 62

(simple-array double-float (*)) 102 66

(simple-array double-double-float (*)) 106 6A

(simple-array (complex single-float) (*) 110 6E

(simple-array (complex double-float) (*) 114 72

(simple-array (complex double-double) (*) 118 76

complex-string 122 7A

complex-bit-vector 126 7E

(array * (*)) -- general complex vector. 130 82

complex-array 134 86

code-header-type 138 8A

function-header-type 142 8E

closure-header-type 146 92

funcallable-instance-header-type 150 96

byte-code-function-header-type 154 9A

byte-code-closure-header-type 158 9E
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closure-function-header-type 162 A2

return-pc-header-type (a.k.a LRA) 166 A6

value-cell-header-type 170 AA

symbol-header-type 174 AE

base-character-type 178 B2

system-area-pointer-type (header type) 182 B6

unbound-marker 186 BA

weak-pointer-type 190 BE

instance-header-type 194 C2

fdefn-type 198 C6

scavenger-hook-type 202 CA

40.8 Strings

All strings in the system are C-null terminated. This saves copying the bytes when calling out to C.
The only time this wastes memory is when the string contains a multiple of eight characters, and
then the system allocates two more words (since Lisp objects are dual-word aligned) to hold the
C-null byte. Since the system will make heavy use of C routines for systems calls and libraries that
save reimplementation of higher level operating system functionality (such as pathname resolution
or current directory computation), saving on copying strings for C should make C call out more
efficient.

The length word in a string header, See [sec-data-blocks-and-header], page 102, counts only
the characters truly in the Common Lisp string. Allocation and GC will have to know to handle
the extra C-null byte, and GC already has to deal with rounding up various objects to dual-word
alignment.

40.9 Symbols and NIL

Symbol data-block has the following format:

-------------------------------------------------------

| 5 (data-block words) | Symbol Type (8 bits) |

-------------------------------------------------------

| Value Descriptor |

-------------------------------------------------------

| Hash Value (x86/amd64/sparc) Unused (other arch.) |

-------------------------------------------------------

| Property List |

-------------------------------------------------------

| Print Name |

-------------------------------------------------------

| Package |

-------------------------------------------------------

All of these slots are self-explanatory given what symbols must do in Common Lisp.

The issues with nil are that we want it to act like a symbol, and we need list operations such as
CAR and CDR to be fast on it. CMU Common Lisp solves this by putting nil as the first object in
static space, where other global values reside, so it has a known address in the system:

------------------------------------------------------- <-- space

| 6 (data-block words) | 0 | start

-------------------------------------------------------

| 0 (data-block words) | Symbol Type (8 bits) |

------------------------------------------------------- <-- nil
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| Value/CAR |

-------------------------------------------------------

| Hash Value/CDR |

-------------------------------------------------------

| Property List |

-------------------------------------------------------

| Print Name |

-------------------------------------------------------

| Package |

-------------------------------------------------------

| ... |

-------------------------------------------------------

In addition, we make the list typed pointer to nil actually point past the header word of the nil
symbol data-block. This has usefulness explained below. The value and hash-value of nil are nil.
Therefore, any reference to nil used as a list has quick list type checking, and CAR and CDR can
go right through the first and second words as if nil were a cons object.

When there is a reference to nil used as a symbol, the system adds offsets to the address the
same as it does for any symbol. This works due to a combination of nil pointing past the symbol
header-word and the chosen list and other-pointer type tags. The list type tag is four less than the
other-pointer type tag, but nil points four additional bytes into its symbol data-block.

40.10 Array Headers

The array-header data-block has the following format:

----------------------------------------------------------------

| Header Len (24 bits) = Array Rank +6 | Array Type (8 bits) |

----------------------------------------------------------------

| Fill Pointer (30 bits) | 0 0 |

----------------------------------------------------------------

| Fill Pointer p (29 bits) -- t or nil | 1 1 1 |

----------------------------------------------------------------

| Available Elements (30 bits) | 0 0 |

----------------------------------------------------------------

| Data Vector (29 bits) | 1 1 1 |

----------------------------------------------------------------

| Displacement (30 bits) | 0 0 |

----------------------------------------------------------------

| Displacedp (29 bits) -- t or nil | 1 1 1 |

----------------------------------------------------------------

| Range of First Index (30 bits) | 0 0 |

----------------------------------------------------------------

.

.

.

The array type in the header-word is one of the eight-bit patterns from “Data-Blocks and Other-
immediates Typing”, [sec-data-blocks-and-header], page 102, indicating that this is a complex string,
complex vector, complex bit-vector, or a multi-dimensional array. The data portion of the other-
immediate word is the length of the array header data-block. Due to its format, its length is
always six greater than the array’s number of dimensions. The following words have the following
interpretations and types:
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Fill Pointer:
This is a fixnum indicating the number of elements in the data vector actually in use.
This is the logical length of the array, and it is typically the same value as the next slot.
This is the second word, so LENGTH of any array, with or without an array header,
is just four bytes off the pointer to it.

Fill Pointer P:
This is either T or NIL and indicates whether the array uses the fill-pointer or not.

Available Elements:
This is a fixnum indicating the number of elements for which there is space in the data
vector. This is greater than or equal to the logical length of the array when it is a
vector having a fill pointer.

Data Vector:
This is a pointer descriptor referencing the actual data of the array. This a data-block
whose first word is a header-word with an array type as described in “Data-Blocks and
Header-Word Format”, [sec-data-blocks-and-header], page 102, and “Data-Blocks and
Other-immediates Typing”, [sec-data-blocks-and-o-i], page 103,

Displacement:
This is a fixnum added to the computed row-major index for any array. This is typically
zero.

Displacedp: This is either t or nil. This is separate from the displacement slot, so most array
accesses can simply add in the displacement slot. The rare need to know if an array
is displaced costs one extra word in array headers which probably aren’t very frequent
anyway.

Range of First Index:
This is a fixnum indicating the number of elements in the first dimension of the array.
Legal index values are zero to one less than this number inclusively. IF the array is
zero-dimensional, this slot is non-existent.

... (remaining slots):
There is an additional slot in the header for each dimension of the array. These are
the same as the Range of First Index slot.

40.11 Bignums

Bignum data-blocks have the following format:

-------------------------------------------------------

| Length (24 bits) | Bignum Type (8 bits) |

-------------------------------------------------------

| least significant bits |

-------------------------------------------------------

.

.

.

The elements contain the two’s complement representation of the integer with the least significant
bits in the first element or closer to the header. The sign information is in the high end of the last
element.
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40.12 Code Data-Blocks

A code data-block is the run-time representation of a “component”. A component is a connected
portion of a program’s flow graph that is compiled as a single unit, and it contains code for many
functions. Some of these functions are callable from outside of the component, and these are termed
“entry points”.

Each entry point has an associated user-visible function data-block (of type function). The full
call convention provides for calling an entry point specified by a function object.

Although all of the function data-blocks for a component’s entry points appear to the user as
distinct objects, the system keeps all of the code in a single code data-block. The user-visible
function object is actually a pointer into the middle of a code data-block. This allows any control
transfer within a component to be done using a relative branch.

Besides a function object, there are other kinds of references into the middle of a code data-block.
Control transfer into a function also occurs at the return-PC for a call. The system represents a
return-PC somewhat similarly to a function, so GC can also recognize a return-PC as a reference to
a code data-block. This representation is known as a Lisp Return Address (LRA).

It is incorrect to think of a code data-block as a concatenation of “function data-blocks”. Code
for a function is not emitted in any particular order with respect to that function’s function-header
(if any). The code following a function-header may only be a branch to some other location where
the function’s “real” definition is.

The following are the three kinds of pointers to code data-blocks:

Code pointer (labeled A below):
A code pointer is a descriptor, with other-pointer low-tag bits, pointing to the beginning
of the code data-block. The code pointer for the currently running function is always
kept in a register (CODE). In addition to allowing loading of non-immediate constants,
this also serves to represent the currently running function to the debugger.

LRA (labeled B below):
The LRA is a descriptor, with other-pointer low-tag bits, pointing to a location for a
function call. Note that this location contains no descriptors other than the one word
of immediate data, so GC can treat LRA locations the same as instructions.

Function (labeled C below):
A function is a descriptor, with function low-tag bits, that is user callable. When a
function header is referenced from a closure or from the function header’s self-pointer,
the pointer has other-pointer low-tag bits, instead of function low-tag bits. This ensures
that the internal function data-block associated with a closure appears to be uncallable
(although users should never see such an object anyway).

Information about functions that is only useful for entry points is kept in some de-
scriptors following the function’s self-pointer descriptor. All of these together with the
function’s header-word are known as the “function header”. GC must be able to locate
the function header. We provide for this by chaining together the function headers in
a NIL terminated list kept in a known slot in the code data-block.

A code data-block has the following format:

A -->

****************************************************************

| Header-Word count (24 bits) | Code-Type (8 bits) |

----------------------------------------------------------------

| Number of code words (fixnum tag) |

----------------------------------------------------------------

| Pointer to first function header (other-pointer tag) |
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----------------------------------------------------------------

| Debug information (structure tag) |

----------------------------------------------------------------

| First constant (a descriptor) |

----------------------------------------------------------------

| ... |

----------------------------------------------------------------

| Last constant (and last word of code header) |

----------------------------------------------------------------

| Some instructions (non-descriptor) |

----------------------------------------------------------------

| (pad to dual-word boundary if necessary) |

B -->

****************************************************************

| Word offset from code header (24) | Return-PC-Type (8) |

----------------------------------------------------------------

| First instruction after return |

----------------------------------------------------------------

| ... more code and LRA header-words |

----------------------------------------------------------------

| (pad to dual-word boundary if necessary) |

C -->

****************************************************************

| Offset from code header (24) | Function-Header-Type (8) |

----------------------------------------------------------------

| x86/amd64/sparc: Address of start of instructions for |

| function (non-descriptor) |

| other architectures: |

| Self-pointer back to previous word (with other-pointer tag) |

----------------------------------------------------------------

| Pointer to next function (other-pointer low-tag) or NIL |

----------------------------------------------------------------

| Function name (a string or a symbol) |

----------------------------------------------------------------

| Function debug arglist (a string) |

----------------------------------------------------------------

| Function type (a list-style function type specifier) |

----------------------------------------------------------------

| Start of instructions for function (non-descriptor) |

----------------------------------------------------------------

| More function headers and instructions and return PCs, |

| until we reach the total size of header-words + code |

| words. |

----------------------------------------------------------------

The following are detailed slot descriptions:

Code data-block header-word:
The immediate data in the code data-block’s header-word is the number of leading
descriptors in the code data-block, the fixed overhead words plus the number of con-
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stants. The first non-descriptor word, some code, appears at this word offset from the
header.

Number of code words:
The total number of non-header-words in the code data-block. The total word size of
the code data-block is the sum of this slot and the immediate header-word data of the
previous slot. header-word.

Pointer to first function header:
A NIL-terminated list of the function headers for all entry points to this component.

Debug information:
The DEBUG-INFO structure describing this component. All information that the
debugger wants to get from a running function is kept in this structure. Since there are
many functions, the current PC is used to locate the appropriate debug information.
The system keeps the debug information separate from the function data-block, since
the currently running function may not be an entry point. There is no way to recover
the function object for the currently running function, since this data-block may not
exist.

First constant ... last constant:
These are the constants referenced by the component, if there are any.

LRA header word:
The immediate header-word data is the word offset from the enclosing code data-block’s
header-word to this word. This allows GC and the debugger to easily recover the code
data-block from an LRA. The code at the return point restores the current code pointer
using a subtract immediate of the offset, which is known at compile time.

Function entry point header-word:
The immediate header-word data is the word offset from the enclosing code data-block’s
header-word to this word. This is the same as for the return-PC header-word.

Address of start of instructions for function:
This is implemented on x86, amd64, and sparc only. In a non-closure function, this
address allows the call sequence to always indirect through the second word in a user
callable function. See section “Closure Format”. With a closure, indirecting through
the second word also gets you the start of instructions of a function. This pointer is a
raw address, not a descriptor.

Self-pointer back to header-word:
In a non-closure function, this self-pointer to the previous header-word allows the call
sequence to always indirect through the second word in a user callable function. See
section “Closure Format”. With a closure, indirecting through the second word gets
you a function header-word. The system ignores this slot in the function header for a
closure, since it has already indirected once, and this slot could be some random thing
that causes an error if you jump to it. This pointer has an other-pointer tag instead
of a function pointer tag, indicating it is not a user callable Lisp object.

Pointer to next function:
This is the next link in the thread of entry point functions found in this component.
This value is NIL when the current header is the last entry point in the component.

Function name:
This function’s name (for printing). If the user defined this function with DEFUN,
then this is the defined symbol, otherwise it is a descriptive string.
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Function debug arglist:
A printed string representing the function’s argument list, for human readability. If it
is a macroexpansion function, then this is the original DEFMACRO arglist, not the
actual expander function arglist.

Function type:
A list-style function type specifier representing the argument signature and return types
for this function. For example,

(function (fixnum fixnum fixnum) fixnum)

or

(function (string &key (:start unsigned-byte)) string)

This information is intended for machine readablilty, such as by the compiler.

40.13 Closure Format

A closure data-block has the following format:

----------------------------------------------------------------

| Word size (24 bits) | Closure-Type (8 bits) |

----------------------------------------------------------------

| Pointer to function header (other-pointer low-tag) |

----------------------------------------------------------------

| . |

| Environment information |

| . |

----------------------------------------------------------------

A closure descriptor has function low-tag bits. This means that a descriptor with function low-tag
bits may point to either a function header or to a closure. The idea is that any callable Lisp object
has function low-tag bits. Insofar as call is concerned, we make the format of closures and non-
closure functions compatible. This is the reason for the self-pointer in a function header. Whenever
you have a callable object, you just jump through the second word, offset some bytes, and go.

40.14 Function call

Due to alignment requirements and low-tag codes, it is not possible to use a hardware call instruction
to compute the LRA. Instead the LRA for a call is computed by doing an add-immediate to the
start of the code data-block.

An advantage of using a single data-block to represent both the descriptor and non-descriptor
parts of a function is that both can be represented by a single pointer. This reduces the number of
memory accesses that have to be done in a full call. For example, since the constant pool is implicit
in an LRA, a call need only save the LRA, rather than saving both the return PC and the constant
pool.

40.15 Memory Layout

cmucl has four spaces, read-only, static, dynamic-0, and dynamic-1. Read-only contains objects
that the system never modifies, moves, or reclaims. Static space contains some global objects
necessary for the system’s runtime or performance (since they are located at a known offset at a
known address), and the system never moves or reclaims these. However, GC does need to scan
static space for references to moved objects. Dynamic-0 and dynamic-1 are the two heap areas for
stop-and-copy GC algorithms.
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What global objects are at the head of static space???

NIL

eval::*top-of-stack*

lisp::*current-catch-block*

lisp::*current-unwind-protect*

FLAGS (RT only)

BSP (RT only)

HEAP (RT only)

In addition to the above spaces, the system has a control stack, binding stack, and a number
stack. The binding stack contains pairs of descriptors, a symbol and its previous value. The number
stack is the same as the C stack, and the system uses it for non-Lisp objects such as raw system
pointers, saving non-Lisp registers, parts of bignum computations, etc.

40.16 System Pointers

The system pointers reference raw allocated memory, data returned by foreign function calls, etc.
The system uses these when you need a pointer to a non-Lisp block of memory, using an other-
pointer. This provides the greatest flexibility by relieving contraints placed by having more direct
references that require descriptor type tags.

A system area pointer data-block has the following format:

-------------------------------------------------------

| 1 (data-block words) | SAP Type (8 bits) |

-------------------------------------------------------

| system area pointer |

-------------------------------------------------------

“SAP” means “system area pointer”, and much of our code contains this naming scheme. We
don’t currently restrict system pointers to one area of memory, but if they do point onto the heap,
it is up to the user to prevent being screwed by GC or whatever.

40.17 Weak Pointers

A weak-pointer data-block has the following format:

-------------------------------------------------------

| 4 (data-block words) | Weak pointer Type (8 bits) |

-------------------------------------------------------

| weak-pointer-value |

-------------------------------------------------------

| weak-pointer-broken |

-------------------------------------------------------

| mark-bit (T or NIL) |

-------------------------------------------------------

| next |

-------------------------------------------------------

The mark-bit is used when gencgc is available. It’s used to note if this weak pointer has been
visited before so that scavenging weak-pointers isn’t an $O(n^2)$ process.

The last slot is an internal slot used by the C runtime to chain all the weak pointers together for
GC.
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41 Memory Management

41.1 Stacks and Globals

41.2 Heap Layout

41.3 Garbage Collection
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42 Interface to C and Assembler

42.1 Linkage Table

The linkage table feature is based on how dynamic libraries dispatch. A table of functions is used
which is filled in with the appropriate code to jump to the correct address.

For cmucl, this table is stored at target-foreign-linkage-space-start. Each entry is
target-foreign-linkage-entry-size bytes long.

At startup, the table is initialized with default values in os_foreign_linkage_init. On x86
platforms, the first entry is code to call the routine resolve_linkage_tramp. All other entries
jump to the first entry. The function resolve_linkage_tramp looks at where it was called from to
figure out which entry in the table was used. It calls lazy_resolve_linkage with the address of the
linkage entry. This routine then fills in the appropriate linkage entry with code to jump to where the
real routine is located, and returns the address of the entry. On return, resolve_linkage_tramp
then just jumps to the returned address to call the desired function. On all subsequent calls, the
entry no longer points to resolve_linkage_tramp but to the real function.

This describes how function calls are made. For foreign data, lazy_resolve_linkage stuffs the
address of the actual foreign data into the linkage table. The lisp code then just loads the address
from there to get the actual address of the foreign data.

For sparc, the linkage table is slightly different. The first entry is the entry for call_into_c

so we never have to look this up. All other entries are for resolve_linkage_tramp. This has
the advantage that resolve_linkage_tramp can be much simpler since all calls to foreign code go
through call_into_c anyway, and that means all live Lisp registers have already been saved. Also,
to make life simpler, we lie about closure_tramp and undefined_tramp in the Lisp code. These
are really functions, but we treat them as foreign data since these two routines are only used as
addresses in the Lisp code to stuff into a lisp function header.

On the Lisp side, there are two supporting data structures for the linkage table:
*linkage-table-data* and *foreign-linkage-symbols*. The latter is a hash table whose key is
the foreign symbol (a string) and whose value is an index into *linkage-table-data*.

*linkage-table-data* is a vector with an unlispy layout. Each entry has 3 parts:

• symbol name

• type, a fixnum, 1 = code, 2 = data

• library list - the library list at the time the symbol is registered.

Whenever a new foreign symbol is defined, a new *linkage-table-data* entry is
created. *foreign-linkage-symbols* is updated with the symbol and the entry number into
*linkage-table-data*.

The *linkage-table-data* is accessed from C (hence the unlispy layout), to figure out the
symbol name and the type so that the address of the symbol can be determined. The type tells the
C code how to fill in the entry in the linkage-table itself.



114

43 Low-level debugging
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44 Core File Format
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45 Fasload File Format

45.1 General

The purpose of Fasload files is to allow concise storage and rapid loading of Lisp data, particularly
function definitions. The intent is that loading a Fasload file has the same effect as loading the
source file from which the Fasload file was compiled, but accomplishes the tasks more efficiently.
One noticeable difference, of course, is that function definitions may be in compiled form rather
than S-expression form. Another is that Fasload files may specify in what parts of memory the Lisp
data should be allocated. For example, constant lists used by compiled code may be regarded as
read-only.

In some Lisp implementations, Fasload file formats are designed to allow sharing of code parts
of the file, possibly by direct mapping of pages of the file into the address space of a process. This
technique produces great performance improvements in a paged time-sharing system. Since the
Mach project is to produce a distributed personal-computer network system rather than a time-
sharing system, efficiencies of this type are explicitly not a goal for the CMU Common Lisp Fasload
file format.

On the other hand, CMU Common Lisp is intended to be portable, as it will eventually run
on a variety of machines. Therefore an explicit goal is that Fasload files shall be transportable
among various implementations, to permit efficient distribution of programs in compiled form. The
representations of data objects in Fasload files shall be relatively independent of such considerations
as word length, number of type bits, and so on. If two implementations interpret the same macrocode
(compiled code format), then Fasload files should be completely compatible. If they do not, then files
not containing compiled code (so-called “Fasdump” data files) should still be compatible. While this
may lead to a format which is not maximally efficient for a particular implementation, the sacrifice
of a small amount of performance is deemed a worthwhile price to pay to achieve portability.

The primary assumption about data format compatibility is that all implementations can support
I/O on finite streams of eight-bit bytes. By “finite” we mean that a definite end-of-file point can
be detected irrespective of the content of the data stream. A Fasload file will be regarded as such a
byte stream.

45.2 Strategy

A Fasload file may be regarded as a human-readable prefix followed by code in a funny little language.
When interpreted, this code will cause the construction of the encoded data structures. The virtual
machine which interprets this code has a stack and a table, both initially empty. The table may
be thought of as an expandable register file; it is used to remember quantities which are needed
more than once. The elements of both the stack and the table are Lisp data objects. Operators of
the funny language may take as operands following bytes of the data stream, or items popped from
the stack. Results may be pushed back onto the stack or pushed onto the table. The table is an
indexable stack that is never popped; it is indexed relative to the base, not the top, so that an item
once pushed always has the same index.

More precisely, a Fasload file has the following macroscopic organization. It is a sequence of zero
or more groups concatenated together. End-of-file must occur at the end of the last group. Each
group begins with a series of seven-bit ASCII characters terminated by one or more bytes of all ones
#xFF; this is called the header. Following the bytes which terminate the header is the body, a stream
of bytes in the funny binary language. The body of necessity begins with a byte other than #xFF.
The body is terminated by the operation FOP-END-GROUP.

The first nine characters of the header must be FASL FILE in upper-case letters. The rest may
be any ASCII text, but by convention it is formatted in a certain way. The header is divided into
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lines, which are grouped into paragraphs. A paragraph begins with a line which does not begin with
a space or tab character, and contains all lines up to, but not including, the next such line. The
first word of a paragraph, defined to be all characters up to but not including the first space, tab,
or end-of-line character, is the name of the paragraph. A Fasload file header might look something
like this:

FASL FILE >SteelesPerq>User>Guy>IoHacks>Pretty-Print.Slisp

Package Pretty-Print

Compiled 31-Mar-1988 09:01:32 by some random luser

Compiler Version 1.6, Lisp Version 3.0.

Functions: INITIALIZE DRIVER HACK HACK1 MUNGE MUNGE1 GAZORCH

MINGLE MUDDLE PERTURB OVERDRIVE GOBBLE-KEYBOARD

FRY-USER DROP-DEAD HELP CLEAR-MICROCODE

%AOS-TRIANGLE %HARASS-READTABLE-MAYBE

Macros: PUSH POP FROB TWIDDLE

one or more bytes of #xFF.

The particular paragraph names and contents shown here are only intended as suggestions.

45.3 Fasload Language

Each operation in the binary Fasload language is an eight-bit (one-byte) opcode. Each has a name
beginning with “FOP-”. In the following descriptions, the name is followed by operand descriptors.
Each descriptor denotes operands that follow the opcode in the input stream. A quantity in paren-
theses indicates the number of bytes of data from the stream making up the operand. Operands
which implicitly come from the stack are noted in the text. The notation “⇒ stack” means that
the result is pushed onto the stack; “⇒ table” similarly means that the result is added to the table.
A construction like “n(1) value(n)” means that first a single byte n is read from the input stream,
and this byte specifies how many bytes to read as the operand named value. All numeric values
are unsigned binary integers unless otherwise specified. Values described as “signed” are in two’s-
complement form unless otherwise specified. When an integer read from the stream occupies more
than one byte, the first byte read is the least significant byte, and the last byte read is the most
significant (and contains the sign bit as its high-order bit if the entire integer is signed).

Some of the operations are not necessary, but are rather special cases of or combinations of others.
These are included to reduce the size of the file or to speed up important cases. As an example,
nearly all strings are less than 256 bytes long, and so a special form of string operation might take
a one-byte length rather than a four-byte length. As another example, some implementations may
choose to store bits in an array in a left-to-right format within each word, rather than right-to-left.
The Fasload file format may support both formats, with one being significantly more efficient than
the other for a given implementation. The compiler for any implementation may generate the more
efficient form for that implementation, and yet compatibility can be maintained by requiring all
implementations to support both formats in Fasload files.

Measurements are to be made to determine which operation codes are worthwhile; little-used op-
erations may be discarded and new ones added. After a point the definition will be “frozen”, meaning
that existing operations may not be deleted (though new ones may be added; some operations codes
will be reserved for that purpose).

0: FOP-NOP

No operation. (This is included because it is recognized that some implementations
may benefit from alignment of operands to some operations, for example to 32-bit
boundaries. This operation can be used to pad the instruction stream to a desired
boundary.)
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1: FOP-POP ⇒ table
One item is popped from the stack and added to the table.

2: FOP-PUSH index (4) ⇒ stack
Item number index of the table is pushed onto the stack. The first element of the table
is item number zero.

3: FOP-BYTE-PUSH index (1) ⇒ stack
Item number index of the table is pushed onto the stack. The first element of the table
is item number zero.

4: FOP-EMPTY-LIST ⇒ stack
The empty list (()) is pushed onto the stack.

5: FOP-TRUTH ⇒ stack
The standard truth value (T) is pushed onto the stack.

6: FOP-SYMBOL-SAVE n(4) name(n)
⇒ stack & table The four-byte operand n specifies the length of the print name of a
symbol. The name follows, one character per byte, with the first byte of the print name
being the first read. The name is interned in the default package, and the resulting
symbol is both pushed onto the stack and added to the table.

7: FOP-SMALL-SYMBOL-SAVE n(1) name(n) ⇒ stack & table
The one-byte operand n specifies the length of the print name of a symbol. The name
follows, one character per byte, with the first byte of the print name being the first
read. The name is interned in the default package, and the resulting symbol is both
pushed onto the stack and added to the table.

8: FOP-SYMBOL-IN-PACKAGE-SAVE index (4)
n(4) name(n) ⇒ stack & table The four-byte index specifies a package stored in the
table. The four-byte operand n specifies the length of the print name of a symbol. The
name follows, one character per byte, with the first byte of the print name being the
first read. The name is interned in the specified package, and the resulting symbol is
both pushed onto the stack and added to the table.

9: FOP-SMALL-SYMBOL-IN-PACKAGE-SAVE index (4)
n(1) name(n) ⇒ stack & table The four-byte index specifies a package stored in the
table. The one-byte operand n specifies the length of the print name of a symbol. The
name follows, one character per byte, with the first byte of the print name being the
first read. The name is interned in the specified package, and the resulting symbol is
both pushed onto the stack and added to the table.

10: FOP-SYMBOL-IN-BYTE-PACKAGE-SAVE index (1)
n(4) name(n) ⇒ stack & table The one-byte index specifies a package stored in the
table. The four-byte operand n specifies the length of the print name of a symbol. The
name follows, one character per byte, with the first byte of the print name being the
first read. The name is interned in the specified package, and the resulting symbol is
both pushed onto the stack and added to the table.

11: FOP-SMALL-SYMBOL-IN-BYTE-PACKAGE-SAVE index (1) n(1) name(n) ⇒ stack & table
The one-byte index specifies a package stored in the table. The one-byte operand n
specifies the length of the print name of a symbol. The name follows, one character per
byte, with the first byte of the print name being the first read. The name is interned
in the specified package, and the resulting symbol is both pushed onto the stack and
added to the table.



Chapter 45: Fasload File Format 119

12: FOP-UNINTERNED-SYMBOL-SAVE n(4) name(n) ⇒ stack & table
Like FOP-SYMBOL-SAVE, except that it creates an uninterned symbol.

13: FOP-UNINTERNED-SMALL-SYMBOL-SAVE n(1) name(n) ⇒ stack & table
Like FOP-SMALL-SYMBOL-SAVE, except that it creates an uninterned symbol.

14: FOP-PACKAGE ⇒ table
An item is popped from the stack; it must be a symbol. The package of that name is
located and pushed onto the table.

15: FOP-LIST length(1) ⇒ stack
The unsigned operand length specifies a number of operands to be popped from the
stack. These are made into a list of that length, and the list is pushed onto the stack.
The first item popped from the stack becomes the last element of the list, and so on.
Hence an iterative loop can start with the empty list and perform “pop an item and
cons it onto the list” length times. (Lists of length greater than 255 can be made by
using FOP-LIST* repeatedly.)

16: FOP-LIST* length(1) ⇒ stack
This is like FOP-LIST except that the constructed list is terminated not by () (the
empty list), but by an item popped from the stack before any others are. Therefore
length+1 items are popped in all. Hence an iterative loop can start with a popped item
and perform “pop an item and cons it onto the list” length+1 times.

17-24: FOP-LIST-1, FOP-LIST-2, ..., FOP-LIST-8
FOP-LIST-k is like FOP-LIST with a byte containing k following it. These exist purely
to reduce the size of Fasload files. Measurements need to be made to determine the
useful values of k.

25-32: FOP-LIST*-1, FOP-LIST*-2, ..., FOP-LIST*-8
FOP-LIST*-k is like FOP-LIST* with a byte containing k following it. These exist
purely to reduce the size of Fasload files. Measurements need to be made to determine
the useful values of k.

33: FOP-INTEGER n(4) value(n)
⇒ stack A four-byte unsigned operand specifies the number of following bytes. These
bytes define the value of a signed integer in two’s-complement form. The first byte of
the value is the least significant byte.

34: FOP-SMALL-INTEGER n(1) value(n)
⇒ stack A one-byte unsigned operand specifies the number of following bytes. These
bytes define the value of a signed integer in two’s-complement form. The first byte of
the value is the least significant byte.

35: FOP-WORD-INTEGER value(4) ⇒ stack
A four-byte signed integer (in the range −231 to 231− 1) follows the operation code. A
LISP integer (fixnum or bignum) with that value is constructed and pushed onto the
stack.

36: FOP-BYTE-INTEGER value(1) ⇒ stack
A one-byte signed integer (in the range -128 to 127) follows the operation code. A
LISP integer (fixnum or bignum) with that value is constructed and pushed onto the
stack.

37: FOP-STRING n(4) name(n)
⇒ stack The four-byte operand n specifies the length of a string to construct. The
characters of the string follow, one per byte. The constructed string is pushed onto the
stack.
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38: FOP-SMALL-STRING n(1) name(n) ⇒ stack
The one-byte operand n specifies the length of a string to construct. The characters
of the string follow, one per byte. The constructed string is pushed onto the stack.

39: FOP-VECTOR n(4) ⇒ stack
The four-byte operand n specifies the length of a vector of LISP objects to construct.
The elements of the vector are popped off the stack; the first one popped becomes the
last element of the vector. The constructed vector is pushed onto the stack.

40: FOP-SMALL-VECTOR n(1) ⇒ stack
The one-byte operand n specifies the length of a vector of LISP objects to construct.
The elements of the vector are popped off the stack; the first one popped becomes the
last element of the vector. The constructed vector is pushed onto the stack.

41: FOP-UNIFORM-VECTOR n(4) ⇒ stack
The four-byte operand n specifies the length of a vector of LISP objects to construct.
A single item is popped from the stack and used to initialize all elements of the vector.
The constructed vector is pushed onto the stack.

42: FOP-SMALL-UNIFORM-VECTOR n(1) ⇒ stack
The one-byte operand n specifies the length of a vector of LISP objects to construct.
A single item is popped from the stack and used to initialize all elements of the vector.
The constructed vector is pushed onto the stack.

43: FOP-INT-VECTOR len(4) size(1) data(\left\lceillen ∗ count/8\right\rceil ⇒ stack
The four-byte operand n specifies the length of a vector of unsigned integers to be
constructed. Each integer is size bits long, and is packed according to the machine’s
native byte ordering. size must be a directly supported i-vector element size. Currently
supported values are 1,2,4,8,16 and 32.

44: FOP-UNIFORM-INT-VECTOR n(4) size(1) value(\lceil ⊂ size/8\rceil) ⇒ stack
The four-byte operand n specifies the length of a vector of unsigned integers to con-
struct. Each integer is size bits big, and is initialized to the value of the operand value.
The constructed vector is pushed onto the stack.

45: FOP-LAYOUT

Pops the stack four times to get the name, length, inheritance and depth for a layout
object.

46: FOP-SINGLE-FLOAT data(4)
⇒ stack The data bytes are read as an integer, then turned into an IEEE single float
(as though by make-single-float).

47: FOP-DOUBLE-FLOAT data(8)
⇒ stack The data bytes are read as an integer, then turned into an IEEE double float
(as though by make-double-float).

48: FOP-STRUCT n(4) ⇒ stack
The four-byte operand n specifies the length structure to construct. The elements of
the vector are popped off the stack; the first one popped becomes the last element of
the structure. The constructed vector is pushed onto the stack.

49: FOP-SMALL-STRUCT n(1) ⇒ stack
The one-byte operand n specifies the length structure to construct. The elements of
the vector are popped off the stack; the first one popped becomes the last element of
the structure. The constructed vector is pushed onto the stack.
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50-52: Unused
53: FOP-EVAL ⇒ stack

Pop an item from the stack and evaluate it (give it to EVAL). Push the result back onto
the stack.

54: FOP-EVAL-FOR-EFFECT

Pop an item from the stack and evaluate it (give it to EVAL). The result is ignored.

55: FOP-FUNCALL nargs(1) ⇒ stack
Pop nargs+1 items from the stack and apply the last one popped as a function to all
the rest as arguments (the first one popped being the last argument). Push the result
back onto the stack.

56: FOP-FUNCALL-FOR-EFFECT nargs(1)
Pop nargs+1 items from the stack and apply the last one popped as a function to all
the rest as arguments (the first one popped being the last argument). The result is
ignored.

57: FOP-CODE-FORMAT implementation(1)
version(1) This FOP specifiers the code format for following code objects. The opera-
tions FOP-CODE and its relatives may not occur in a group until after FOP-CODE-FORMAT
has appeared; there is no default format. The implementation is an integer indicating
the target hardware and environment. See compiler/generic/vm-macs.lisp for the
currently defined implementations. version for an implementation is increased when-
ever there is a change that renders old fasl files unusable.

58: FOP-CODE nitems(4) size(4)
code(size) ⇒ stack A compiled function is constructed and pushed onto the stack. This
object is in the format specified by the most recent occurrence of FOP-CODE-FORMAT.
The operand nitems specifies a number of items to pop off the stack to use in the
“boxed storage” section. The operand code is a string of bytes constituting the compiled
executable code.

59: FOP-SMALL-CODE nitems(1) size(2)
code(size) ⇒ stack A compiled function is constructed and pushed onto the stack. This
object is in the format specified by the most recent occurrence of FOP-CODE-FORMAT.
The operand nitems specifies a number of items to pop off the stack to use in the
“boxed storage” section. The operand code is a string of bytes constituting the compiled
executable code.

60 FOP-FDEFINITION

Pops the stack to get an fdefinition.

61 FOP-SANCTIFY-FOR-EXECUTION

A code component is popped from the stack, and the necessary magic is applied to the
code so that it can be executed.

62: FOP-VERIFY-TABLE-SIZE size(4)
If the current size of the table is not equal to size, then an inconsistency has been de-
tected. This operation is inserted into a Fasload file purely for error-checking purposes.
It is good practice for a compiler to output this at least at the end of every group, if
not more often.

63: FOP-VERIFY-EMPTY-STACK

If the stack is not currently empty, then an inconsistency has been detected. This
operation is inserted into a Fasload file purely for error-checking purposes. It is good
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practice for a compiler to output this at least at the end of every group, if not more
often.

64: FOP-END-GROUP

This is the last operation of a group. If this is not the last byte of the file, then a new
group follows; the next nine bytes must be “FASL FILE”.

65: FOP-POP-FOR-EFFECT stack ⇒
One item is popped from the stack.

66: FOP-MISC-TRAP ⇒ stack
A trap object is pushed onto the stack.

67: FOP-DOUBLE-DOUBLE-FLOAT double-double-float(8) ⇒ stack
The next 8 bytes are read, and a double-double-float number is constructed.

68: FOP-CHARACTER character(3) ⇒ stack
The three bytes are read as an integer then converted to a character. This FOP is
currently rather useless, as extended characters are not supported.

69: FOP-SHORT-CHARACTER character(1)
⇒ stack The one byte specifies the code of a Common Lisp character object. A
character is constructed and pushed onto the stack.

70: FOP-RATIO ⇒ stack
Creates a ratio from two integers popped from the stack. The denominator is popped
first, the numerator second.

71: FOP-COMPLEX ⇒ stack
Creates a complex number from two numbers popped from the stack. The imaginary
part is popped first, the real part second.

72 FOP-COMPLEX-SINGLE-FLOAT real(4) imag(4) ⇒ stack
Creates a complex single-float number from the following 8 bytes.

73 FOP-COMPLEX-DOUBLE-FLOAT real(8) imag(8) ⇒ stack
Creates a complex double-float number from the following 16 bytes.

74: FOP-FSET

Except in the cold loader (Genesis), this is a no-op with two stack arguments. In the
initial core this is used to make DEFUN functions defined at cold-load time so that
global functions can be called before top-level forms are run (which normally installs
definitions.) Genesis pops the top two things off of the stack and effectively does (SETF
SYMBOL-FUNCTION).

75: FOP-LISP-SYMBOL-SAVE n(4) name(n)
⇒ stack & table Like FOP-SYMBOL-SAVE, except that it creates a symbol in the LISP
package.

76: FOP-LISP-SMALL-SYMBOL-SAVE n(1)
name(n) ⇒ stack & table Like FOP-SMALL-SYMBOL-SAVE, except that it creates a
symbol in the LISP package.

77: FOP-KEYWORD-SYMBOL-SAVE n(4) name(n)
⇒ stack & table Like FOP-SYMBOL-SAVE, except that it creates a symbol in the KEY-
WORD package.

78: FOP-KEYWORD-SMALL-SYMBOL-SAVE n(1)
name(n) ⇒ stack & table Like FOP-SMALL-SYMBOL-SAVE, except that it creates a
symbol in the KEYWORD package.
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79-80: Unused
81: FOP-NORMAL-LOAD

This FOP is used in conjunction with the cold loader (Genesis) to read top-level package
manipulation forms. These forms are to be read as though by the normal loaded, so
that they can be evaluated at cold load time, instead of being dumped into the initial
core image. A no-op in normal loading.

82: FOP-MAYBE-COLD-LOAD

Undoes the effect of FOP-NORMAL-LOAD.

83: FOP-ARRAY rank(4) ⇒ stack
This operation creates a simple array header (used for simple-arrays with rank /= 1).
The data vector is popped off of the stack, and then rank dimensions are popped off
of the stack (the highest dimensions is on top.)

84: FOP-SINGLE-FLOAT-VECTOR length(4) data(n) ⇒ stack
Creates a (simple-array single-float (*)) object. The number of single-floats is length.

85: FOP-DOUBLE-FLOAT-VECTOR length(4) data(n) ⇒ stack
Creates a (simple-array double-float (*)) object. The number of double-floats is length.

86: FOP-COMPLEX-SINGLE-FLOAT-VECTOR length(4) data(n) ⇒ stack
Creates a (simple-array (complex single-float) (*)) object. The number of complex
single-floats is length.

87: FOP-COMPLEX-DOUBLE-FLOAT-VECTOR length(4) data(n) ⇒ stack
Creates a (simple-array (complex double-float) (*)) object. The number of complex
double-floats is length.

88: FOP-DOUBLE-DOUBLE-FLOAT-VECTOR length(4) data(n) ⇒ stack
Creates a (simple-array double-double-float (*)) object. The number of double-double-
floats is length.

89: FOP-COMPLEX-DOUBLE-DOUBLE-FLOAT data(32) ⇒ stack
Creates a (complex double-double-float) object from the following 32 bytes of data.

90: FOP-COMPLEX-DOUBLE-DOUBLE-FLOAT-VECTOR length(4) data(n) ⇒ stack
Creates a (simple-arra (complex double-double-float) (*)) object. The number of com-
plex double-double-floats is length.

91-139: Unused
140: FOP-ALTER-CODE index (4)

This operation modifies the constants part of a code object (necessary for creating
certain circular function references.) It pops the new value and code object are off of
the stack, storing the new value at the specified index.

141: FOP-BYTE-ALTER-CODE index (1)
Like FOP-ALTER-CODE, but has only a one byte offset.

142: FOP-FUNCTION-ENTRY index (4) ⇒ stack
Initializes a function-entry header inside of a pre-existing code object, and returns the
corresponding function descriptor. index is the byte offset inside of the code object
where the header should be plunked down. The stack arguments to this operation are
the code object, function name, function debug arglist and function type.

143: FOP-MAKE-BYTE-COMPILED-FUNCTION size(1) ⇒ stack
Create a byte-compiled function. FIXME: describe what’s on the stack.
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144: FOP-ASSEMBLER-CODE length(4) ⇒ stack
This operation creates a code object holding assembly routines. length bytes of code
are read and placed in the code object, and the code object descriptor is pushed on
the stack. This FOP is only recognized by the cold loader (Genesis.)

145: FOP-ASSEMBLER-ROUTINE offset(4) ⇒ stack
This operation records an entry point into an assembler code object (for use with
FOP-ASSEMBLER-FIXUP). The routine name (a symbol) is on stack top. The code
object is underneath. The entry point is defined at offset bytes inside the code area of
the code object, and the code object is left on stack top (allowing multiple uses of this
FOP to be chained.) This FOP is only recognized by the cold loader (Genesis.)

146: Unused
147: FOP-FOREIGN-FIXUP len(1) name(len) offset(4) ⇒ stack

This operation resolves a reference to a foreign (C) symbol. len bytes are read and
interpreted as the symbol name. First the kind and the code-object to patch are popped
from the stack. The kind is a target-dependent symbol indicating the instruction format
of the patch target (at offset bytes from the start of the code area.) The code object
is left on stack top (allowing multiple uses of this FOP to be chained.)

148: FOP-ASSEMBLER-FIXUP offset(4) ⇒ stack
This operation resolves a reference to an assembler routine. The stack args are (routine-
name, kind and code-object). The kind is a target-dependent symbol indicating the
instruction format of the patch target (at offset bytes from the start of the code area.)
The code object is left on stack top (allowing multiple uses of this FOP to be chained.)

149: FOP-CODE-OBJECT-FIXUP ⇒ stack
FIXME: Describe what this does!

150: FOP-FOREIGN-DATA-FIXUP ⇒ stack
FIXME: Describe what this does!

151-156: Unused
157: FOP-LONG-CODE-FORMAT implementation(1) version(4)

Like FOP-CODE-FORMAT, except that the version is 32 bits long.

158-199: Unused
200: FOP-RPLACA table-idx (4) cdr-offset(4)
201: FOP-RPLACD table-idx (4) cdr-offset(4)

These operations destructively modify a list entered in the table. table-idx is the table
entry holding the list, and cdr-offset designates the cons in the list to modify (like the
argument to nthcdr.) The new value is popped off of the stack, and stored in the car
or cdr, respectively.

202: FOP-SVSET table-idx (4) vector-idx (4)
Destructively modifies a simple-vector entered in the table. Pops the new value off
of the stack, and stores it in the vector-idx element of the contents of the table entry
table-idx.

203: FOP-NTHCDR cdr-offset(4) ⇒ stack
Does nthcdr on the top-of stack, leaving the result there.

204: FOP-STRUCTSET table-idx (4) vector-idx (4)
Like FOP-SVSET, except it alters structure slots.

205-254: Unused
255: FOP-END-HEADER

Indicates the end of a group header, as described above.
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Glossary

assert (a type)
In Python, all type checking is done via a general type assertion mechanism. Explicit
declarations and implicit assertions (e.g. the arg to + is a number) are recorded in
the front-end (implicit continuation) representation. Type assertions (and thus type-
checking) are “unbundled” from the operations that are affected by the assertion. This
has two major advantages:

• Code that implements operations need not concern itself with checking operand
types.

• Run-time type checks can be eliminated when the compiler can prove that the
assertion will always be satisfied.

See also restrict.

back end The back end is the part of the compiler that operates on the virtual machine interme-
diate representation. Also included are the compiler phases involved in the conversion
from the front end representation (or ICR).

bind node This is a node type the that marks the start of a lambda body in ICR. This serves as
a placeholder for environment manipulation code.

IR1 The first intermediate representation, also known as ICR, or the Implicit Continuation
Represenation.

IR2 The second intermediate representation, also known as VMR, or the Virtual Machine
Representation.

basic block A basic block (or simply “block”) has the pretty much the usual meaning of representing
a straight-line sequence of code. However, the code sequence ultimately generated for
a block might contain internal branches that were hidden inside the implementation of
a particular operation. The type of a block is actually cblock. The block-info slot
holds an VMR-block containing backend information.

block compilation
Block compilation is a term commonly used to describe the compile-time resolution of
function names. This enables many optimizations.

call graph Each node in the call graph is a function (represented by a flow graph.) The arcs in
the call graph represent a possible call from one function to another. See also tail set.

cleanup A cleanup is the part of the implicit continuation representation that retains informa-
tion scoping relationships. For indefinite extent bindings (variables and functions), we
can abandon scoping information after ICR conversion, recovering the lifetime informa-
tion using flow analysis. But dynamic bindings (special values, catch, unwind protect,
etc.) must be removed at a precise time (whenever the scope is exited.) Cleanup struc-
tures form a hierarchy that represents the static nesting of dynamic binding structures.
When the compiler does a control transfer, it can use the cleanup information to de-
termine what cleanup code needs to be emitted.

closure variable
A closure variable is any lexical variable that has references outside of its home envi-
ronment. See also indirect value cell.

closed continuation
A closed continuation represents a tagbody tag or block name that is closed over.
These two cases are mostly indistinguishable in ICR.
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home Home is a term used to describe various back-pointers. A lambda variable’s “home”
is the lambda that the variable belongs to. A lambda’s “home environment” is the
environment in which that lambda’s variables are allocated.

indirect value cell
Any closure variable that has assignments (setqs) will be allocated in an indirect value
cell. This is necessary to ensure that all references to the variable will see assigned
values, since the compiler normally freely copies values when creating a closure.

set variable Any variable that is assigned to is called a “set variable”. Several optimizations must
special-case set variables, and set closure variables must have an indirect value cell.

code generator
The code generator for a VOP is a potentially arbitrary list code fragment which is
responsible for emitting assembly code to implement that VOP.

constant pool
The part of a compiled code object that holds pointers to non-immediate constants.

constant TN
A constant TN is the VMR of a compile-time constant value. A constant may be
immediate, or may be allocated in the constant pool.

constant leaf
A constant leaf is the ICR of a compile-time constant value.

combination
A combination node is the ICR of any fixed-argument function call (not apply or
multiple-value-call.)

top-level component
A top-level component is any component whose only entry points are top-level lambdas.

top-level lambda
A top-level lambda represents the execution of the outermost form on which the com-
piler was invoked. In the case of compile-file, this is often a truly top-level form in
the source file, but the compiler can recursively descend into some forms (eval-when,
etc.) breaking them into separate compilations.

component A component is basically a sequence of blocks. Each component is compiled into a
separate code object. With block compilation or local functions, a component will
contain the code for more than one function. This is called a component because it
represents a connected portion of the call graph. Normally the blocks are in depth-first
order (DFO).

component, initial
During ICR conversion, blocks are temporarily assigned to initial components. The
“flow graph canonicalization” phase determines the true component structure.

component, head and tail
The head and tail of a component are dummy blocks that mark the start and end of
the DFO sequence. The component head and tail double as the root and finish node
of the component’s flow graph.

local function (call)
A local function call is a call to a function known at compile time to be in the same
component. Local call allows compile time resolution of the target address and calling
conventions. See block compilation.
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conflict (of TNs, set)
Register allocation terminology. Two TNs conflict if they could ever be live simulta-
neously. The conflict set of a TN is all TNs that it conflicts with.

continuation
The ICR data structure which represents both:

• The receiving of a value (or multiple values), and

• A control location in the flow graph.

In the Implicit Continuation Representation, the environment is implicit in the con-
tinuation’s BLOCK (hence the name.) The ICR continuation is very similar to a CPS
continuation in its use, but its representation doesn’t much resemble (is not inter-
changeable with) a lambda.

cont A slot in the node holding the continuation which receives the node’s value(s). Unless
the node ends a block, this also implicitly indicates which node should be evaluated
next.

cost Approximations of the run-time costs of operations are widely used in the back end.
By convention, the unit is generally machine cycles, but the values are only used for
comparison between alternatives. For example, the VOP cost is used to determine the
preferred order in which to try possible implementations.

CSP, CFP See control stack pointer and control frame pointer.

Control stack
The main call stack, which holds function stack frames. All words on the control stack
are tagged descriptors. In all ports done so far, the control stack grows from low
memory to high memory. The most recent call frames are considered to be “on top”
of earlier call frames.

Control stack pointer
The allocation pointer for the control stack. Generally this points to the first free word
at the top of the stack.

Control frame pointer
The pointer to the base of the control stack frame for a particular function invocation.
The CFP for the running function must be in a register.

Number stack
The auxiliary stack used to hold any non-descriptor (untagged) objects. This is gen-
erally the same as the C call stack, and thus typically grows down.

Number stack pointer
The allocation pointer for the number stack. This is typically the C stack pointer, and
is thus kept in a register.

NSP, NFP See number stack pointer, number frame pointer.

Number frame pointer
The pointer to the base of the number stack frame for a particular function invocation.
Functions that don’t use the number stack won’t have an NFP, but if an NFP is
allocated, it is always allocated in a particular register. If there is no variable-size data
on the number stack, then the NFP will generally be identical to the NSP.

Lisp return address
The name of the descriptor encoding the “return pc” for a function call.
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LRA See lisp return address. Also, the name of the register where the LRA is passed.

Code pointer
A pointer to the header of a code object. The code pointer for the currently running
function is stored in the code register.

Interior pointer
A pointer into the inside of some heap-allocated object. Interior pointers confuse the
garbage collector, so their use is highly constrained. Typically there is a single register
dedicated to holding interior pointers.

dest A slot in the continuation which points the the node that receives this value. Null if
this value is not received by anyone.

DFN, DFO See Depth First Number, Depth First Order.

Depth first number
Blocks are numbered according to their appearance in the depth-first ordering (the
block-number slot.) The numbering actually increases from the component tail, so
earlier blocks have larger numbers.

Depth first order
This is a linearization of the flow graph, obtained by a depth-first walk. Iterative flow
analysis algorithms work better when blocks are processed in DFO (or reverse DFO.)

Object In low-level design discussions, an object is one of the following:

• a single word containing immediate data (characters, fixnums, etc)

• a single word pointing to an object (structures, conses, etc.)

These are tagged with three low-tag bits as described in the section [sec-tagging],
page 100, This is synonymous with descriptor. In other parts of the documentation,
may be used more loosely to refer to a lisp object.

Lisp object A Lisp object is a high-level object discussed as a data type in the Common Lisp
definition.

Data-block A data-block is a dual-word aligned block of memory that either manifests a Lisp object
(vectors, code, symbols, etc.) or helps manage a Lisp object on the heap (array header,
function header, etc.).

Descriptor A descriptor is a tagged, single-word object. It either contains immediate data or a
pointer to data. This is synonymous with object. Storage locations that must contain
descriptors are referred to as descriptor locations.

Pointer descriptor
A descriptor that points to a data block in memory (i.e. not an immediate object.)

Immediate descriptor
A descriptor that encodes the object value in the descriptor itself; used for characters,
fixnums, etc.

Word A word is a 32-bit quantity.

Non-descriptor
Any chunk of bits that isn’t a valid tagged descriptor. For example, a double-float on
the number stack. Storage locations that are not scanned by the garbage collector (and
thus cannot contain pointer descriptors) are called non-descriptor locations. Immediate
descriptors can be stored in non-descriptor locations.
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Entry point
An entry point is a function that may be subject to “unpredictable” control transfers.
All entry points are linked to the root of the flow graph (the component head.) The
only functions that aren’t entry points are let functions. When complex lambda-list
syntax is used, multiple entry points may be created for a single lisp-level function.
See external entry point.

External entry point
A function that serves as a “trampoline” to intercept function calls coming in from
outside of the component. The XEP does argument syntax and type checking, and
may also translate the arguments and return values for a locally specialized calling
calling convention.

XEP An external entry point.

lexical environment
A lexical environment is a structure that is used during VMR conversion to represent
all lexically scoped bindings (variables, functions, declarations, etc.) Each node is
annotated with its lexical environment, primarily for use by the debugger and other
user interfaces. This structure is also the environment object passed to macroexpand.

environment
The environment is part of the ICR, created during environment analysis. Environment
analysis apportions code to disjoint environments, with all code in the same environ-
ment sharing the same stack frame. Each environment has a “real” function that
allocates it, and some collection let functions. Although environment analysis is the
last ICR phase, in earlier phases, code is sometimes said to be “in the same/different
environment(s)”. This means that the code will definitely be in the same environ-
ment (because it is in the same real function), or that is might not be in the same
environment, because it is not in the same function.

fixup Some sort of back-patching annotation. The main sort encountered are load-time
assembler fixups, which are a linkage annotation mechanism.

flow graph A flow graph is a directed graph of basic blocks, where each arc represents a possible
control transfer. The flow graph is the basic data structure used to represent code, and
provides direct support for data flow analysis. See component and ICR.

foldable An attribute of known functions. A function is foldable if calls may be constant folded
whenever the arguments are compile-time constant. Generally this means that it is a
pure function with no side effects.

FSC

full call

function attribute
function “real” (allocates environment) meaning function-entry more vague (any
lambda?) funny function GEN (kill and...) global TN, conflicts, preference GTN
(number) IR ICR VMR ICR conversion, VMR conversion (translation) inline
expansion, call kill (to make dead) known function LAMBDA leaf let call lifetime
analysis, live (tn, variable) load tn LOCS (passing, return locations) local call local
TN, conflicts, (or just used in one block) location (selection) LTN (number) main
entry mess-up (for cleanup) more arg (entry) MV non-local exit non-packed SC, TN
non-set variable operand (to vop) optimizer (in icr optimize) optional-dispatch pack,
packing, packed pass (in a transform) passing locations (value) conventions (known,
unknown) policy (safe, fast, small, ...) predecessor block primitive-type reaching
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definition REF representation selection for value result continuation (for function)
result type assertion (for template) (or is it restriction) restrict a TN to finite SBs a
template operand to a primitive type (boxed...) a tn-ref to particular SCs

return (node, vops) safe, safety saving (of registers, costs) SB SC (restriction) semi-
inline side-effect in ICR in VMR sparse set splitting (of VMR blocks) SSET SUB-
PRIMITIVE successor block tail recursion tail recursive tail recursive loop user tail
recursion

template TN TNBIND TN-REF transform (source, ICR) type assertion inference top-
down, bottom-up assertion propagation derived, asserted descriptor, specifier, inter-
section, union, member type check type-check (in continuation) UNBOXED (boxed)
descriptor unknown values continuation unset variable unwind-block, unwinding used
value (dest) value passing VAR VM VOP

XEP
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