
General Design Notes on the Motif

Toolkit Interface
November 29, 2000

i

Table of Contents

1 Data Transport . 1
1.1 Packet format . 1

1.1.1 Data format . 1

2 Greeting Protocol . 2

3 Request Protocol . 3
3.1 Request format . 3
3.2 Server reply format . 3

4 Object Representations . 4
4.1 Data format in message . 4

5 Information in widget structure 5

6 Callback handlers . 6

7 Structure of the Server . 7

8 Structure of the Client . 8

9 Adding New Requests to the System 9

10 Summary of differences with CLM 11

1

1 Data Transport

1.1 Packet format

• Header:

32 bits serial number
16 bits sequence position
16 bits sequence length
32 bits packet length (including header)

• Data: (packet length - 12) bytes of information

• Packets have a fixed maximum size (4k).

• Packets a grouped together to form random length messages. The sequence length
refers to how many packets comprise the message, and each packet is tagged with its
position in that sequence.

• All packets in the same message have the same serial number.

• Messages are built up as their constituent packets arrive. It should be possible to
interleave the packets of different messages and still have the individual messages be
constructed properly.

• It is tacitly assumed that packets arrive in their proper sequence order.

• A packet with a sequence position/length field denoting [0 of 0] is a cancellation packet.
The message having that serial number should be discarded.

1.1.1 Data format

Each data entry in a message is represented as:@[2mm]

8 bits type tag
24 bits immediate data
rest other data (if necessary)

2

2 Greeting Protocol

When a Lisp process first establishes a connection to the server, it sends a 16 bit quantity
which represents "1" to it. The server using this to decide whether to byte swap words
when sending them to Lisp. The general policy is that all data is presented to the Lisp
process in the order that Lisp uses.

Following the byte swapping information, the Lisp process sends an initial message which
contains:

• A string giving the target X display name

• A string for the application name

• A string for the application class

3

3 Request Protocol

3.1 Request format

16 bits request opcode
8 bits request flags (0=nothing, 1=require

confirm)

8 bits & argument count (unused)

At the moment, the request flags field is used only to indicate whether the Lisp client
desires a confirmation message when the request is finished processing. If the request returns
any values, this counts as the confirmation. Otherwise, an empty confirmation message will
be sent.

3.2 Server reply format

32 bits response tag
rest return data (if any)

The response tag can have the following values:@[2mm]

Tag Meaning
CONFIRM_REPLY confirmation (for synchronization)
VALUES_REPLY return values from a request
CALLBACK_REPLY a widget callback has been invoked
EVENT_REPLY an X event handler has been invoked
ERROR_REPLY an error has occurred
WARNING_REPLY a non-fatal problem has occurred
PROTOCOL_REPLY a protocol callback has been invoked

4

4 Object Representations

4.1 Data format in message

Accelerators 32 bit integer ID
Atom 32 bit Atom ID
Boolean 24 bit immediate data
Color 24 bit immediate data (Red value) followed by 2 16 bit

words for Green and Blue@

Colormap 32 bit Colormap XID
Compound
Strings

32 bit address

Cursor 32bit Cursor XID
Enumeration 24 bit immediate integer
Font 32 bit Font XID
Font List 32 bit integer ID
Function 24 bit immediate token
Int 32 bit integer
List 24 bit immediate data (length) followed by each element

recorded in order

Pixmap 32 bit Pixmap XID
Short 24 bit immediate integer
(1) Strings 24 bit immediate data (length of string including ’\0’) fol-

lowed by string data padded to end on a word bound-
ary . . .or . . .

(2) Strings 24 bit immediate token (for common strings)
Translations 32 bit integer ID
Widgets 32 bit integer ID
Window 32 bit Window XID

For objects such as translations, widgets, accelerators, font lists, and compound strings,
the 32 bit ID is just the address of the object in the C server process. They are represented
in Lisp by structures which encapsulate their ID’s and provide them with Lisp data types
(other than simply INTEGER).

5

5 Information in widget structure

• integer ID for identifying the widget to the C server

• widget class keyword (e.g. :FORM, :PUSH-BUTTON-GADGET, :UNKNOWN)

• parent widget

• list of (known) children

• USER-DATA slot for programmer use

• list of active callback lists

• list of active protocol lists

• list of active event handlers

The last three are for internal use in cleaning up Lisp state on widget destruction

6

6 Callback handlers

A callback handler is defined as:

(defun handler (widget call-data &rest client-data))

The WIDGET argument is the widget for which the callback is being invoked.@ The CLIENT-
DATA &rest argument allows the programmer to pass an arbitrary number of Lisp objects
to the callback procedure1.@ The CALL-DATA argument provides the information passed
by Motif regarding the reason for the callback and any other relevant information.@ The
XEvent which generated the event may be accessed by:

(with-callback-event (event call-data)

....)

Action procedures are used in translation tables as:

<Key> q: Lisp(SOME-PACKAGE:MY-FUNCTION)

Action procedures may access their event information by:

(with-action-event (event call-data)

....)

Where callback data is passed in structures, XEvents are represented as aliens. This is
because XEvents are rather large. This saves the consing of large structures for each event
processed.

Actions to be taken after the callback handler terminates the server’s callback loop can
be registered by:

(with-callback-deferred-actions <forms>)

1 Note: this deviates from CLM and Motif in C.

7

7 Structure of the Server

When the server process is started, it establishes standard sockets for clients to connect
to it and waits for incoming connections. When a client connects to the server, the server
will fork a new process (unless -nofork was specified on the command line) to deal with
incoming requests from the client. The result of this is that each logical application has
its own dedicated request server. This prevents event handling in one application from
blocking event dispatching in another.

Each request server is essentially an event loop. It waits for an event to occur, and
dispatches that event to the appropriate handlers. If the event represents input available on
the client connection, it reads the message off the stream and executes the corresponding
request. If the event is an X event or a Motif callback, relevant information about that event
is packed into a message and sent to the Lisp client. After sending the event notification,
the server will enter a callback event loop to allow processing of requests from the client’s
callback procedure. However, during the callback event loop, only input events from the
client will be processed; all other events will be deferred until the callback is terminated.

The server supports a standard means for reading and writing data objects into mes-
sages for communication with the Lisp client. For every available type of data which may
be transported there are reader and writer functions. For instance, WIDGET is a valid type
for argument data. Two functions are defined in the server: message_read_widget() and
message_write_widget(). To allow for a more generalized interface to argument pass-
ing, the server defines the functions toolkit_write_value() and toolkit_read_value().
These functions are passed data and a type identifier; it is their job to look up the correct
reader/writer function. Clearly, if the type of an argument is known at compile time then
it is best to use the specific reader/writer functions. However, if such type information
is not known at compile time, as is the case with arbitrary resource lists, the higher level
toolkit_xxx_value() functions are the only available options.

8

8 Structure of the Client

. . .

9

9 Adding New Requests to the System

In order to add a new function to the toolkit interface, this new function must be declared
in both C and Lisp.

Lisp provides a convenient macro interface for writing the necessary RPC stub. The
form of this definition is:

(def-toolkit-request <C name> <Lisp name> <:confirm|:no-confirm>

"Documentation string"

(<arguments>)

(<return-values>)

<optional forms>)

Entries in the argument list should be of the form (<name> <type>). The return value
list is simply a list of types of the return value(s). Any forms supplied at the end will
be executed in a context where the arguments are bound to the given names and the
return value is bound to RESULT (if there was only one) or FIRST, SECOND, . . . , FOURTH
(for up to 4 return values). At the moment, the interface does not support any more
than 4 return values. You must also specify a value for the confirmation option (:CONFIRM
or :NO-CONFIRM). If you expect return values, you must specify :CONFIRM in order to
receive them. Otherwise, you may specify :NO-CONFIRM. Use of :NO-CONFIRM allows for
increased efficiency since the client will issue a request but not wait for any response. All
function prototypes should be placed in the prototypes.lisp file. A few examples of request
prototypes:

(def-toolkit-request "XtSetSensitive" set-sensitive :no-confirm

"Sets the event sensitivity of the given widget."

;;

;; Takes two arguments: widget and sensitivep

((widget widget) (sensitivep (member t nil)))

;;

;; No return values expected

())

(def-toolkit-request "XtIsManaged" is-managed :confirm

"Returns a value indicating whether the specified widget is managed."

;;

;; Takes one argument: widget

((widget widget))

;;

;; Expects one return value (which is a boolean)

((member t nil)))

(def-toolkit-request "XmSelectionBoxGetChild" selection-box-get-child

:confirm

"Accesses a child component of a SelectionBox widget."

;;

;; Takes two arguments: w and child

10

((w widget) (child keyword))

;;

;; Expects a return value which is a widget

(widget)

;;

;; Now we execute some code to maintain the state of the world.

;; Given that this widget may be one we don’t know about, we must

;; register it as the child of one we do know about.

(widget-add-child w result)

(setf (widget-type result) :unknown))

After adding a request prototype in Lisp, you must add the actual code to process the
request to the C server code. The general form of the request function should be:

int R<name>(message_t message)

{

int arg;

...

toolkit_read_value(message,&arg,XtRInt);

...

}

Where <name> is the C name given in the request prototype above. You must also add
an entry for this function in the functions.h file. An example of a standard request function
is:

int RXtCreateWidget(message_t message)

{

String name;

WidgetClass class;

Widget w,parent;

ResourceList resources;

toolkit_read_value(message,&name,XtRString);

toolkit_read_value(message,&class,XtRWidgetClass);

toolkit_read_value(message,&parent,XtRWidget);

resources.class = class;

resources.parent = parent;

toolkit_read_value(message,&resources,ExtRResourceList);

w = XtCreateWidget(name,class,parent,

resources.args,resources.length);

reply_with_widget(message,w);

}

Certain standard functions for returning arguments are provided in the file requests.c;
reply_with_widget() is an example of these.

11

10 Summary of differences with CLM

X objects (e.g. windows, fonts, pixmaps) are represented as CLX objects rather than the
home-brewed representations of CLM. As a consequence, this requires that CLX be present
in the core. If this were to cause unacceptable core bloat, a skeletal CLX could be built
which only supported the required functionality.

Stricter naming conventions are used, in particular for enumerated types. A value named
XmFOO_BAR in C will be called :foo-bar in Lisp, consistently. Abbreviations such as :form
(for :attach-form) are not allowed since they are often ambiguous. Where CLM abbre-
viates callback names (e.g. XmNactivateCallback becomes :activate), we do not (e.g.
:activate-callback).

Some differently named functions which can be resolved without undo hassle.

Passing of information to callbacks and event handlers. In CLM, callback handlers are
defined as:

(defun handler (widget client-data &rest call-data))

The CLIENT-DATA argument is some arbitrary data which was stashed with the callback
when it was registered by the application. The call-data represents the call-data information
provided by Motif to the callback handler. Each data item of the callback information is
passed as a separate argument. In our world, callback handlers are defined as:

(defun handler (widget call-data &rest client-data))

The call-data is packaged into a structure and passed as a single argument and the
user is allowed to register any number of items to be passed to the callback as client-data.
Being able to pass several items of client-data is more convenient for the programmer and
the packaging of the call-data information is more appealing than splitting it apart into
separate arguments. Also, CLM only transports a limited subset of the available callback
information. We transport all information. Event handlers differ in the same way. The
client-data is the &rest arg and the event info is packaged as a single object. Accessing the
generating event in a callback handler is done in the following manner:

(defun handler (widget call-data &rest client-data)

(with-callback-event (event call-data)

;; Access slots of event such as:

;; (event-window event) or

;; (button-event-x event)

))

	Data Transport
	Packet format
	Data format

	Greeting Protocol
	Request Protocol
	Request format
	Server reply format

	Object Representations
	Data format in message

	Information in widget structure
	Callback handlers
	Structure of the Server
	Structure of the Client
	Adding New Requests to the System
	Summary of differences with CLM

