CMUCL User’s Manual

December 2018
21d

Robert A. MacLachlan, Editor

CMUCL is a free, high-performance implementation of the Common Lisp programming
language, which runs on most major Unix platforms. It mainly conforms to the ANSI
Common Lisp Standard. ¢MUCL features a sophisticated native-code compiler, a for-
eign function interface, a graphical source-level debugger, an interface to the X11 Win-
dow System, and an Emacs-like editor.

Keywords: lisp, Common Lisp, manual, compiler, programming language implementa-
tion, programming environment

This manual is based on CMU Technical Report CMU-CS-92-161, edited by Robert A.
MacLachlan, dated July 1992.

Table of Contents

1

Introduction...... 1
1.1 Distribution and Support........ ... 1
1.2 Command Line Optionsoiuiiiiiii i 1
1.3 Credits. . oot 3

Design Choices and Extensions............................ 6
2.1 Data Types ... 6

2,11 Inbegers.o 6
2.1.2 Floats. oot 6
2.1.2.1 TEEE Special Valuescoooiiiiiiiiiiiiiinin, 6
2.1.2.2 Negative Zero......couuiii i 7
2.1.2.3 Denormalized Floatsc ... 7
2.1.2.4 Floating Point Exceptions...............oooiiiiiiiiiiiiin 7
2.1.2.5 Floating Point Rounding Mode.................. 7
2.1.2.6 Accessing the Floating Point Modes 8
2.1.3 Extended Floatso 9
2.1.4 CharaCtersttt 10
2.1.5 Array Initialization......... ... oo 10
2.1.6 Hash tables..........iiii e e 10
2.2 Default Interrupts for LiSpcoviiiii 11
2.3 Implementation-Specific Packages...........ol 12
2.4 Hierarchical Packages i i 13
2.4.1 Introductionoiiiiiiiii 13
2.4.2 Relative Package Names..............oooiiiiiiiiiiiiiiian.. 13
2.4.3 Compatibility with ANSI Common Lisp......................... 14
2.4.3.1 Changes to cl:find-package.........c.vvueieeuinuenennen. 14
2.4.3.2 Using Hierarchical Packages
without Modifying cl:find-package.................ooini..... 15
2.5 Package Locks 15
2.5.1 Rationale.........ooiiiiii 15
2.5.2 Disabling package locks i 16
2.6 The Editor. 17
2.7 Garbage Collectiono 17
2.7.1 GC Parametersoiini it 17
2.7.2 Generational GC....... ... i 18
2.7.3 Weak Pointers ... 19
2.7.4 Finalization......... ..o 19
2.8 DeSCIibe .ot 20
2.9 The InSpectort 20
2.9.1 The Graphical Interface............. ... i i 20
2.9.2 The TTY Inspector.......c.ooiiiiiiiiii i, 21
210 Load. ... 21
2.11 The Reader.o e e 22
2.11.1 Reader EXtensionsouiiiiiiiiiii i 22
2.11.2 Reader Parameters........... ... 22
2.12 Stream Extensions................iiiiiii 22

2.13 Simple Streamst 23

2.14 Running Programs from Lisp.............. i, 23
2.14.1 Process ACCESSOTS . ..ottt et 25
2.15 Saving a Core Imageoouii i 26
2.16 Pathnames............. i 27
2.16.1 Unix Pathnames......... ... o i i 27
2.16.2 Wildcard Pathnames........ o i i, 28
2.16.3 Logical Pathnames......... i i 28
2.16.4 Search Lists.ooiuuiiii 28
2.16.5 Predefined Search-Lists o i 29
2.16.6 Search-List Operations.............ooiiiiiiiiiiiiiiiia.n. 29
2.16.7 Search List Example...... ..o 30
2.17 Filesystem Operations.couiiueiiiiiiiiiiiiiiiinienn.. 30
2.17.1 Wildcard Matching ... 30
2.17.2 File Name Completion 30
2.17.3 Miscellaneous Filesystem Operations 31
2.18 Time Parsing and Formattingo i 31
2.19 Random Number Generation..............ccoiiiiiiiiiininne.n.. 33
2.19.1 MT-19937 Generator.ouuueeie et 33
2.19.2 xoroshirol28+ Generator........... ..o, 33
2.20 Lisp Threads.oounuiii e 33
2.21 Lisp Libraryo 33
2.22 Generalized Function Names, 34
2.23 CLO S . o 34
2.23.1 Primary Method Errors.......... ... i 34
2.23.2 Slot Type Checkingooi i 34
2.23.3 Slot Access Optimization.ocoieiiiiiiiiiiienean.. 35
2.23.3.1 slot-boundp Declaration................ 35
2.23.3.2 inline Declarationo 35
2.23.3.3 Automatic Method Recompilation......................... 36

2.23.4 Inlining Methods in Effective Methods.............. 37
2.23.5 Effective Method Precomputation................. 38
2.23.6 Sealingot 38
2.23.7 Method Tracing and Profiling, 38
2.23.8 MSC .ttt 39
2.24 Differences from ANSI Common Lisp.............cooooiiiiiiii.. 39
2.24.1 EXEENSIONS . .ot 39
2.25 Function Wrappers.ttt 39
2.26 Dynamic-Extent Declarations il 41
2.26.1 &rest argument lists....... 41
2.26.2 ClOSULES « .« vt vttt ettt et e e et ettt 42
2.26.3 list, list*, and COMS.....ouutiintttiiit e 42
2.27 Modular Arithmetic. 42
2.28 Extension to REQUIRE. e 43
2.29 Localization.ouiiii e 43
2.29.1 Dictionaryoouiiiii 43
2.29.2 Example Usagec.oovuiiiiiii i 45

2.30 Static ATTAYS .. v ittt e 46

ii

3 The Debugger.............. 48
3.1 Debugger Introduction 48
3.2 The Command Loopo e 48
3.3 Stack Frames.o 49

3.3.1 Stack Motiont 49
3.3.2 How Arguments are Printed...........o 49
3.3.3 Function Names........ .o 50
3.3.4 Funny Frames............. i 50
3.3.5 Debug Tail Recursionoouuiiiiiiiiiiiiiiiiennnnnn. 51
3.3.6 Unknown Locations and Interrupts.............................. 51
3.4 Variable ACCESSot 52
3.4.1 Variable Value Availability i 52
3.4.2 Note On Lexical Variable Accessc.ooiiiiiiiiiii... 53
3.5 Source Location Printing i 53
3.5.1 How the Sourceis Found................ i 54
3.5.2 Source Location Availability...................o. il 55
3.6 Compiler Policy Control........ ... 55
3.7 Exiting Commands.ot 56
3.8 Information Commandsoiiiiiiiiiiiiiiiiiin.. 56
3.9 Breakpoint Commandst 57
3.9.1 Breakpoint Example 57
3.10 Function Tracing........... ..o 59
3.10.1 Encapsulation Functionso it 61
3.10.2 Tracing Examples. ... 61
311 SpeCialS. .o 62
The Compiler...... 63
4.1 Compiler Introduction........... ... i 63
4.2 Calling the Compiler....... ... i 63
4.3 Compilation Unitso 65
4.3.1 Undefined Warnings.coiuiiiiiiiiniiiinininean.. 65
4.4 Interpreting Error Messagesot 66
4.4.1 The Parts of the Error Message ..., 66
4.4.2 The Original and Actual Source............coviiiiiiiiina .. 68
4.4.3 The Processing Path...... o i i 68
4.4.4 Error Severity. 69
4.4.5 FErrors During Macroexpansionc.ooeveiiiiiiieean... 70
4.4.6 Read Errors.o 70
4.4.7 FError Message Parameterization......................... 70
4.5 Typesin Python ... i 71
4.5.1 Compile Time Type Errors........ ..., 71
4.5.2 Precise Type Checkingoouiiiiiiiiii i, 72
4.5.3 Weakened Type Checkingccooiiiiiii .. 73
4.6 Getting Existing Programs to Runl 74
4.7 Compiler Policyo 75
4.7.1 The Optimize Declaration............ ..., 75
4.7.2 The Optimize-Interface Declaration............... 76

4.8 Open Coding and Inline Expansion............. ..., 77

iii

5 Advanced Compiler Use and Efficiency Hints........... 78

5.1 Advanced Compiler Introductiono i 78
0.1l Ty DS . ettt 78
5.1.2 Optimization.oueiii et 78
5.1.3 Function Call 79
5.1.4 Representation of Objects.... ...l 79
5.1.5 Writing Efficient Code oo 80

5.2 More About Types in Pythono i, 80
5.2.1 More Types Meaningful 81
5.2.2 Canonicalizationt 81
5.2.3 Member Types.ouuiiii i e 81
5.2.4 Union Types 82
5.2.5 The Empty Type . ..o e 82
5.2.6 Function Typesooiiiiii e 82
5.2.7 The Values Declarationoiiiiiiiiiiiiiiiiiiea .. 83
5.2.8 Structure Types.ooueir i 84
5.2.9 The Freeze-Type Declaration.................. ... 84
5.2.10 Type Restrictions........ ..o 84
5.2.11 Type Style Recommendationsc.oooiiiiiiiian... 85

5.3 TypelInference....... ... 86
5.3.1 Variable Type Inference........... i i, 86
5.3.2 Local Function Type Inference 86
5.3.3 Global Function Type Inferenceo 87
5.3.4 Operation Specific Type Inference................... 87
5.3.5 Dynamic Type Inference 87
5.3.6 Type Check Optimization........... ..ot eiiann.. 89

5.4 Source Optimization 90
5.4.1 Let Optimization......... ..., 90
5.4.2 Constant Folding.......... ..o 91
5.4.3 Unused Expression Elimination................ 91
5.4.4 Control Optimizationo, 92
5.4.5 Unreachable Code Deletion................ ... i, 93
5.4.6 Multiple Values Optimizationo .. 94
5.4.7 Source to Source Transformation 95
5.4.8 Style Recommendations..............cooiiiiiiiiiiiiiiii., 95

5.5 Tail Recursiono e 96
5.5.1 Tail Recursion Exceptions. 97

5.6 Local Call. 97
5.6.1 Self-Recursive Callso i 98
5.6.2 Let Calls. ... 98
5.6.3 ClOSULES . .ttt ettt et et et e et et e 99
5.6.4 Local Tail Recursiont 99
5.6.5 Return Values i 100

5.7 Block Compilation 100
5.7.1 Block Compilation Semanticscoooiiiiiiiiii... 101
5.7.2 Block Compilation Declarations............... ... 101
5.7.3 Compiler Arguments..........c..oviiiiiiiiiiiiii i 102
5.7.4 Practical Difficulties 102
5.7.5 Context Declarations.o, 102
5.7.6 Context Declaration Example............. 103

5.8 Inline Expansion.............ii i 104
5.8.1 Inline Expansion Recording i, 105

5.8.2 Semi-Inline Expansion i 106

5.8.3 The Maybe-Inline Declaration..................cooiiiiii ... 106

5.9 Byte Coded Compilation........ 107
5.10 Object Representationo 108
5.10.1 Think Before You Use a List........... ... o it 108
5.10.2 Structure Representation............ ... 108
D.10.3 AT A S . ottt 108
5.10.4 VeCtOors . .o oot 109
5.10.5 Bit-Vectorso 109
5.10.6 Hashtables........ ..o 109
5.11 NUmMDEIS. . .ot 110
5.11.1 DeSCriptors . ..ottt 110
5.11.2 Non-Descriptor Representations............................... 111
5.11.3 Variableso 111
5.11.4 Generic Arithmetico i 112

5. 115 Fixnumso 113
5.11.6 Word Integersooniiiii e 113
5.11.7 Floating Point Efficiency........... i 114
5.11.7.1 Signed Zeroes and Special Functions 115

5.11.8 Specialized ATTayscoouiiiiiiiii i 115
5.11.9 Specialized Structure Slots............. ... i 116
5.11.10 Interactions With Local Call.......... 116
5.11.11 Representation of Characters, 117
5.12 General Efficiency Hints.......... ..o i 117
5.12.1 Compile Your Code........ooviuiiiii i 117
5.12.2 Avoid Unnecessary Consing...........c..couveiuineiiinnennn.. 117
5.12.3 Complex Argument Syntaxoeeiuiiiieieneannn. 118
5.12.4 Mapping and Iteration........... ... 118
5.12.5 Trace Files and Disassembly oL 118
5.13 Efficiency Notes.o 119
5.13.1 Type Uncertainty........ ... i 120
5.13.2 Efficiency Notes and Type Checking........................... 120
5.13.3 Representation Efficiency Notes.............. 121
5.13.4 Verbosity Control........ ..o 122
5.14 Profiling 122
5.14.1 Profile Interface........ ... 122
5.14.2 Profiling Techniques i i 123
5.14.3 Nested or Recursive Calls........... ...t 123
5.14.4 Clock TeSOIUtION . .o .vv vttt 123
5.14.5 Profiling overhead 123
5.14.6 Additional Timing Utilities ..ot 124
5.14.7 A Note on Timing ...t 124
5.14.8 Benchmarking Techniques.................ooiiiiiiiiiii... 125

6 UNIX Interface..................... .. 127
6.1 Reading the Command Line................. ..o ... 127
6.2 Useful Variables.o 128
6.3 Lisp Equivalents for C Routines................cooiiiiiiiiiia.... 128
6.4 Type Translations......... ..o 129
6.5 System Area Pointers............. .o 129
6.6 Unix System Calls ... 130
6.7 File Descriptor Streamso 130
6.8 Unix Signalsc.o.oiuiiiii i 131

6.8.1 Changing Signal Handlers.............., 131

6.8.2 Examples of Signal Handlers 132

7 Event Dispatching with SERVE-EVENT............... 133
7.1 Object Sets ...t 133
7.2 The SERVE-EVENT Functioncooiiiiiiiiiiiiai.. 133
7.3 Using SERVE-EVENT with Unix File Descriptors................... 134
7.4 Using SERVE-EVENT with the CLX Interface to X 135
7.4.1 Without Object Sets........ccoiiiiiii . 135
7.4.2 With Object Setsoriiii e 135
7.5 A SERVE-EVENT Example...... ..o, 136
7.5.1 Without Object Sets Example............t 136
7.5.2 With Object Sets Example. ..., 138
Alien Objects. 141
8.1 Introduction to Aliens........... ...t 141
8.2 AN TYPES . . e ettt 141
8.2.1 Defining Alien Types.ot 141
8.2.2 Alien Types and Lisp Types.cooeiiiiiiiiiiiiii.. 142
8.2.3 Alien Type Specifiersc.oiiiiiiiii i 142
8.2.4 The C-Call Package........coooiiiiiiiiii i 143
8.3 Alien Operations.ttt 144
8.3.1 Alien Access Operationsouueiiiieiianieniannn. 144
8.3.2 Alien Coercion Operationsc..oeeiuiiieiinenieann... 144
8.3.3 Alien Dynamic Allocation.......... ..., 145
8.4 Alien Variables. i 145
8.4.1 Local Alien Variables i 145
8.4.2 External Alien Variables........... 145
8.5 Alien Data Structure Exampleo i 146
8.6 Loading Unix Object Filesc.o i 147
8.7 Alien Function Callso 148
8.7.1 The alien-funcall Primitive............., 148
8.7.2 The def-alien-routine Macro............ 149
8.7.3 def-alien-routine Example........... oL 149
8.7.4 Calling Lisp from C...... .o 150
8.7.5 Callback Example...... ..o 150
8.7.6 Accessing LiSp ATTays.ououiiuiiii i 151
8.8 Step-by-Step Alien Example....... i 153
Interprocess Communication under LISP 157
9.1 The REMOTE Package ... 157
9.1.1 Connecting Servers and Clients........... ..., 157
9.1.2 Remote Evaluations.............oooiiiiiiiiiiiiiii .. 158
9.1.3 Remote ObJects. ..ot 159
9.2 The WIRE Package ... 159
9.2.1 Untagged Dataoco i 160
9.22 Tagged Data.........ccoiuiiiii i 160
9.2.3 Making Your Own Wires...........oouiiiiiiiiiininennnn .. 160

9.3 Out-Of-Band Data......coviiiii 161

vi

vii

10 Networking Support.........., 162
10.1 Byte Order Convertersuouuteniiieaeii i, 162
10.2 Domain Name Services (DNS)........... .ot 162
10.3 Binding to Interfaces......... ..o 162
10.4 Accepting Connections.o.uiiuiiiiiiii i 163
10.5 Connectingo.vvnti i e 163
10.6 Out-of-Band Data ... 164
10.7 Unbound SOCKetst e 164
10.8 Unix Datagrams ... 165
10.9 ErTOrS .ottt e 165

11 Debugger Programmer’s Interface..................... 166
11.1 DI Exceptional Conditionsccooiiiiiiiiiiiiiiiienn.. 166

11.1.1 Debug-conditionscoutiiiiiiiii i 166

11.1.2 DebUZ-ITOTS . . . vttt ettt et et e e et e 167
11.2 Debug-variables. ... 167
11.3 Frames ..o e 168
11.4 Debug-functions ... 168
11.5 Debug-blocks 170
11.6 Breakpoints.o 170
11.7 Code-1ocationsvu 172
11.8 DEbUZG-SOUICES .« vttt ettt e 172
11.9 Source Translation Utilities 173

12 Cross-Referencing Facility.............................. 174
12.1 Populating the cross-reference database 174
12.2 Querying the cross-reference database.............................. 174
12.3 ExXample USageottt e 175
12.4 Limitations of the cross-referencing facility 176

13 Internationalization................. 178
131 CRANEES « o o ve ettt e e e 178

13.1.1 Design ChOICES ...\ttt e e 178
13.1.2 CRAraCterS. . ..ottt ettt e e e 178
13.1.3 SEEINES v ettt 178
13.2 External Formatso 178
13.2.1 Available External Formats................. 179
13.2.2 Composing External Formatscooiiiiin 180
13.3 Dictionaryo 181
13.3.1 Variables ... 181
13.3.2 CRharacCters.ottt e 181
13.3.3 SEIIIES « o vt 182
13.3.4 SEqUENCES .. oottt 183
13.3.5 Reader ... 183
13.3.6 Printer 184
13.3.7 Miscellaneouso .vvt i 184
13.3.7.0 FHleS. oot 184
13.3.7.2 UtIBIeS « o oee et 185
13.3.7.3 Loop Extensions..........ccoouiiiiiiiiiiiiiiieana. 187

13.4 Writing External Formats............ i 187
13.4.1 External Formats........ ... 187

13.4.2 Composing External Formats 188

Function Index 189
Variable Index. 193
Type Index 194

Concept Index............ i 195

viii

1 Introduction

CMUCL is a free, high-performance implementation of the Common Lisp programming language
which runs on most major Unix platforms. It mainly conforms to the ANSI Common Lisp standard.
Here is a summary of its main features:
e a sophisticated native-code compiler which is capable of powerful type inferences, and generates
code competitive in speed with C compilers.

e generational garbage collection and multiprocessing capability on the x86 ports.

e a foreign function interface which allows interfacing with C code and system libraries, including
shared libraries on most platforms, and direct access to Unix system calls.

e support for interprocess communication and remote procedure calls.

e an implementation of CLOS, the Common Lisp Object System, which includes multimethods
and a metaobject protocol.

e a graphical source-level debugger using a Motif interface, and a code profiler.

e an interface to the X11 Window System (CLX), and a sophisticated graphical widget library
(Garnet).

e programmer-extensible input and output streams.
e an Emacs-like editor implemented in Common Lisp.

e public domain: free, with full source code and no strings attached (and no warranty). Like
GNU/Linux and the *BSD operating systems, CMUCL is maintained and improved by a team
of volunteers collaborating over the Internet.

This user’s manual contains only implementation-specific information about cMucL. Users will
also need a separate manual describing the Common Lisp standard, for example, the Hyperspec
(http://www.lispworks.com/documentation/HyperSpec/Front/index.htm)

In addition to the language itself, this document describes a number of useful library modules that
run in CMUCL. Hemlock, an Emacs-like text editor, is included as an integral part of the cMUCL
environment. Two documents describe Hemlock: the Hemlock User’s Manual, and the Hemlock
Command Implementor’s Manual.

1.1 Distribution and Support

CMUCL is developed and maintained by a group of volunteers who collaborate over the internet.
Sources and binary releases for the various supported platforms can be obtained from http://
www.cmucl.org or https://gitlab.common-1lisp.net/cmucl/cmucl These pages describe how to
download by HTML.

A number of mailing lists are available for users and developers; please see the web site for more
information.

1.2 Command Line Options

The command line syntax and environment is described in the 1isp(1) man page in the man/manl
directory of the distribution. See also cmucl(1). Currently CMUCL accepts the following switches:

--help Same as -help.
-help Print out the command line options and exit.
-batch specifies batch mode, where all input is directed from standard-input. An error code

of 0 is returned upon encountering an EOF and 1 otherwise.

http://www.lispworks.com/documentation/HyperSpec/Front/index.htm
http://www.lispworks.com/documentation/HyperSpec/Front/index.htm
http://www.cmucl.org
http://www.cmucl.org
https://gitlab.common-lisp.net/cmucl/cmucl

Chapter 1: Introduction 2

-quiet enters quiet mode. This implies setting the variables *load-verbosex,
compile-verbose, *compile-print*, *compile-progress*, *require-verbosex*
and *gc-verbosex to NIL, and disables the printing of the startup banner.

-core requires an argument that should be the name of a core file. Rather than using the
default core file, which is searched in a number of places, according to the initial value
of the 1ibrary: search-list, the specified core file is loaded. This switch overrides the
value of the CMUCLCORE environment variable, if present.

-1lib requires an argument that should be the path to the CMUCL library directory, which
is going to be used to initialize the library: search-list, among other things. This
switch overrides the value of the CMUCLLIB environment variable, if present.

-dynamic-space-size
requires an argument that should be the number of megabytes (1048576 bytes) that
should be allocated to the heap. If not specified, a platform-specific default is used.
The actual maximum allowed heap size is platform-specific.

Currently, this option is only available for the x86 and sparc platforms.

-edit specifies to enter Hemlock. A file to edit may be specified by placing the name of the
file between the program name (usually 1isp and the first switch.

-eval accepts one argument which should be a Lisp form to evaluate during the start up
sequence. The value of the form will not be printed unless it is wrapped in a form that
does output.

-hinit accepts an argument that should be the name of the hemlock init file to load the first
time the function ed is invoked. The default is to load hemlock-init.object-type,
or if that does not exist, hemlock-init.lisp from the user’s home directory. If the
file is not in the user’s home directory, the full path must be specified.

-init accepts an argument that should be the name of an init file to load during the nor-
mal start up sequence. The default is to load init.object-type or, if that does
not exist, init.lisp from the user’s home directory. If neither exists, CMUCL tries
.cmucl-init.object-type and then .cmucl-init.lisp. If the file is not in the user’s
home directory, the full path must be specified. If the file does not exist, CMUCL silently
ignores it.

-noinit accepts no arguments and specifies that an init file should not be loaded during the
normal start up sequence. Also, this switch suppresses the loading of a hemlock init
file when Hemlock is started up with the —edit switch.

-nositeinit
accepts no arguments and specifies that the site init file should not be loaded during
the normal start up sequence.

-load accepts an argument which should be the name of a file to load into Lisp before entering
Lisp’s read-eval-print loop.

-slave specifies that Lisp should start up as a slave Lisp and try to connect to an editor Lisp.
The name of the editor to connect to must be specified—to find the editor’s name, use
the Hemlock “Accept Slave Connections” command. The name for the editor Lisp
is of the form:

machine—-name: socket

where machine-name is the internet host name for the machine and socket is the decimal
number of the socket to connect to.

Chapter 1: Introduction 3

-fpu specifies what fpu should be used for x87 machines. The possible values are “x87”,
“sse2”, or “auto”, which is the default. By default, cMucL will detect if the chip
supports the SSE2 instruction set or not. If so or if ~-fpu sse2 is specified, the SSE2
core will be loaded that uses SSE2 for floating-point arithmetic. If SSE2 is not available
or if ~fpu x87 is given, the legacy x87 core is loaded.

“ b2

-- indicates that everything after “--" is not subject to CMUCL’s command line parsing.

Everything after “--” is placed in the variable ext:*command-line-application-
arguments*.

For more details on the use of the —edit and -slave switches, see the Hemlock User’s Manual.

Arguments to the above switches can be specified in one of two ways: switch=value or
switch<space>value. For example, to start up the saved core file mylisp.core use either of the
following two commands:

lisp —core=mylisp.core
lisp -core mylisp.core

1.3 Credits

cMUCL was developed at the Computer Science Department of Carnegie Mellon University. The
work was a small autonomous part within the Mach microkernel-based operating system project,
and started more as a tool development effort than a research project. The project started out as
Spice Lisp, which provided a modern Lisp implementation for use in the CMU community. CMUCL
has been under continual development since the early 1980’s (concurrent with the Common Lisp
standardization effort). Most of the CMU Common Lisp implementors went on to work on the
Gwydion environment for Dylan. The CMU team was lead by Scott E. Fahlman, the Python
compiler was written by Robert MacLachlan.

cMmucL’s CLOS implementation is derived from the PCL reference implementation written at
Xerox PARC:

Copyright (c) 1985, 1986, 1987, 1988, 1989, 1990 Xerox Corporation.
All rights reserved.

Use and copying of this software and preparation of derivative works based upon this
software are permitted. Any distribution of this software or derivative works must
comply with all applicable United States export control laws.

This software is made available AS IS, and Xerox Corporation makes no warranty
about the software, its performance or its conformity to any specification.

Its implementation of the LOOP macro was derived from code from Symbolics, which was derived
from code written at MIT:

Portions of LOOP are Copyright (c) 1986 by the Massachusetts Institute of Technology.
All Rights Reserved.

Permission to use, copy, modify and distribute this software and its documentation
for any purpose and without fee is hereby granted, provided that the M.I.T. copyright
notice appear in all copies and that both that copyright notice and this permission
notice appear in supporting documentation. The names "M.I.T." and "Massachusetts
Institute of Technology" may not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission. Notice must be
given in supporting documentation that copying distribution is by permission of M.I.T.
M.I.T. makes no representations about the suitability of this software for any purpose.
It is provided "as is" without express or implied warranty.

Chapter 1: Introduction 4

Portions of LOOP are Copyright (¢) 1989, 1990, 1991, 1992 by Symbolics, Inc.
All Rights Reserved.

Permission to use, copy, modify and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the Symbolics copyright
notice appear in all copies and that both that copyright notice and this permission
notice appear in supporting documentation. The name "Symbolics" may not be used
in advertising or publicity pertaining to distribution of the software without specific,
written prior permission. Notice must be given in supporting documentation that
copying distribution is by permission of Symbolics. Symbolics makes no representations
about the suitability of this software for any purpose. It is provided "as is" without
express or implied warranty.

Symbolics, CLOE Runtime, and Minima are trademarks, and CLOE, Genera, and
Zetalisp are registered trademarks of Symbolics, Inc.

The CLX code is copyrighted by Texas Instruments Incorporated:
Copyright (C) 1987 Texas Instruments Incorporated.

Permission is granted to any individual or institution to use, copy, modify, and dis-
tribute this software, provided that this complete copyright and permission notice is
maintained, intact, in all copies and supporting documentation.

Texas Instruments Incorporated provides this software "as is" without express or im-
plied warranty.

cMucL was funded by DARPA under CMU’s "Research on Parallel Computing" contract. Rather
than doing pure research on programming languages and environments, the emphasis was on de-
veloping practical programming tools. Sometimes this required new technology, but much of the
work was in creating a Common Lisp environment that incorporates state-of-the-art features from
existing systems (both Lisp and non-Lisp). Archives of the project are available online.

The project funding stopped in 1994, so support at Carnegie Mellon University has been discon-
tinued. All code and documentation developed at CMU was released into the public domain. The
project continues as a group of users and developers collaborating over the Internet. The current
and previous maintainers include:

e Marco Antoniotti
e Martin Cracauer
e Fred Gilham

e Alex Goncharov
e Rob MacLachlan
e Pierre Mai

e Fric Marsden

o Gerd Moellman
e Tim Moore

e (Carl Shapiro

e Robert Swindells
e Raymond Toy

e Peter Van Eynde
e Paul Werkowski
In particular, Paul Werkowski and Douglas Crosher completed the port for the x86 architecture

for FreeBSD. Peter VanEnyde took the FreeBSD port and created a Linux version. Other people
who have contributed to the development of CMUCL since 1981 are

e David Axmark

e Miles Bader

e Rick Busdiecker

e Bill Chiles

e Douglas Thomas Crosher
e Casper Dik

e Ted Dunning

e Scott Fahlman

e Mike Garland

e Paul Gleichauf

e Sean Hallgren

e Richard Harris

e Joerg-Cyril Hoehl
e Chris Hoover

e John Kolojejchick
e Todd Kaufmann
e Simon Leinen

e Sandra Loosemore
e William Lott

e Dave McDonald
e Tim Moore

o Skef Wholey

e Paul Foley

e Helmut Eller

e Jan Rychter

Countless others have contributed to the project by sending in bug reports, bug fixes, and new
features.

This manual is based on CMU Technical Report CMU-CS-92-161, edited by Robert A. MacLach-
lan, dated July 1992. Other contributors include Raymond Toy, Paul Werkowski and Eric Marsden.
The Hierarchical Packages chapter is based on documentation written by Franz. Inc, and is used
with permission. The remainder of the document is in the public domain.

2 Design Choices and Extensions

Several design choices in Common Lisp are left to the individual implementation, and some essential
parts of the programming environment are left undefined. This chapter discusses the most important
design choices and extensions.

2.1 Data Types

2.1.1 Integers

The fixnum type is equivalent to (signed-byte 30). Integers outside this range are represented
as a bignum or a word integer (see [word-integers|, page 113.) Almost all integers that appear in
programs can be represented as a fixnum, so integer number consing is rare.

2.1.2 Floats

CMUCL supports three floating point formats: single-float, double-float and double-double-
float. The first two are implemented with IEEE single and double float arithmetic, respectively.
The last is an extension; see [extended-float], page 9, for more information. short-float is a
synonym for single-float, and long-float is a synonym for double-float. The initial value of
read-default-float-format is single-float.

Both single-float and double-float are represented with a pointer descriptor, so float op-
erations can cause number consing. Number consing is greatly reduced if programs are written to
allow the use of non-descriptor representations (see [numeric-types|, page 110.)

2.1.2.1 IEEE Special Values

CcMUCL supports the IEEE infinity and NaN special values. These non-numeric values will only be
generated when trapping is disabled for some floating point exception (see [float-traps], page 7), so
users of the default configuration need not concern themselves with special values.

extensions:short-float-positive-infinity Constant)
extensions:short-float-negative-infinity Constant
extensions:single-float-positive-infinity Constant

[
[]
[]
extensions:single-float-negative-infinity [Constant]
[Constant]
[]
[]
]

extensions:double-float-positive-infinity
extensions:double-float-negative-infinity Constant
extensions:long-float-positive-infinity Constant

extensions:long-float-negative-infinity [Constant
The values of these constants are the IEEE positive and negative infinity objects for each
float format.

extensions:float-infinity-p x [Function]
This function returns true if x is an IEEE float infinity (of either sign.) x must be a float.

extensions:float-nan-p x [Function]
extensions:float-signaling-nan-p x [Function]
extensions:float—trapping-nan-p x [Function]

float-nan-p returns true if x is an IEEE NaN (Not A Number) object. float-signaling-
nan-p returns true only if x is a trapping NaN. With either function, x must be a float.
float-trapping-nan-p is the former name of float-signaling-nan-p and is deprecated.

Chapter 2: Design Choices and Extensions 7

2.1.2.2 Negative Zero

The IEEE float format provides for distinct positive and negative zeros. To test the sign on zero
(or any other float), use the Common Lisp float-sign function. Negative zero prints as -0.0£0 or
-0.04d0.

2.1.2.3 Denormalized Floats

cMmucL supports IEEE denormalized floats. Denormalized floats provide a mechanism for gradual
underflow. The Common Lisp float-precision function returns the actual precision of a denor-
malized float, which will be less than float-digits. Note that in order to generate (or even print)
denormalized floats, trapping must be disabled for the underflow exception (see [float-traps], page 7.)
The Common Lisp least-positive-format-float constants are denormalized.

extensions:float-denormalized-p x [Function]
This function returns true if x is a denormalized float. x must be a float.

2.1.2.4 Floating Point Exceptions

The IEEE floating point standard defines several exceptions that occur when the result of a floating
point operation is unclear or undesirable. Exceptions can be ignored, in which case some default
action is taken, such as returning a special value. When trapping is enabled for an exception, a error
is signalled whenever that exception occurs. These are the possible floating point exceptions:

:underflow
This exception occurs when the result of an operation is too small to be represented as a
normalized float in its format. If trapping is enabled, the floating-point-underflow
condition is signalled. Otherwise, the operation results in a denormalized float or zero.

:overflow This exception occurs when the result of an operation is too large to be represented as
a float in its format. If trapping is enabled, the floating-point-overflow exception
is signalled. Otherwise, the operation results in the appropriate infinity.

:inexact This exception occurs when the result of a floating point operation is not exact, i.e. the
result was rounded. If trapping is enabled, the extensions:floating-point-inexact
condition is signalled. Otherwise, the rounded result is returned.

:invalid This exception occurs when the result of an operation is ill-defined, such as
(/0.00.0). If trapping is enabled, the extensions:floating-point-invalid
condition is signalled. Otherwise, a quiet NaN is returned.

:divide-by-zero
This exception occurs when a float is divided by zero. If trapping is enabled, the
divide-by-zero condition is signalled. Otherwise, the appropriate infinity is returned.

2.1.2.5 Floating Point Rounding Mode

IEEE floating point specifies four possible rounding modes:

:nearest In this mode, the inexact results are rounded to the nearer of the two possible result
values. If the neither possibility is nearer, then the even alternative is chosen. This
form of rounding is also called “round to even”, and is the form of rounding specified
for the Common Lisp round function.

:positive-infinity
This mode rounds inexact results to the possible value closer to positive infinity. This
is analogous to the Common Lisp ceiling function.

Chapter 2: Design Choices and Extensions 8

:negative-infinity
This mode rounds inexact results to the possible value closer to negative infinity. This
is analogous to the Common Lisp floor function.

:zero This mode rounds inexact results to the possible value closer to zero. This is analogous
to the Common Lisp truncate function.

Warning: Although the rounding mode can be changed with set-floating-point-modes, use of
any value other than the default (:nearest) can cause unusual behavior, since it will affect rounding
done by Common Lisp system code as well as rounding in user code. In particular, the unary round
function will stop doing round-to-nearest on floats, and instead do the selected form of rounding.

2.1.2.6 Accessing the Floating Point Modes

These functions can be used to modify or read the floating point modes:

extensions:set-floating-point-modes &key :traps :rounding-mode [Function]
:fast-mode :accrued-exceptions :current-exceptions
extensions:get-floating-point-modes [Function]

The keyword arguments to set-floating-point-modes set various modes controlling how
floating point arithmetic is done:

1traps A list of the exception conditions that should cause traps. Possible exceptions are
:underflow, :overflow, :inexact, :invalid and :divide-by-zero. Initially
all traps except :inexact are enabled. See [float-traps|, page 7.

:rounding-mode
The rounding mode to use when the result is not exact. Possible values are
:nearest, :positive-infinity, :negative-infinity and :zero. Initially,
the rounding mode is :nearest. See the warning in section [float-rounding-
modes], page 7, about use of other rounding modes.

:current-exceptions, :accrued-exceptions
Lists of exception keywords used to set the exception flags. The current-
exceptions are the exceptions for the previous operation, so setting it is not
very useful. The accrued-exceptions are a cumulative record of the exceptions
that occurred since the last time these flags were cleared. Specifying () will
clear any accrued exceptions.

:fast-mode
Set the hardware’s “fast mode” flag, if any. When set, IEEE conformance or
debuggability may be impaired. Some machines may not have this feature, in
which case the value is always nil. Sparc platforms support a fast mode where
denormal numbers are silently truncated to zero.

If a keyword argument is not supplied, then the associated state is not changed.
get-floating-point-modes returns a list representing the state of the floating point modes.
The list is in the same format as the keyword arguments to set-floating-point-modes, so
apply could be used with set-floating-point-modes to restore the modes in effect at the
time of the call to get-floating-point-modes.

To make handling control of floating-point exceptions, the following macro is useful.

ext:with-float-traps-masked traps &body body [Macro]
body is executed with the selected floating-point exceptions given by traps masked out (dis-
abled). traps should be a list of possible floating-point exceptions that should be ignored.
Possible values are :underflow, :overflow, :inexact, :invalid and :divide-by-zero.

Chapter 2: Design Choices and Extensions 9

This is equivalent to saving the current traps from get-floating-point-modes, setting the
floating-point modes to the desired exceptions, running the body, and restoring the saved
floating-point modes. The advantage of this macro is that it causes less consing to occur.
Some points about the with-float-traps-masked:
e Two approaches are available for detecting FP exceptions:
1. enabling the traps and handling the exceptions

2. disabling the traps and either handling the return values or checking the accrued
exceptions.

Of these the latter is the most portable because on the alpha port it is not possible to
enable some traps at run-time.

e To assist the checking of the exceptions within the body any accrued exceptions matching
the given traps are cleared at the start of the body when the traps are masked.

e To allow the macros to be nested these accrued exceptions are restored at the end of the
body to their values at the start of the body. Thus any exceptions that occurred within
the body will not affect the accrued exceptions outside the macro.

e Note that only the given exceptions are restored at the end of the body so other exception
will be visible in the accrued exceptions outside the body.

e On the x86, setting the accrued exceptions of an unmasked exception would cause a FP
trap. The macro behaviour of restoring the accrued exceptions ensures than if an accrued
exception is initially not flagged and occurs within the body it will be restored/cleared
at the exit of the body and thus not cause a trap.

e On the x86, and, perhaps, the hppa, the FP exceptions may be delivered at the next FP
instruction which requires a FP wait instruction (x86::float-wait) if using the lisp
conditions to catch trap within a handler-bind. The handler-bind macro does the
right thing and inserts a float-wait (at the end of its body on the x86). The masking
and noting of exceptions is also safe here.

e The setting of the FP flags uses the (floating-point-modes) and the (set
(floating-point-modes)...) VOPs. These VOPs blindly update the flags which
may include other state. We assume this state hasn’t changed in between getting and
setting the state. For example, if you used the FP unit between the above calls, the
state may be incorrectly restored! The with-float-traps-masked macro keeps the
intervening code to a minimum and uses only integer operations.

2.1.3 Extended Floats

CMUCL also has an extension to support double-double-float type. This float format provides
extended precision of about 31 decimal digits, with the same exponent range as double-float. It is
completely integrated into CMUCL, and can be used just like any other floating-point object, including
arrays, complex double-double-float’s, and special functions. With appropriate declarations, no
boxing is needed, just like single-float and double-float.

The exponent marker for a double-double float number is “W”, so “1.234w0” is a double-double
float number.

Note that there are a few shortcomings with double-double-float’s:

e There are no equivalents to most-positive-double-float, double-float-positive-
infinity, etc. This is because these are not really well defined for double-double-float’s.

e Underflow and overflow may be prematurely signaled. This is due to how double-double-
float’s are implemented.

e Basic arithmetic operations are inlined, so the code size is fairly large.

Chapter 2: Design Choices and Extensions 10

e double-double-float arithmetic is quite a bit slower than double-float since there is no
hardware support for this type.

e The constant pi is still a double-float instead of a double-double-float. Use ext:dd-pi
if you want a double-double-float value for .

extensions:double-double-float [float]
The double-double-float type. It is in the EXTENSIONS package.

extensions:dd-pi [Constant]
A double-double-float approximation to .

2.1.4 Characters

CMUCL implements characters according to Common Lisp: The Language II. The main difference
from the first version is that character bits and font have been eliminated, and the names of the
types have been changed. base-character is the new equivalent of the old string-char. In this
implementation, all characters are base characters (there are no extended characters).

If (featurep :unicode) is false, then character codes range between 0 and 255, using the ASCII
encoding. Otherwise, Unicode is supported and character codes corresond to utf-16 code units. See
[i18n], page 177, for further information.

Table 2.1 shows characters recognized by CMUCL.

Name Code Lisp Name Alternatives

nul 0 #\NULL

bel 0 #\BELL

bs 8 #\BACKSPACE #\BS

tab 9 #\TAB

If 10 #\NEWLINE #\NL #\LINEFEED #\LF
ff 11 #\VT #\PAGE #\FORM

cr 13 #\RETURN #\CR

esc 27 #\ESCAPE #\ESC #\ALTMODE #\ALT
Sp 32 #\SPACE #\SP

del 127 #\DELETE #\RUBOUT

Table 2.1: Characters recognized by CMUCL

When Unicode support is available, additional character names are supported. If the Unicode
character has a name, such as “GREEK SMALL LETTER ALPHA”, you may use #\greek_small_
letter_alpha to create the Greek character alpha whose code point value is #x3b1l. Alternatively,
you can specify a character using the hex value of the code point. Hence #\u+3b1 produces the same
character. The u+ is required for hex values.

2.1.5 Array Initialization

If no :initial-value is specified, arrays are initialized to zero.

2.1.6 Hash tables

The hash-tables defined by Common Lisp have limited utility because they are limited to testing
their keys using the equality predicates provided by (pre-CLOS) Common Lisp. CMUCL overcomes
this limitation by allowing its users to specify new hash table tests and hashing methods. The
hashing method must also be specified, since the compiler is unable to determine a good hashing
function for an arbitrary equality (equivalence) predicate.

Chapter 2: Design Choices and Extensions 11

extensions:define-hash-table-test hash-table-test-name [Function]
test-function hash-function

The hash-table-test-name must be a symbol. The test-function takes two objects and returns
true iff they are the same. The hash-function takes one object and returns two values: the
(positive fixnum) hash value and true if the hashing depends on pointer values and will have
to be redone if the object moves.
To create a hash-table using this new “test” (really, a test/hash-function pair), use
(make-hash-table :test hash-table-test-name ...).
Note that it is the hash-table-test-name that will be returned by the function hash-table-
test, when applied to a hash-table created using this function.
This function updates hash-table-tests, which is now internal.

CMUCL also supports a number of weak hash tables. These weak tables are created using the
:weak-p argument to make-hash-table. Normally, a reference to an object as either the key or
value of the hash-table will prevent that object from being garbage-collected. However, in a weak
table, if the only reference is the hash-table, the object can be collected.

The possible values for :weak-p are listed below. An entry in the table remains if the condition
holds
:key The key is referenced elsewhere

:value The value is referenced elsewhere
:key-and-value

Both the key and value are referenced elsewhere
:key-or-value

Either the key or value are referenced elsewhere

T For backward compatibility, this means the same as :key.

If the condition does not hold, the object can be removed from the hash table.

Weak hash tables can only be created if the test is eq or eql. An error is signaled if this is not
the case.

make-hash-table &key :test :size :rehash-size :rehash-threshold [Function]
:weak-p
Creates a hash-table with the specified properties.

2.2 Default Interrupts for Lisp
CMUCL has several interrupt handlers defined when it starts up, as follows:

SIGINT “c causes Lisp to enter a break loop. This puts you into the debugger which allows you
to look at the current state of the computation. If you proceed from the break loop,
the computation will proceed from where it was interrupted.

SIGQUIT "L causes Lisp to do a throw to the top-level. This causes the current computation to be
aborted, and control returned to the top-level read-eval-print loop.

SIGTSTP ("z)
causes Lisp to suspend execution and return to the Unix shell. If control is returned
to Lisp, the computation will proceed from where it was interrupted.

[SIGILL, SIGBUS, SIGSEGV, and SIGFPE]
cause Lisp to signal an error.

Chapter 2: Design Choices and Extensions 12

For keyboard interrupt signals, the standard interrupt character is in parentheses. Your .login
may set up different interrupt characters. When a signal is generated, there may be some delay before
it is processed since Lisp cannot be interrupted safely in an arbitrary place. The computation will
continue until a safe point is reached and then the interrupt will be processed. See [signal-handlers],
page 131, to define your own signal handlers.

2.3 Implementation-Specific Packages

When cMUCL is first started up, the default package is the common-lisp-user package. The
common-lisp-user package uses the common-1isp and extensions packages. The symbols exported
from these three packages can be referenced without package qualifiers. This section describes pack-
ages which have exported interfaces that may concern users. The numerous internal packages which
implement parts of the system are not described here. Package nicknames are in parenthesis after
the full name.

alien, c-call
Export the features of the Alien foreign data structure facility (see [aliens], page 140.)

pcl This package contains PCL (Portable CommonLoops), which is a portable implemen-
tation of CLOS (the Common Lisp Object System.) This implements most (but not
all) of the features in the CLOS chapter of Common Lisp: The Language II.

clos-mop (mop)
This package contains an implementation of the CLOS Metaobject Protocol, as per
the book The Art of the Metaobject Protocol.

debug The debug package contains the command-line oriented debugger. It exports utility
various functions and switches.

debug-internals
The debug-internals package exports the primitives used to write debuggers. See
[debug-internals], page 165.

extensions (ext)
The extensions packages exports local extensions to Common Lisp that are docu-
mented in this manual. Examples include the save-lisp function and time parsing.

hemlock (ed)
The hemlock package contains all the code to implement Hemlock commands. The
hemlock package currently exports no symbols.

hemlock-internals (hi)
The hemlock-internals package contains code that implements low level primitives
and exports those symbols used to write Hemlock commands.

keyword The keyword package contains keywords (e.g., :start). All symbols in the keyword
package are exported and evaluate to themselves (i.e., the value of the symbol is the
symbol itself).

profile The profile package exports a simple run-time profiling facility (see [profiling],
page 122).

common-lisp (cl)
The common-lisp package exports all the symbols defined by Common Lisp: The
Language and only those symbols. Strictly portable Lisp code will depend only on the
symbols exported from the common-1lisp package.

unix This package exports system call interfaces to Unix (see [unix-interface], page 126).

Chapter 2: Design Choices and Extensions 13

system (sys)
The system package contains functions and information necessary for system interfac-
ing. This package is used by the lisp package and exports several symbols that are
necessary to interface to system code.

x1ib The x1ib package contains the Common Lisp X interface (CLX) to the X11 protocol.
This is mostly Lisp code with a couple of functions that are defined in C to connect to
the server.

wire The wire package exports a remote procedure call facility (see [remote], page 156).

stream The stream package exports the public interface to the simple-streams implementation

(see [simple-streams], page 23).

xref The xref package exports the public interface to the cross-referencing utility (see [xref],
page 173).

2.4 Hierarchical Packages

2.4.1 Introduction

The Common Lisp package system, designed and standardized several years ago, is not hierarchi-

cal. Since Common Lisp was standardized, other languages, including Java and Perl, have evolved

namespaces which are hierarchical. This document describes a hierarchical package naming scheme

for Common Lisp. The scheme was proposed by Franz Inc and implemented in their Allegro Com-

mon Lisp product; a compatible implementation of the naming scheme is implemented in CMUCL.

This documentation is based on the Franz Inc. documentation, and is included with permission.
The goals of hierarchical packages in Common Lisp are:

e Reduce collisions with user-defined packages: it is a well-known problem that package names
used by the Lisp implementation and those defined by users can easily conflict. The intent of
hierarchical packages is to reduce such conflicts to a minimum.

e Improve modularity: the current organization of packages in various implementations has grown
over the years and appears somewhat random. Organizing future packages into a hierarchy will
help make the intention of the implementation more clear.

e Foster growth in Common Lisp programs, or modules, available to the CL community: the Perl
and Java communities are able to contribute code to repositories, with minimal fear of collision,
because of the hierarchical nature of the name spaces used by the contributed code. We want
the Lisp community to benefit from shared modules in the same way.

In a nutshell, a dot (.) is used to separate levels in package names, and a leading dot signifies
a relative package name. The choice of dot follows Java. Perl, another language with hierarchical
packages, uses a colon (:) as a delimiter, but the colon is already reserved in Common Lisp. Absolute
package names require no modifications to the underlying Common Lisp implementation. Relative
package names require only small and simple modifications.

2.4.2 Relative Package Names

Relative package names are needed for the same reason as relative pathnames, for brevity and to
reduce the brittleness of absolute names. A relative package name is one that begins with one or
more dots. A single dot means the current package, two dots mean the parent of the current package,
and so on.

Table 2.2 presents a number of examples, assuming that the packages named foo, foo.bar,
mypack, mypack.foo, mypack.foo.bar, mypack.foo.baz, mypack.bar, and mypack.bar.baz, have
all been created.

Chapter 2: Design Choices and Extensions

relative name

current package

absolute name of referenced package

foo any foo

foo.bar any foo.bar

foo mypack mypack.foo

foo.bar mypack mypack.foo.bar

..foo mypack.bar mypack.foo

..foo.baz mypack.bar mypack.foo.baz

...foo mypack.bar.baz mypack.foo
mypack.bar.baz mypack.bar.baz
mypack.bar.baz mypack.bar
mypack.bar.baz mypack

14

Table 2.2: Examples of hierarchical packages
Additional notes:

1. All packages in the hierarchy must exist.

2. Warning about nicknames: Unless you provide nicknames for your hierarchical packages (and
we recommend against doing so because the number gets quite large), you can only use the
names supplied. You cannot mix in nicknames or alternate names. cl-user is nickname of the
common-lisp-user package. Consider the following:

(defpackage :cl-user.foo)

When the current package (the value of the variable *package*) is common-lisp-user, you
might expect .foo to refer to cl-user.foo, but it does not. It actually refers to the non-
existent package common-lisp-user.foo. Note that the purpose of nicknames is to provide
shorter names in place of the longer names that are designed to be fully descriptive. The
hope is that hierarchical packages makes longer names unnecessary and thus makes nicknames
unnecessary.

3. Multiple dots can only appear at the beginning of a package name. For example, foo.bar. .baz
does not mean foo.baz — it is invalid. (Of course, it is perfectly legal to name a package
foo.bar..baz, but cl:find-package will not process such a name to find foo.baz in the
package hierarchy.)

2.4.3 Compatibility with ANSI Common Lisp

The implementation of hierarchical packages modifies the cl:find-package function, and provides
certain auxiliary functions, package-parent, package-children, and relative-package-name-—
to-package, as described in this section. The function defpackage itself requires no modification.

While the changes to cl:find-package are small and described below, it is an important con-
sideration for authors who would like their programs to run on a variety of implementations that
using hierarchical packages will work in an implementation without the modifications discussed in
this document. We show why after describing the changes to cl:find-package.

Absolute hierarchical package names require no changes in the underlying Common Lisp imple-
mentation.

2.4.3.1 Changes to cl:find-package

Using relative hierarchical package names requires a simple modification of c1:find-package.

In ANSI Common Lisp, cl:find-package, if passed a package object, returns it; if passed a
string, c1:find-package looks for a package with that string as its name or nickname, and returns
the package if it finds one, or returns nil if it does not; if passed a symbol, the symbol name (a
string) is extracted and cl:find-package proceeds as it does with a string.

Chapter 2: Design Choices and Extensions 15

For implementing hierarchical packages, the behavior when the argument is a package object
(return it) does not change. But when the argument is a string starting with one or more dots
not directly naming a package, cl:find-package will, instead of returning nil, check whether the
string can be resolved as naming a relative package, and if so, return the associated absolute package
object. (If the argument is a symbol, the symbol name is extracted and cl:find-package proceeds
as it does with a string argument.)

Note that you should not use leading dots in package names when using hierarchical packages.

2.4.3.2 Using Hierarchical Packages without Modifying cl:find-package

Even without the modifications to c1:find-package, authors need not avoid using relative package
names, but the ability to reuse relative package names is restricted. Consider for example a module
foo which is composed of the my.foo.bar and my.foo.baz packages. In the code for each of the
these packages there are relative package references, ..bar and . .baz.

Implementations that have the new cl:find-package would have :relative-package-names
on their *features* list (this is the case of CMUCL releases starting from 18d). Then, in the foo
module, there would be definitions of the my.foo.bar and my.foo.baz packages like so:

(defpackage :my.foo.bar

#-relative-package-names (:nicknames #:..bar)

)

(defpackage :my.foo.baz
#-relative-package-names (:nicknames #:..baz)
)

Then, in a #-relative-package-names implementation, the symbol my.foo.bar:blam would
be visible from my.foo.baz as ..bar:blam, just as it would from a #+relative-package-names
implementation.

So, even without the implementation of the augmented cl:find-package, one can still write
Common Lisp code that will work in both types of implementations, but . .bar and ..baz are now
used, so you cannot also have otherpack.foo.bar and otherpack.foo.baz and use ..bar and
. .baz as relative names. (The point of hierarchical packages, of course, is to allow reusing relative
package names.)

2.5 Package Locks

CMUCL provides two types of package locks, as an extension to the ANSI Common Lisp standard.
The package-lock protects a package from changes in its structure (the set of exported symbols, its
use list, etc). The package-definition-lock protects the symbols in the package from being redefined
due to the execution of a defun, defmacro, defstruct, deftype or defclass form.

2.5.1 Rationale

Package locks are an aid to program development, by helping to detect inadvertent name collisions
and function redefinitions. They are consistent with the principle that a package “belongs to” its
implementor, and that noone other than the package’s developer should be making or modifying
definitions on symbols in that package. Package locks are compatible with the ANST Common Lisp
standard, which states that the consequences of redefining functions in the COMMON-LISP package
are undefined.

Violation of a package lock leads to a continuable error of type lisp: :package-locked-error
being signaled. The user may choose to ignore the lock and proceed, or to abort the computation.
Two other restarts are available, one which disables all locks on all packages, and one to disable only
the package-lock or package-definition-lock that was tripped.

Chapter 2: Design Choices and Extensions 16

The following transcript illustrates the behaviour seen when attempting to redefine a standard
macro in the COMMON-LISP package, or to redefine a function in one of CMUCL’s implementation-
defined packages:

CL-USER> (defmacro 1+ (x) (* x 2))
Attempt to modify the locked package COMMON-LISP, by defining macro 1+

[Condition of type LISP::PACKAGE-LOCKED-ERROR]

Restarts:
0: [continue] Ignore the lock and continue
1: [unlock-package] Disable the package’s definition-lock then continue
2: [unlock-all] Unlock all packages, then continue
3: [abort] Return to Top-Level.

CL-USER> (defun ext:gc () t)
Attempt to modify the locked package EXTENSIONS, by redefining function GC
[Condition of type LISP::PACKAGE-LOCKED-ERROR]

Restarts:
0: [continue] Ignore the lock and continue
1: [unlock-package] Disable package’s definition-lock, then continue
2: [unlock-all] Disable all package locks, then continue
3: [abort] Return to Top-Level.
The following transcript illustrates the behaviour seen when an attempt to modify the structure
of a package is made:
CL-USER> (unexport ’load-foreign :ext)
Attempt to modify the locked package EXTENSIONS, by unexporting symbols LOAD-FOREIGN
[Condition of type lisp::package-locked-error]

Restarts:
0: [continue] Ignore the lock and continue
1: [unlock-package] Disable package’s lock then continue
2: [unlock-all] Unlock all packages, then continue

3: [abort] Return to Top-Level.
The COMMON-LISP package and the CMUCL-specific implementation packages are locked
on startup. Users can lock their own packages by using the ext:package-lock and

ext:package-definition-lock accessors.

2.5.2 Disabling package locks

A package’s locks can be enabled or disabled by wusing the ext:package-lock and
ext:package-definition-lock accessors, as follows:

(setf (ext:package-lock (find-package "UNIX")) nil)

(setf (ext:package-definition-lock (find-package "UNIX")) nil)

ext:package-lock package [Function]
This function is an accessor for a package’s structural lock, which protects it against modifi-
cations to its list of exported symbols.

ext:package-definition-lock package [Function]
This function is an accessor for a package’s definition-lock, which protects symbols in that
package from redefinition. As well as protecting the symbol’s fdefinition from change, attempts
to change the symbol’s definition using defstruct, defclass or deftype will be trapped.

Chapter 2: Design Choices and Extensions 17

ext:without-package-locks &rest body [Macro]
This macro can be used to execute forms with all package locks (both structure and definition
locks) disabled.

ext:unlock-all-packages [Function]
This function disables both structure and definition locks on all currently defined packages.
Note that package locks are reset when CMUCL is restarted, so the effect of this function is
limited to the current session.

2.6 The Editor

The ed function invokes the Hemlock editor which is described in Hemlock User’s Manual and
Hemlock Command Implementor’s Manual. Most users at CMU prefer to use Hemlock’s slave
Common Lisp mechanism which provides an interactive buffer for the read-eval-print loop and
editor commands for evaluating and compiling text from a buffer into the slave Common Lisp. Since
the editor runs in the Common Lisp, using slaves keeps users from trashing their editor by developing
in the same Common Lisp with Hemlock.

2.7 Garbage Collection

CMUCL uses either a stop-and-copy garbage collector or a generational, mostly copying garbage
collector. Which collector is available depends on the platform and the features of the platform.
The stop-and-copy GC is available on all RISC platforms. The x86 platform supports a conservative
stop-and-copy collector, which is now rarely used, and a generational conservative collector. On
the Sparc platform, both the stop-and-copy GC and the generational GC are available, but the
stop-and-copy GC is deprecated in favor of the generational GC.

The generational GC is available if *features* contains :gencgc.

The following functions invoke the garbage collector or control whether automatic garbage col-
lection is in effect:

extensions:gc &optional verbose-p [Function]
This function runs the garbage collector. If ext:*gc-verbose* is non-nil, then it invokes
ext:*gc-notify-beforex before GC’ing and ext:*gc-notify-after* afterwards.

verbose-p indicates whether GC statistics are printed or not.

extensions:gc-off [Function]
This function inhibits automatic garbage collection. After calling it, the system will not GC
unless you call ext:gc or ext:gc-on.

extensions:gc-on [Function]
This function reinstates automatic garbage collection. If the system would have GC’ed while
automatic GC was inhibited, then this will call ext:gc.

2.7.1 GC Parameters

The following variables control the behavior of the garbage collector:

extensions:*bytes-consed-between-gcs* [Variable]
CMUCL automatically GC’s whenever the amount of memory allocated to dynamic objects
exceeds the value of an internal variable. After each GC, the system sets this internal vari-
able to the amount of dynamic space in use at that point plus the value of the variable
ext:*bytes-consed-between-gcs*. The default value is 2000000.

Chapter 2: Design Choices and Extensions 18

extensions:*gc-verbose* [Variable]
This variable controls whether ext : gc invokes the functions in ext : *gc-notify-before* and
ext:xgc-notify-afterx. If *xgc-verbosex is nil, ext:gc foregoes printing any messages.
The default value is T.

extensions:*gc-notify-before* [Variable]
This variable’s value is a function that should notify the user that the system is about to GC.
It takes one argument, the amount of dynamic space in use before the GC measured in bytes.
The default value of this variable is a function that prints a message similar to the following:

[GC threshold exceeded with 2,107,124 bytes in use. Commencing GC.]

extensions:*gc-notify-afterx* [Variable]

This variable’s value is a function that should notify the user when a GC finishes. The function
must take three arguments, the amount of dynamic spaced retained by the GC, the amount
of dynamic space freed, and the new threshold which is the minimum amount of space in
use before the next GC will occur. All values are byte quantities. The default value of this
variable is a function that prints a message similar to the following:

[GC completed with 25,680 bytes retained and 2,096,808 bytes freed.]

[GC will next occur when at least 2,025,680 bytes are in use.]

Note that a garbage collection will not happen at exactly the new threshold printed by the default
ext:*gc-notify-after* function. The system periodically checks whether this threshold has been
exceeded, and only then does a garbage collection.

extensions:*gc-inhibit-hook* [Variable]
This variable’s value is either a function of one argument or nil. When the system has
triggered an automatic GC, if this variable is a function, then the system calls the function
with the amount of dynamic space currently in use (measured in bytes). If the function
returns nil, then the GC occurs; otherwise, the system inhibits automatic GC as if you had
called ext:gc-off. The writer of this hook is responsible for knowing when automatic GC
has been turned off and for calling or providing a way to call ext:gc-on. The default value
of this variable is nil.

extensions:*before-gc-hooks* [Variable]

extensions:*after-gc-hooks* [Variable]
These variables’ values are lists of functions to call before or after any GC occurs. The system
provides these purely for side-effect, and the functions take no arguments.

2.7.2 Generational GC

Generational GC also supports some additional functions and variables to control it.

extensions:gc &key :verbose :gen :full [Function]
This function runs the garbage collector. If ext:*gc-verbose* is non-nil, then it invokes
ext:xgc-notify-before* before GC’ing and ext:*gc-notify-after* afterwards.

verbose Print GC statistics if non-NIL.

gen The number of generations to be collected.
full If non-NIL, a full collection of all generations is performed.
lisp: :gencgc-stats generation [Function]

Returns statistics about the generation, as multiple values:

1. Bytes allocated in this generation

Chapter 2: Design Choices and Extensions 19

2. The GC trigger for this generation. When this many bytes have been allocated, a GC is
started automatically.

3. The number of bytes consed between GCs.

4. The number of GCs that have been done on this generation. This is reset to zero when
the generation is raised.

5. The trigger age, which is the maximum number of GCs to perform before this generation
is raised.

6. The total number of bytes allocated to this generation.

7. Average age of the objects in this generations. The average age is the cumulative bytes
allocated divided by current number of bytes allocated.

lisp::set-gc-trigger gen trigger [Function]
Sets the GC trigger value for the specified generation.

lisp::set-trigger-age gen trigger-age [Function]
Sets the GC trigger age for the specified generation.

lisp::set-min-mem-age gen min-mem-age [Function]
Sets the minimum average memory age for the specified generation. If the computed memory
age is below this, GC is not performed, which helps prevent a GC when a large number of
new live objects have been added in which case a GC would usually be a waste of time.

2.7.3 Weak Pointers

A weak pointer provides a way to maintain a reference to an object without preventing an object
from being garbage collected. If the garbage collector discovers that the only pointers to an object
are weak pointers, then it breaks the weak pointers and deallocates the object.

extensions:make-weak-pointer object [Function]

extensions:weak-pointer-value weak-pointer [Function]
make-weak-pointer returns a weak pointer to an object. weak-pointer-value follows a weak
pointer, returning the two values: the object pointed to (or nil if broken) and a boolean value
which is nil if the pointer has been broken, and true otherwise.

2.7.4 Finalization

Finalization provides a “hook” that is triggered when the garbage collector reclaims an object. It
is usually used to recover non-Lisp resources that were allocated to implement the finalized Lisp
object. For example, when a unix file-descriptor stream is collected, finalization is used to close the
underlying file descriptor.

extensions:finalize object function [Function]
This function registers object for finalization. function is called with no arguments when
object is reclaimed. Normally function will be a closure over the underlying state that needs
to be freed, e.g. the unix file descriptor in the fd-stream case. Note that function must not
close over object itself, as this prevents the object from ever becoming garbage.

extensions:cancel-finalization object [Function]
This function cancel any finalization request for object.

Chapter 2: Design Choices and Extensions 20

2.8 Describe

describe object &optional stream [Function]
The describe function prints useful information about object on stream, which defaults to
xstandard-output*. For any object, describe will print out the type. Then it prints other
information based on the type of object. The types which are presently handled are:

hash-table
describe prints the number of entries currently in the hash table and the number
of buckets currently allocated.

function describe prints a list of the function’s name (if any) and its formal parameters.
If the name has function documentation, then it will be printed. If the function
is compiled, then the file where it is defined will be printed as well.

fixnum describe prints whether the integer is prime or not.

symbol The symbol’s value, properties, and documentation are printed. If the symbol
has a function definition, then the function is described.

If there is anything interesting to be said about some component of the object, describe
will invoke itself recursively to describe that object. The level of recursion is indicated by
indenting output.

A number of switches can be used to control describe’s behavior.

extensions:*describe-levelx* [Variable]
The maximum level of recursive description allowed. Initially two.

extensions:*describe-indentationx* [Variable]
The number of spaces to indent for each level of recursive description, initially three.

extensions:*describe-print-levelx* [Variable]
extensions:*describe-print-lengthx* [Variable]
The values of *print-level* and *print-length* during description. Initially two and five.

2.9 The Inspector

CMUCL has both a graphical inspector that uses the X Window System, and a simple terminal-based
inspector.

inspect &optional object [Function]
inspect calls the inspector on the optional argument object. If object is unsupplied, inspect
immediately returns nil. Otherwise, the behavior of inspect depends on whether Lisp is
running under X. When inspect is eventually exited, it returns some selected Lisp object.

2.9.1 The Graphical Interface

CMUCL has an interface to Motif which is functionally similar to CLM, but works better in CMUCL.
This interface is documented in separate manuals CMUCL Motif Toolkit and Design Notes on the
Motif Toolkit, which are distributed with CMUCL.

This motif interface has been used to write the inspector and graphical debugger. There is also a
Lisp control panel with a simple file management facility, apropos and inspector dialogs, and controls
for setting global options. See the interface and toolkit packages.

interface:lisp-control-panel [Function]
This function creates a control panel for the Lisp process.

Chapter 2: Design Choices and Extensions 21

interface:*interface-stylex [Variable]
When the graphical interface is loaded, this variable controls whether it is used by inspect
and the error system. If the value is :graphics (the default) and the DISPLAY environment
variable is defined, the graphical inspector and debugger will be invoked by inspect or when
an error is signalled. Possible values are :graphics and :tty. If the value is : graphics, but
there is no X display, then we quietly use the TTY interface.

2.9.2 The TTY Inspector

If X is unavailable, a terminal inspector is invoked. The TTY inspector is a crude interface to
describe which allows objects to be traversed and maintains a history. This inspector prints
information about and object and a numbered list of the components of the object. The command-
line based interface is a normal read—eval-print loop, but an integer n descends into the n’th
component of the current object, and symbols with these special names are interpreted as commands:

U Move back to the enclosing object. As you descend into the components of an object,
a stack of all the objects previously seen is kept. This command pops you up one level
of this stack.

Q, E Return the current object from inspect.

R Recompute object display, and print again. Useful if the object may have changed.

D Display again without recomputing.

H, 7 Show help message.

2.10 Load

load filename &key :verbose :print :if-does-not-exist [Function]

:if-source-newer :contents

As in standard Common Lisp, this function loads a file containing source or object code into
the running Lisp. Several CMU extensions have been made to load to conveniently support a
variety of program file organizations. filename may be a wildcard pathname such as *.1lisp,
in which case all matching files are loaded.

If filename has a pathname-type (or extension), then that exact file is loaded. If the file has no
extension, then this tells load to use a heuristic to load the “right” file. The *1load-source-
types* and *load-object-types* variables below are used to determine the default source
and object file types. If only the source or the object file exists (but not both), then that file
is quietly loaded. Similarly, if both the source and object file exist, and the object file is newer
than the source file, then the object file is loaded. The value of the if-source-newer argument
is used to determine what action to take when both the source and object files exist, but the
object file is out of date:

:load-object
The object file is loaded even though the source file is newer.

:load-source
The source file is loaded instead of the older object file.

:compile The source file is compiled and then the new object file is loaded.

rquery The user is asked a yes or no question to determine whether the source or object
file is loaded.

This argument defaults to the value of ext:*load-if-source-newer* (initially
:load-object.)

Chapter 2: Design Choices and Extensions 22

The contents argument can be used to override the heuristic (based on the file extension)
that normally determines whether to load the file as a source file or an object file. If non-null,
this argument must be either :source or :binary, which forces loading in source and binary
mode, respectively. You really shouldn’t ever need to use this argument.

extensions:*load-source-types* [Variable]

extensions:*load-object-types* [Variable]
These variables are lists of possible pathname-type values for source and object files to be
passed to 1load. These variables are only used when the file passed to load has no type; in this
case, the possible source and object types are used to default the type in order to determine
the names of the source and object files.

extensions:*load-if-source-newer* [Variable]
This variable determines the default value of the if-source-newer argument to load. Its initial
value is :load-object.

2.11 The Reader

2.11.1 Reader Extensions

CMUCL supports an ANSI-compatible extension to enable reading of specialized arrays. Thus
* (setf *print-readably* nil)
NIL
* (make-array ’(2 2) :element-type ’(signed-byte 8))
#2A((0 0) (0 0))
* (setf *print-readably* t)
T
* (make-array ’(2 2) :element-type ’(signed-byte 8))
#A((SIGNED-BYTE 8) (2 2) ((0 0) (0 0)))
* (type-of (read-from-string "#A((SIGNED-BYTE 8) (2 2) ((0 0) (0 0)))"))
(SIMPLE-ARRAY (SIGNED-BYTE 8) (2 2))
* (setf *print-readably* nil)
NIL
* (type-of (read-from-string "#A((SIGNED-BYTE 8) (2 2) ((0 0) (0 0)))"))
(SIMPLE-ARRAY (SIGNED-BYTE 8) (2 2))

2.11.2 Reader Parameters

extensions:*ignore-extra-close-parentheses* [Variable]
If this variable is t (the default), then the reader merely prints a warning when an extra close
parenthesis is detected (instead of signalling an error.)

2.12 Stream Extensions

sys:read-n-bytes stream buffer start numbytes &optional [Function]
eof-error-p
On streams that support it, this function reads multiple bytes of data into a buffer. The
buffer must be a simple-string or (simple-array (unsigned-byte 8) (*)). The argument
nbytes specifies the desired number of bytes, and the return value is the number of bytes
actually read.

e If eof-error-p is true, an end-of-file condition is signalled if end-of-file is encountered
before count bytes have been read.

Chapter 2: Design Choices and Extensions 23

e If eof-error-p is false, read-n-bytes reads as much data is currently available (up to
count bytes.) On pipes or similar devices, this function returns as soon as any data is
available, even if the amount read is less than count and eof has not been hit. See also
make-fd-stream.

2.13 Simple Streams

CMUCL includes a partial implementation of Simple Streams, a protocol that allows user-extensible
streams'. The protocol was proposed by Franz, Inc. and is intended to replace the Gray Streams
method of extending streams. Simple streams are distributed as a CMUCL subsystem, that can be
loaded into the image by saying
(require :simple-streams)

Note that CMUCL implementation of simple streams is incomplete, and in particular is currently
missing support for the functions read-sequence and write-sequence. Please consult the Allegro
Common Lisp documentation for more information on simple streams.

2.14 Running Programs from Lisp
It is possible to run programs from Lisp by using the following function.

extensions:run-program program args &key :env :wait :pty :input [Function]
:if-input-does—not-exist :output :if-output-exists :error
:if-error-exists :status-hook :external-format :element-type
run-program runs program in a child process. Program should be a pathname or string
naming the program. Args should be a list of strings which this passes to program as normal
Unix parameters. For no arguments, specify args as nil. The value returned is either a
process structure or nil. The process interface follows the description of run-program. If
run-progran fails to fork the child process, it returns nil.
Except for sharing file descriptors as explained in keyword argument descriptions,
run-program closes all file descriptors in the child process before running the program.
When you are done using a process, call process-close to reclaim system resources. You
only need to do this when you supply :stream for one of :input, :output, or :error, or
you supply :pty non-nil. You can call process-close regardless of whether you must to
reclaim resources without penalty if you feel safer.
run-program accepts the following keyword arguments:

renv This is an a-list mapping keywords and simple-strings. The default is
ext:*environment-list*. If :env is specified, run-program uses the value
given and does not combine the environment passed to Lisp with the one
specified.

iwait If non-nil (the default), wait until the child process terminates. If nil, continue
running Lisp while the child process runs.

:pty This should be one of t, nil, or a stream. If specified non-nil, the subprocess
executes under a Unix PTY. If specified as a stream, the system collects all
output to this pty and writes it to this stream. If specified as t, the process-pty
slot contains a stream from which you can read the program’s output and to
which you can write input for the program. The default is nil.

:input This specifies how the program gets its input. If specified as a string, it is the
name of a file that contains input for the child process. run-program opens the

! This implementation was donated by Paul Foley

Chapter 2: Design Choices and Extensions 24

file as standard input. If specified as nil (the default), then standard input is the
file /dev/null. If specified as t, the program uses the current standard input.
This may cause some confusion if :wait is nil since two processes may use the
terminal at the same time. If specified as :stream, then the process-input
slot contains an output stream. Anything written to this stream goes to the
program as input. :input may also be an input stream that already contains
all the input for the process. In this case run-program reads all the input from
this stream before returning, so this cannot be used to interact with the process.
If :input is a string stream, it is up to the caller to call string-encode or
other function to convert the string to the appropriate encoding. In either case,
the least significant 8 bits of the char-code of each character is sent to the
program.

:if-input-does-not-exist

:output

This specifies what to do if the input file does not exist. The following values
are valid: nil (the default) causes run-program to return nil without doing
anything; :create creates the named file; and :error signals an error.

This specifies what happens with the program’s output. If specified as a path-
name, it is the name of a file that contains output the program writes to its
standard output. If specified as nil (the default), all output goes to /dev/null.
If specified as t, the program writes to the Lisp process’s standard output. This
may cause confusion if :wait is nil since two processes may write to the terminal
at the same time. If specified as :stream, then the process-output slot con-
tains an input stream from which you can read the program’s output. :output
can also be a stream in which case all output from the process is written to
this stream. If :output is a string-stream, each octet read from the program is
converted to a character using code-char. It is up to the caller to convert this
using the appropriate external format to create the desired encoded string.

:if-output-exists

.error

This specifies what to do if the output file already exists. The following val-
ues are valid: nil causes run-program to return nil without doing anything;
:error (the default) signals an error; :supersede overwrites the current file;
and :append appends all output to the file.

This is similar to : output, except the file becomes the program’s standard error.
Additionally, :error can be :output in which case the program’s error output
is routed to the same place specified for :output. If specified as :stream, the
process-error contains a stream similar to the process-output slot when
specifying the :output argument.

:if-error-exists

This specifies what to do if the error output file already exists. It accepts the
same values as :if-output-exists.

:status-hook

This specifies a function to call whenever the process changes status. This is
especially useful when specifying :wait as nil. The function takes the process
as a required argument.

:external-format

This specifies the external format to use for streams created for run-program.
This does not apply to string streams passed in as :input or :output parame-
ters.

Chapter 2: Design Choices and Extensions 25

:element-type
If streams are created run-program, use this as the :element-type for the
stream. Defaults to BASE-CHAR.

2.14.1 Process Accessors

The following functions interface the process returned by run-program:

extensions:process-p thing [Function]
This function returns t if thing is a process. Otherwise it returns nil

extensions:process-pid process [Function]
This function returns the process ID, an integer, for the process.

extensions:process-status process [Function]
This function returns the current status of process, which is one of :running, :stopped,
:exited, or :signaled.

extensions:process-exit-code process [Function]
This function returns either the exit code for process, if it is :exited, or the termination
signal process if it is :signaled. The result is undefined for processes that are still alive.

extensions:process-core-dumped process [Function]
This function returns t if someone used a Unix signal to terminate the process and caused it
to dump a Unix core image.

extensions:process-pty process [Function]
This function returns either the two-way stream connected to process’s Unix PTY connection
or nil if there is none.

extensions:process-input process [Function]
extensions:process-output process [Function]
extensions:process—-error process [Function]

If the corresponding stream was created, these functions return the input, output or error
fd-stream. nil is returned if there is no stream.

extensions:process-status-hook process [Function]
This function returns the current function to call whenever process’s status changes. This
function takes the process as a required argument. process-status-hook is setf’able.

extensions:process-plist process [Function]
This function returns annotations supplied by users, and it is setf’able. This is available
solely for users to associate information with process without having to build a-lists or hash
tables of process structures.

extensions:process—wait process &optional check-for-stopped [Function]
This function waits for process to finish. If check-for-stopped is non-nil, this also returns
when process stops.

extensions:process—kill process signal &optional whom [Function]
This function sends the Unix signal to process. Signal should be the number of the signal or a
keyword with the Unix name (for example, :sigsegv). Whom should be one of the following:

:pid This is the default, and it indicates sending the signal to process only.

:process-group
This indicates sending the signal to process’s group.

Chapter 2: Design Choices and Extensions 26

:pty-process-group
This indicates sending the signal to the process group currently in the foreground
on the Unix PTY connected to process. This last option is useful if the running
program is a shell, and you wish to signal the program running under the shell,
not the shell itself. If process-pty of process is nil, using this option is an
error.

extensions:process-alive-p process [Function]
This function returns t if process’s status is either :running or :stopped.

extensions:process-close process [Function]
This function closes all the streams associated with process. When you are done using a
process, call this to reclaim system resources.

2.15 Saving a Core Image

A mechanism has been provided to save a running Lisp core image and to later restore it. This is
convenient if you don’t want to load several files into a Lisp when you first start it up. The main
problem is the large size of each saved Lisp image, typically at least 20 megabytes.

extensions:save-lisp file &key :purify :root-structures [Function]
:init-function :load-init-file :print-herald :site-init
:process-command-line :batch-mode :executable
The save-1lisp function saves the state of the currently running Lisp core image in file. The
keyword arguments have the following meaning;:

ipurify If non-nil (the default), the core image is purified before it is saved (see purify.)
This reduces the amount of work the garbage collector must do when the result-
ing core image is being run. Also, if more than one Lisp is running on the same
machine, this maximizes the amount of memory that can be shared between the
two processes.

[:root-structures]
This should be a list of the main entry points in any newly loaded systems. This
need not be supplied, but locality and/or GC performance will be better if they
are. Meaningless if :purify is nil. See purify.

:init-function
This is the function that starts running when the created core file is resumed.
The default function simply invokes the top level read-eval-print loop. If the
function returns the lisp will exit.

:load-init-file
If non-NIL, then load an init file; either the one specified on the command line
or “init.fasl-type”, or, if “init.fasl-type” does not exist, init.lisp from the
user’s home directory. If the init file is found, it is loaded into the resumed core
file before the read-eval-print loop is entered.

:site-init
If non-NIL, the name of the site init file to quietly load. The default is
library:site-init. No error is signalled if the file does not exist.

:print-herald
If non-NIL (the default), then print out the standard Lisp herald when starting.

:process-command-line
If non-NIL (the default), processes the command line switches and performs the
appropriate actions.

Chapter 2: Design Choices and Extensions 27

:batch-mode
If NIL (the default), then the presence of the -batch command-line switch will
invoke batch-mode processing upon resuming the saved core. If non-NIL, the
produced core will always be in batch-mode, regardless of any command-line
switches.

:executable
If non-NIL, an executable image is created. Normally, CMUCL consists of the
C runtime along with a core file image. When :executable is non-NIL, the
core file is incorporated into the C runtime, so one (large) executable is created
instead of a new separate core file.

This feature is only available on some platforms, as indicated by having the
feature :executable. Currently only x86 ports and the solaris/sparc port have
this feature.

To resume a saved file, type:
lisp -core file
However, if the :executable option was specified, you can just use
file
since the executable contains the core file within the executable.

extensions:purify file &key :root-structures :environment-name [Function]
This function optimizes garbage collection by moving all currently live objects into non-
collected storage. Once statically allocated, the objects can never be reclaimed, even if all
pointers to them are dropped. This function should generally be called after a large system
has been loaded and initialized.

:root-structures
is an optional list of objects which should be copied first to maximize locality.
This should be a list of the main entry points for the resulting core image. The
purification process tries to localize symbols, functions, etc., in the core image
so that paging performance is improved. The default value is NIL which means
that Lisp objects will still be localized but probably not as optimally as they
could be.

defstruct structures defined with the (:pure t) option are moved into read-only
storage, further reducing GC cost. List and vector slots of pure structures are
also moved into read-only storage.

renvironment-name
is gratuitous documentation for the compacted version of the current global
environment (as seen in c::*info-environment*.) If nil is supplied, then
environment compaction is inhibited.

2.16 Pathnames

In Common Lisp quite a few aspects of pathname semantics are left to the implementation.

2.16.1 Unix Pathnames

Unix pathnames are always parsed with a unix-host object as the host and nil as the device. The
last two dots (.) in the namestring mark the type and version, however if the first character is a
dot, it is considered part of the name. If the last character is a dot, then the pathname has the
empty-string as its type. The type defaults to nil and the version defaults to :newest.

Chapter 2: Design Choices and Extensions 28

(defun parse (x)
(values (pathname-name x) (pathname-type x) (pathname-version x)))

(parse "foo") = "foo", NIL, NIL

(parse "foo.bar") = "foo", "bar", NIL

(parse ".foo") = ".foo", NIL, NIL

(parse ".foo.bar") = ".foo", "bar", NIL
(parse "..") = NIL, NIL, NIL

(parse "foo.") = "foo", "", NIL

(parse "foo.bar.”1"") = "foo", "bar", 1
(parse "foo.bar.baz") = "foo.bar", "baz", NIL

The directory of pathnames beginning with a slash (or a search-list, see [search-lists], page 28)
is starts :absolute, others start with :relative. The .. directory is parsed as :up; there is no
namestring for :back:

(pathname-directory "/usr/foo/bar.baz") = (:ABSOLUTE "usr" "foo")
(pathname-directory "../foo/bar.baz") = (:RELATIVE :UP "foo")

2.16.2 Wildcard Pathnames

Wildcards are supported in Unix pathnames. If ‘*’ is specified for a part of a pathname, that is
parsed as :wild. “**’ can be used as a directory name to indicate :wild-inferiors. Filesystem
operations treat :wild-inferiors the same as :wild, but pathname pattern matching (e.g. for
logical pathname translation, see [logical-pathnames], page 28) matches any number of directory
parts with ‘**’ (see see [wildcard-matching], page 30.)

‘*’ embedded in a pathname part matches any number of characters. Similarly, ‘?’ matches

exactly one character, and ‘[a,b]’ matches the characters ‘a’ or ‘b’. These pathname parts are
parsed as pattern objects.

Backslash can be used as an escape character in namestring parsing to prevent the next character
from being treated as a wildcard. Note that if typed in a string constant, the backslash must be
doubled, since the string reader also uses backslash as a quote:

(pathname-name "foo*bar") => "fooxbar"

2.16.3 Logical Pathnames

If a namestring begins with the name of a defined logical pathname host followed by a colon,
then it will be parsed as a logical pathname. Both ‘*’ and ‘*x’ wildcards are implemented.
load-logical-pathname-translations on name looks for a logical host definition file in
library:name.translations. Note that library: designates the search list (see [search-lists],
page 28) initialized to the cMUCL 1ib/ directory, not a logical pathname. The format of the file is
a single list of two-lists of the from and to patterns:

(("foo;*.text" "/usr/ram/foo/*.txt")
("foo;*.lisp" "/usr/ram/foo/*.1"))

2.16.4 Search Lists

Search lists are an extension to Common Lisp pathnames. They serve a function somewhat similar
to Common Lisp logical pathnames, but work more like Unix PATH variables. Search lists are used
for two purposes:

e They provide a convenient shorthand for commonly used directory names, and

e They allow the abstract (directory structure independent) specification of file locations in pro-
gram pathname constants (similar to logical pathnames.)

Chapter 2: Design Choices and Extensions 29

Each search list has an associated list of directories (represented as pathnames with no name
or type component.) The namestring for any relative pathname may be prefixed with “slist:”,
indicating that the pathname is relative to the search list slist (instead of to the current working
directory.) Once qualified with a search list, the pathname is no longer considered to be relative.

When a search list qualified pathname is passed to a file-system operation such as open, load
or truename, each directory in the search list is successively used as the root of the pathname until
the file is located. When a file is written to a search list directory, the file is always written to the
first directory in the list.

2.16.5 Predefined Search-Lists

These search-lists are initialized from the Unix environment or when Lisp was built:
default: The current directory at startup.

home: The user’s home directory.

library: The ¢cMUCL 1lib/ directory (CMUCLLIB environment variable).

path: The Unix command path (PATH environment variable).

ld-library-path:
The Unix LD_LIBRARY_PATH environment variable.

target: The root of the tree where CMUCL was compiled.
modules: The list of directories where cMUCL’s modules can be found.

ext-formats:
The list of directories where CMUCL can find the implementation of external formats.

It can be useful to redefine these search-lists, for example, library: can be augmented to allow
logical pathname translations to be located, and target: can be redefined to point to where CMUCL
system sources are locally installed.

2.16.6 Search-List Operations

These operations define and access search-list definitions. A search-list name may be parsed into a
pathname before the search-list is actually defined, but the search-list must be defined before it can
actually be used in a filesystem operation.

extensions:search-list name [Function]
This function returns the list of directories associated with the search list name. If name is
not a defined search list, then an error is signaled. When set with setf, the list of directories
is changed to the new value. If the new value is just a namestring or pathname, then it is
interpreted as a one-element list. Note that (unlike Unix pathnames), search list names are
case-insensitive.

extensions:search-list-defined-p name [Function]

extensions:clear-search-list name [Function]
search-list-defined-p returns t if name is a defined search list name, nil otherwise.
clear-search-list make the search list name undefined.

extensions:enumerate-search-list (var pathname {result}) {form}* [Macro]
This macro provides an interface to search list resolution. The body forms are executed
with var bound to each successive possible expansion for name. If name does not contain a
search-list, then the body is executed exactly once. Everything is wrapped in a block named
nil, so return can be used to terminate early. The result form (default nil) is evaluated to
determine the result of the iteration.

Chapter 2: Design Choices and Extensions 30

2.16.7 Search List Example

The search list code: can be defined as follows:
(setf (ext:search-list "code:") ’("/usr/lisp/code/"))
It is now possible to use code: as an abbreviation for the directory /usr/lisp/code/ in
all file operations. For example, you can now specify code:eval.lisp to refer to the file
/usr/lisp/code/eval.lisp.
To obtain the value of a search-list name, use the function search-list as follows:
(ext:search-list name)
Where name is the name of a search list as described above. For example, calling ext:search-list
on code: as follows:
(ext:search-list "code:")
returns the list ("/usr/lisp/code/").

2.17 Filesystem Operations

CMUCL provides a number of extensions and optional features beyond those required by the Common
Lisp specification.

2.17.1 Wildcard Matching

Unix filesystem operations such as open will accept wildcard pathnames that match a single file (of
course, directory allows any number of matches.) Filesystem operations treat :wild-inferiors
the same as :wild.

directory wildname &key :all :check-for-subdirs :truenamep [Function]
:follow-1links
The keyword arguments to this Common Lisp function are a CMUCL extension. The arguments
(all default to t) have the following functions:

rall Include files beginning with dot such as .login, similar to “1s -a”.

:check-for-subdirs
Test whether files are directories, similar to “ls -F”.

:truenamep
Call truename on each file, which expands out all symbolic links. Note that
this option can easily result in pathnames being returned which have a different
directory from the one in the wildname argument.

:follow-1links
Follow symbolic links when searching for matching directories.

extensions:print-directory wildname &optional stream &key :all [Function]
:verbose :return-list
Print a directory of wildname listing to stream (default *standard-output*.) :all and
:verbose both default to nil and correspond to the “-a” and “-1” options of 1s. Normally
this function returns nil, but if :return-1list is true, a list of the matched pathnames are
returned.

2.17.2 File Name Completion

extensions:complete-file pathname &key :defaults :ignore-types [Function]
Attempt to complete a file name to the longest unambiguous prefix. If supplied, directory
from :defaults is used as the “working directory” when doing completion. :ignore-types

Chapter 2: Design Choices and Extensions 31

is a list of strings of the pathname types (a.k.a. extensions) that should be disregarded as
possible matches (binary file names, etc.)

extensions:ambiguous-files pathname &optional defaults [Function]
Return a list of pathnames for all the possible completions of pathname with respect to
defaults.

2.17.3 Miscellaneous Filesystem Operations

extensions:default-directory [Function]
Return the current working directory as a pathname. If set with setf, set the working
directory.

extensions:file-writable name [Function]
This function accepts a pathname and returns t if the current process can write it, and nil
otherwise.

extensions:unix-namestring pathname &optional for-input [Function]

This function converts pathname into a string that can be used with UNIX system calls.
Search-lists and wildcards are expanded. for-input controls the treatment of search-lists:
when true (the default) and the file exists anywhere on the search-list, then that absolute
pathname is returned; otherwise the first element of the search-list is used as the directory.

2.18 Time Parsing and Formatting

Functions are provided to allow parsing strings containing time information and printing time in
various formats are available.

extensions:parse-time time-string &key :error-on-mismatch [Function]
:default-seconds :default-minutes :default-hours :default-day
:default-month :default-year :default-zone :default-weekday
parse-time accepts a string containing a time (e.g., "Jan 12, 1952") and returns the univer-
sal time if it is successful. If it is unsuccessful and the keyword argument : error-on-mismatch
is non-nil, it signals an error. Otherwise it returns nil. The other keyword arguments have
the following meaning:

:default-seconds
specifies the default value for the seconds value if one is not provided by time-
string. The default value is 0.

:default-minutes
specifies the default value for the minutes value if one is not provided by time-
string. The default value is 0.

:default-hours
specifies the default value for the hours value if one is not provided by time-
string. The default value is 0.

:default-day
specifies the default value for the day value if one is not provided by time-string.
The default value is the current day.

:default-month
specifies the default value for the month value if one is not provided by time-
string. The default value is the current month.

Chapter 2: Design Choices and Extensions 32

:default-year
specifies the default value for the year value if one is not provided by time-string.
The default value is the current year.

:default-zone
specifies the default value for the time zone value if one is not provided by
time-string. The default value is the current time zone.

:default-weekday
specifies the default value for the day of the week if one is not provided by
time-string. The default value is the current day of the week.

Any of the above keywords can be given the value :current which means to use the current
value as determined by a call to the operating system.

extensions:format-universal-time dest universal-time @ &key [Function]
:timezone :style :date-first :print-seconds :print-meridian
:print-timezone :print-weekday
extensions:format-decoded-time dest seconds minutes hours day [Function]
month year @ &key :timezone :style :date-first :print-seconds
:print-meridian :print-timezone :print-weekday
format-universal-time formats the time specified by universal-time. format-decoded-
time formats the time specified by seconds, minutes, hours, day, month, and year. Dest is
any destination accepted by the format function. The keyword arguments have the following
meaning:

:timezone is an integer specifying the hours west of Greenwich. :timezone defaults to the
current time zone.

:style specifies the style to use in formatting the time. The legal values are:
:short specifies to use a numeric date.

:long specifies to format months and weekdays as words instead of num-
bers.

:abbreviated
is similar to long except the words are abbreviated.

:government
is similar to abbreviated, except the date is of the form “day month
year” instead of “month day, year”.

:date-first
if non-nil (default) will place the date first. Otherwise, the time is placed first.

:print-seconds
if non-nil (default) will format the seconds as part of the time. Otherwise, the
seconds will be omitted.

:print-meridian
if non-nil (default) will format “AM” or “PM” as part of the time. Otherwise,
the “AM” or “PM” will be omitted.

:print-timezone
if non-nil (default) will format the time zone as part of the time. Otherwise,
the time zone will be omitted.

:print-weekday
if non-nil (default) will format the weekday as part of date. Otherwise, the
weekday will be omitted.

Chapter 2: Design Choices and Extensions 33

2.19 Random Number Generation

Common Lisp includes a random number generator as a standard part of the language; however,
the implementation of the generator is not specified.

2.19.1 MT-19937 Generator

Note: This generator is deprecated in favor of the xoroshiro128+ generator (see
Section 2.19.2 [xoroshiro128+ Generator|, page 33) which is faster and uses less memory.

On all platforms, the random number is MT-19937 generator as indicated by :rand-mt19937 be-
ing in *features*. This is a Lisp implementation of the MT-19937 generator of Makoto Matsumoto
and T. Nishimura. We refer the reader to their paper? or to their website (http://www.math.sci.
hiroshima-u.ac.jp/ m-mat/MT/emt.html).

When c©MUCL starts up, *random-state* is initialized by reading 627 words from
/dev/urandom, when available. If /dev/urandom is not available, the universal time is used to
initialize *random-state*. The initialization is done as given in Matsumoto’s paper.

2.19.2 xoroshirol28+ Generator

On supported platforms, the random number generator is xoroshiro128+ generator, as indicated
by :random-xoroshiro being in *features*. This is a Lisp implementation of the xoroshirol128+
generator by David Blackman and Sebastiano Vigna. See http://xoroshiro.di.unimi.

it for further details.

This generator replaces the MT-19937 generator (see Section 2.19.1 [MT-19937 Generator],
page 33) because it is faster and uses much less memory for the generator (4 32-bit words).
However, the period is shorter.

When cMUCL starts up, *random-state* is initialized by reading 4 32-bit words from
/dev/urandom, when available. If /dev/urandom is not available, the universal time is used to
initialize *random-state*. The initialization is done is using splitmix64 (http://xoshiro.di.
unimi.it/splitmix64.c) with get-universal-time.

kernel :random-state-jump &optional (rng-state *random-statex) [Function]
Jump the rng-state. This is equivalent to 264 calls to the xoroshiro128+ generator. It can
be used to generate 264 non-overlapping subsequences for parallel computations.

2.20 Lisp Threads

CMUCL supports Lisp threads for the x86 platform.

2.21 Lisp Library

The CMUCL project maintains a collection of useful or interesting programs written by users of our
system. The library is in 1ib/contrib/. Two files there that users should read are:

[CATALOG. TXT]
This file contains a page for each entry in the library. It contains information such as
the author, portability or dependency issues, how to load the entry, etc.

[READ-ME. TXT]
This file describes the library’s organization and all the possible pieces of information
an entry’s catalog description could contain.

2 “Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudorandom Number Generator,”
ACM Trans. on Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp.3-30

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://xoroshiro.di.unimi.it
http://xoroshiro.di.unimi.it
http://xoshiro.di.unimi.it/splitmix64.c
http://xoshiro.di.unimi.it/splitmix64.c

Chapter 2: Design Choices and Extensions 34

Hemlock has a command Library Entry that displays a list of the current library entries in an
editor buffer. There are mode specific commands that display catalog descriptions and load entries.
This is a simple and convenient way to browse the library.

2.22 Generalized Function Names

ext:define-function-name-syntax name (var) &body body [Macro]
Define lists starting with the symbol name as a new extended function name syntax.

body is executed with var bound to an actual function name of that form, and should return
two values:

e A generalized boolean that is true if var is a valid function name.

e A symbol that can be used as a block name in functions whose name is var. (For some
sorts of function names it might make sense to return nil for the block name, or just
return one value.)

Users should not define function names starting with a symbol that ¢(MUCL might be using
internally. It is therefore advisable to only define new function names starting with a symbol
from a user-defined package.

ext:valid-function-name-p name [Function]
Returns two values:
e True if name is a valid function name.

e A symbol that can be used as a block name in functions whose name is name. This can
be nil for some function names.

2.23 CLOS

2.23.1 Primary Method Errors
The standard requires that an error is signaled when a generic function is called and
e no primary method is applicable to the generic function’s actual arguments, and

e the generic function’s method combination is either the standard method combination or a
method combination defined with the short form of define-method-combination. The latter
includes the standardized method combinations like progn, and, etc.

pcl:no-primary-method gf &rest args [Generic Function]
In cmucL, this generic function is called in the above erroneous cases. The parameter gf is
the generic function being called, and args is a list of actual arguments in the generic function
call.

pcl:no-primary-method gf standard-generic-function) &rest args [Method]
This method signals a continuable error of type pcl:no-primary-method-error.

2.23.2 Slot Type Checking

Declared slot types are used when
e reading slot values with slot-value in methods, or
e setting slots with (setf slot-value) in methods, or

e creating instances with make-instance, when slots are initialized from initforms. This currently
depends on PCL being able to use its internal make-instance optimization, which it usually
can.

Chapter 2: Design Choices and Extensions 35

Example:
(defclass foo ()
((a :type fixnum)))

(defmethod bar ((object foo) value)
(with-slots (a) object
(setf a value)))

(defmethod baz ((object foo))
(< (slot-value object ’a) 10))
In method bar, and with a suitable safety setting, a type error will occur if value is not a fixnum.
In method baz, a fixnum comparison can be used by the compiler.

pcl: :*use-slot-types-p* [Variable]
Slot type checking can be turned off by setting this variable to nil, which can be useful for
compiling code containing incorrect slot type declarations.

2.23.3 Slot Access Optimization

The declaration ext:slots is used for optimizing slot access in methods.
declare (ext:slots specifierx)

specifier ::= (quality class-entry*)
quality = SLOT-BOUNDP | INLINE
class-entry ::= class | (class slot-namex*)
class ::= the name of a class
slot-name ::= the name of a slot

The slot-boundp quality specifies that all or some slots of a class are always bound.
The inline quality specifies that access to all or some slots of a class should be inlined, using
compile-time knowledge of class layouts.

2.23.3.1 slot-boundp Declaration

Example:
(defclass foo ()
(a b))

(defmethod bar ((x foo))
(declare (ext:slots (slot-boundp foo0)))
(1ist (slot-value x ’a) (slot-value x ’b)))

The slot-boundp declaration in method bar specifies that the slots a and b accessed through
parameter x in the scope of the declaration are always bound, because parameter x is special-
ized on class foo to which the slot-boundp declaration applies. The PCL-generated code for the
slot-value forms will thus not contain tests for the slots being bound or not. The consequences
are undefined should one of the accessed slots not be bound.

2.23.3.2 inline Declaration

Example:
(defclass foo ()
(a b))

(defmethod bar ((x foo))

Chapter 2: Design Choices and Extensions 36

(declare (ext:slots (inline (foo a))))
(list (slot-value x ’a) (slot-value x ’b)))

The inline declaration in method bar tells PCL to use compile-time knowledge of slot locations
for accessing slot a of class foo, in the scope of the declaration.

Class foo must be known at compile time for this optimization to be possible. PCL prints a
warning and uses normal slot access If the class is not defined at compile time.

If a class is proclaimed to use inline slot access before it is defined, the class is defined at compile
time. Example:

(declaim (ext:slots (inline (foo slot-a))))
(defclass foo O ...)
(defclass bar (foo) ...)

Class foo will be defined at compile time because it is declared to use inline slot access; methods
accessing slot slot-a of foo will use inline slot access if otherwise possible. Class bar will be
defined at compile time because its superclass foo is declared to use inline slot access. PCL uses
compile-time information from subclasses to warn about situations where using inline slot access is
not possible.

Normal slot access will be used if PCL finds, at method compilation time, that

e class foo has a subclass in which slot a is at a different location, or
o there exists a slot-value-using-class method for foo or a subclass of foo.

When the declaration is used to optimize calls to slot accessor generic functions in methods, as
opposed to slot-value or (setf slot-value), the optimization is additionally not used if

e there exist, at compile time, applicable methods on the reader/writer generic function that are
not standard accessor methods (for instance, there exist around-methods), or

e applicable reader/writer methods access different slots in a class accessed inline, and one of its
subclasses.

The consequences are undefined if the compile-time environment is not the same as the run-time
environment in these respects, or if the definition of class foo or any subclass of foo is changed in
an incompatible way, that is, if slot locations change.

The effect of the inline optimization combined with the slot-boundp optimization is that
CLOS slot access becomes as fast as structure slot access, which is an order of magnitude faster
than normal CLOS slot access.

pcl::*optimize-inline-slot-access-p* [Variable]
This variable controls if inline slot access optimizations are performed. It is true by default.

2.23.3.3 Automatic Method Recompilation

Methods using inline slot access can be automatically recompiled after class changes. Two declara-
tions control which methods are automatically recompiled.

declaim (ext:auto-compile specifierx*)

declaim (ext:not-auto-compile specifierx)

specifier = gf-name | (gf-name qualifier* (specializerx*))
gf-name = the name of a generic function

qualifier = a method qualifier

specializer ::= a method specializer

If no specifier is given, auto-compilation is by default done/not done for all methods of all generic
functions using inline slot access; current default is that it is not done. This global policy can be
overridden on a generic function and method basis. If specifier is a generic function name, it
applies to all methods of that generic function.

Chapter 2: Design Choices and Extensions 37

Examples:

(declaim (ext:auto-compile foo0))
(defmethod foo :around ((x bar)) ...)
The around-method foo will be automatically recompiled because the declamation applies to all
methods with name foo.
(declaim (ext:auto-compile (foo (bar))))
(defmethod foo :around ((x bar)) ...)
(defmethod foo ((x bar)) ...)
The around-method will not be automatically recompiled, but the primary method will.
(declaim (ext:auto-compile foo))
(declaim (ext:not-auto-compile (foo :around (bar)))
(defmethod foo :around ((x bar)) ...)
(defmethod foo ((x bar)) ...)

The around-method will not be automatically recompiled, because it is explicitly declaimed not
to be. The primary method will be automatically recompiled because the first declamation applies
to it.

Auto-recompilation works by recording method bodies using inline slot access. When PCL
determines that a recompilation is necessary, a defmethod form is constructed and evaluated.

Auto-compilation can only be done for methods defined in a null lexical environment. PCL
prints a warning and doesn’t record the method body if a method using inline slot access is defined
in a non-null lexical environment. Instead of doing a recompilation on itself, PCL will then print a
warning that the method must be recompiled manually when classes are changed.

2.23.4 Inlining Methods in Effective Methods

When a generic function is called, an effective method is constructed from applicable methods. The
effective method is called with the original arguments, and itself calls applicable methods according to
the generic function’s method combination. Some of the function call overhead in effective methods
can be removed by inlining methods in effective methods, at the expense of increased code size.

Inlining of methods is controlled by the usual inline declaration. In the following example, both
foo methods shown will be inlined in effective methods:

(declaim (inline (method foo (foo0))

(method foo :before (foo0))))
(defmethod foo ((x foo)) ...)
(defmethod foo :before ((x foo)) ...)

Please note that this form of inlining has no noticeable effect for effective methods that consist
of a primary method only, which doesn’t have keyword arguments. In such cases, PCL uses the
primary method directly for the effective method.

When the definition of an inlined method is changed, effective methods are not automatically
updated to reflect the change. This is just as it is when inlining normal functions. Different from
the normal case is that users do not have direct access to effective methods, as it would be the case
when a function is inlined somewhere else. Because of this, the function pcl:flush-emf-cache is
provided for forcing such an update of effective methods.

pcl:flush-emf-cache &optional gf [Function]
Flush cached effective method functions. If gf is supplied, it should be a generic function
metaobject or the name of a generic function, and this function flushes all cached effective
methods for the given generic function. If gf is not supplied, all cached effective methods are
flushed.

pcl::*inline-methods-in-emfs* [Variable]
If true, the default, perform method inlining as described above. If false, don’t.

Chapter 2: Design Choices and Extensions 38

2.23.5 Effective Method Precomputation

When a generic function is called, the generic function’s discriminating function computes the set of
methods applicable to actual arguments and constructs an effective method function from applicable
methods, using the generic function’s method combination.

Effective methods can be precomputed at method load time instead of when the generic function
is called depending on the value of pcl:*max-emf-precomputation-methods*.

pcl:*max-emf-precomputation-methods* [Variable]
If nonzero, the default value is 100, precompute effective methods when methods are loaded,
and the method’s generic function has less than the specified number of methods.

If zero, compute effective methods only when the generic function is called.

2.23.6 Sealing

Support for sealing classes and generic functions have been implemented. Please note that this
interface is subject to change.

pcl:seal name (var) &rest specifiers [Macro]
Seal name with respect to the given specifiers; name can be the name of a class or generic-
function.

Supported specifiers are :subclasses for classes, which prevents changing subclasses of a
class, and :methods which prevents changing the methods of a generic function.

Sealing violations signal an error of type pcl:sealed-error.

pcl:unseal name-or-object [Function]
Remove seals from name-or-object.

2.23.7 Method Tracing and Profiling

Methods can be traced with trace, using function names of the form (method <name> <qualifiers>
<specializers>). Example:

(defmethod foo ((x integer)) x)

(defmethod foo :before ((x integer)) x)

(trace (method foo (integer)))
(trace (method foo :before (integer)))
(untrace (method foo :before (integer)))

trace and untrace also allow a name specifier :methods gf-form for tracing all methods of a
generic function:

(trace :methods ’foo)
(untrace :methods ’foo)

Methods can also be specified for the :wherein option to trace. Because this option is a name
or a list of names, methods must be specified as a list. Thus, to trace all calls of foo from the
method bar specialized on integer argument, use

(trace foo :wherein ((method bar (integer))))

Before and after methods are supported as well:

(trace foo :wherein ((method bar :before (integer))))

Method profiling is done analogously to trace:

(defmethod foo ((x integer)) x)
(defmethod foo :before ((x integer)) x)

(profile:profile (method foo (integer)))

Chapter 2: Design Choices and Extensions 39

(profile:profile (method foo :before (integer)))
(profile:unprofile (method foo :before (integer)))

(profile:profile :methods ’foo)
(profile:unprofile :methods ’foo)

(profile:profile-all :methods t)
2.23.8 Misc

pcl: :*compile-interpreted-methods-p* [Variable]
This variable controls compilation of interpreted method functions, e.g. for methods defined
interactively at the REPL. Default is true, that is, method functions are compiled.

2.24 Differences from ANSI Common Lisp

This section describes some of the known differences between ¢cMUCL and ANSI Common Lisp. Some
may be non-compliance issues; same may be extensions.

2.24.1 Extensions

constantly value &optional vall val2 &rest more-values [Function]
As an extension, CMUCL allows constantly to accept more than one value which are returned
as multiple values.

2.25 Function Wrappers

Function wrappers, fwrappers for short, are a facility for efficiently encapsulating functions®.

Functions in CMUCL are represented by kernel:fdefn objects. Each fdefn object contains a
reference to its function’s actual code, which we call the function’s primary function.

A function wrapper replaces the primary function in the fdefn object with a function of its
own, and records the original function in an fwrapper object, a funcallable instance. Thus, when
the function is called, the fwrapper gets called, which in turn might call the primary function, or
a previously installed fwrapper that was found in the fdefn object when the second fwrapper was
installed.

Example:

(use-package :fwrappers)

(define-fwrapper foo (x y)
(format t "x = s, y = s, user-data = “s”)"
x y (fwrapper-user-data fwrapper))
(let ((value (call-next-function)))
(format t "value = “s”%" value)
value))

(defun bar (x y)
+xy))

(fwrap ’bar #’foo :type ’foo :user-data 42)

3 This feature was independently developed, but the interface is modelled after a similar feature in Allegro.
Some names, however, have been changed.

Chapter 2: Design Choices and Extensions 40

(bar 1 2)

=>

x =1, y = 2, user-data = 42
value = 3

3

Fwrappers are used in the implementation of trace and profile.

Please note that fdefinition always returns the primary definition of a function; if a function is
fwrapped, fdefinition returns the primary function stored in the innermost fwrapper object. Like-
wise, if a function is fwrapped, (setf fdefinition) will set the primary function in the innermost
fwrapper.

fwrappers:define-fwrapper name lambda-1list &body body [Macro]
This macro is like defun, but defines a function named name that can be used as an fwrapper
definition.

In body, the symbol fwrapper is bound to the current fwrapper object.

The macro call-next-function can be used to invoke the next fwrapper, or the primary
function that is being fwrapped. When called with no arguments, call-next-function
invokes the next function with the original arguments passed to the fwrapper, unless you
modify one of the parameters. When called with arguments, call-next-function invokes
the next function with the given arguments.

fwrappers:fwrap function-name fwrapper &key :type :user-data [Function]
This function wraps function function-name in an fwrapper fwrapper which was defined with
define-fwrapper.

The value of type, if supplied, is used as an identifying tag that can be used in various other
operations.

The value of user-data is stored as user-supplied data in the fwrapper object that is created
for the function encapsulation. User-data is accessible in the body of fwrappers defined with
define-fwrapper as (fwrapper-user-data fwrapper).

Value is the fwrapper object created.

fwrappers:funwrap function-name &key :type :test [Function]
Remove fwrappers from the function named function-name. If type is supplied, remove fwrap-
pers whose type is equal to type. If test is supplied, remove fwrappers satisfying test.

fwrappers:find-fwrapper function-name &key :type :test [Function]
Find an fwrapper of function-name. If type is supplied, find an fwrapper whose type is equal
to type. If test is supplied, find an fwrapper satisfying test.

fwrappers:update-fwrapper fwrapper [Function]
Update the funcallable instance function of the fwrapper object fwrapper from the definition
of its function that was defined with define-fwrapper. This can be used to update fwrappers
after changing a define-fwrapper.

fwrappers:update-fwrappers function-name &key :type :test [Function]
Update fwrappers of function-name; see update-fwrapper. If type is supplied, update fwrap-
pers whose type is equal to type. If test is supplied, update fwrappers satisfying test.

fwrappers:set-fwrappers function-name fwrappers [Function]
Set function-names’s fwrappers to elements of the list fwrappers, which is assumed to be
ordered from outermost to innermost. fwrappers null means remove all fwrappers.

Chapter 2: Design Choices and Extensions 41

fwrappers:list-fwrappers function-name [Function]
Return a list of all fwrappers of function-name, ordered from outermost to innermost.

fwrappers:push-fwrapper fwrapper function-name [Function]
Prepend fwrapper fwrapper to the definition of function-name. Signal an error if function-
name is an undefined function.

fwrappers:delete-fwrapper fwrapper function-name [Function]
Remove fwrapper fwrapper from the definition of function-name. Signal an error if function-
name is an undefined function.

fwrappers:do-fwrappers (var fdefn &optional result) &body body [Macro]
Evaluate body with var bound to consecutive fwrappers of fdefn. Return result at the end.
Note that fdefn must be an fdefn object. You can use kernel:fdefn-or-lose, for instance,
to get the fdefn object from a function name.

2.26 Dynamic-Extent Declarations

Note: As of the 19a release, dynamic-extent is unfortunately disabled by default. It is known to
cause some issues with CLX and Hemlock. The cause is not known, but causes random errors and
brokeness. Enable at your own risk. However, it is safe enough to build all of CMUCL without
problems.

On x86 and sparc, CMUCL can exploit dynamic-extent declarations by allocating objects on the
stack instead of the heap.

You can tell CMUCL to trust or not trust dynamic-extent declarations by setting the variable
*trust-dynamic-extent-declarations™.

ext:*trust-dynamic-extent-declarationsx* [Variable]
If the value of *trust-dynamic-extent-declarations* is NIL, dynamic-extent declarations are
effectively ignored.
If the value of this variable is a function, the function is called with four arguments to
determine if a dynamic-extent declaration should be trusted. The arguments are the safety,
space, speed, and debug settings at the point where the dynamic-extent declaration is used.
If the function returns true, the declaration is trusted, otherwise it is not trusted.

In all other cases, dynamic-extent declarations are trusted.

Please note that stack-allocation is inherently unsafe. If you make a mistake, and a stack-
allocated object or part of it escapes, CMUCL is likely to crash, or format your hard disk.

2.26.1 &rest argument lists

Rest argument lists can be allocated on the stack by declaring the rest argument variable
dynamic-extent. Examples:

(defun foo (x &rest rest)
(declare (dynamic-extent rest))

D)

(defun bar ()
(lambda (&rest rest)
(declare (dynamic-extent rest))

o))

Chapter 2: Design Choices and Extensions 42

2.26.2 Closures

Closures for local functions can be allocated on the stack if the local function is declared
dynamic-extent, and the closure appears as an argument in the call of a named function. In the
example:
(defun foo (x)
(flet ((bar () x))
(declare (dynamic-extent #’bar))
(baz #’bar)))
the closure passed to function baz is allocated on the stack. Likewise in the example:
(defun foo (x)
(flet ((bar O x))
(baz #