
CLX Programmer’s Reference i

CLX

Common LISP X Interface

 1988, 1989 Texas Instruments Incorporated

Permission is granted to any individual or institution to use, copy, modify and distribute this document, provided that
this complete copyright and permission notice is maintained, intact, in all copies and supporting documentation.
Texas Instruments Incorporated makes no representations about the suitability of this document or the software
described herein for any purpose. It is provided ”as is” without express or implied warranty.

CLX Programmer’s Referenceii

ACKNOWLEDGMENTS

Primary Interface Author:
Robert W. Scheifler

MIT Laboratory for Computer Science
545 Technology Square, Room 418
Cambridge, MA 02139
rws@zermatt.lcs.mit.edu

Primary Implementation Author:
LaMott Oren

Texas Instruments
PO Box 655474, MS 238
Dallas, TX 75265
oren@csc.ti.com

Design Contributors:
Dan Cerys, BBN
Scott Fahlman, CMU
Kerry Kimbrough, Texas Instruments
Chris Lindblad, MIT
Rob MacLachlan, CMU
Mike McMahon, Symbolics
David Moon, Symbolics
LaMott Oren, Texas Instruments
Daniel Weinreb, Symbolics
John Wroclawski, MIT
Richard Zippel, Symbolics

Documentation Contributors:
Keith Cessna, Texas Instruments
Kerry Kimbrough, Texas Instruments
Mike Myjak
LaMott Oren, Texas Instruments
Dan Stenger, Texas Instruments

The X Window System is a trademark of MIT.

UNIX is a trademark of AT&T Bell Laboratories.

ULTRIX, ULTRIX–32, ULTRIX–32m, ULTRIX–32w, and VAX/VMS are trademarks of Digital Equipment
Corporation.

CLX Programmer’s Reference iii

CONTENTS

Section Title

1 INTRODUCTION TO CLX

2 DISPLAYS

3 SCREENS

4 WINDOWS AND PIXMAPS

5 GRAPHICS CONTEXTS

6 GRAPHIC OPERATIONS

7 IMAGES

8 FONTS AND CHARACTERS

9 COLORS

10 CURSORS

11 ATOMS, PROPERTIES, AND SELECTIONS

12 EVENTS AND INPUT

13 RESOURCES

14 CONTROL FUNCTIONS

15 EXTENSIONS

16 ERRORS

A PROTOCOL VS. CLX FUNCTION
CROSS-REFERENCE LISTING

B GLOSSARY

INDEX

CLX Programmer’s Referenceiv

1-1CLX Programmer’s Reference

INTRODUCTION TO CLX

Introduction 1.1 This manual assumes a basic understanding of window systems and the Common
Lisp programming language. To provide an introduction to the Common Lisp X Inter-
face (CLX) programming, this section discusses the following:

• Overview of the X Window System

• Naming and argument conventions

• Programming considerations

The X Window 1.2 The X Window System was developed at the Massachusetts Institute of
System Technology (MIT) and first released in 1985. Since then, the X Window System has be-

come an industry-standard product available on virtually every type of bit-mapped
workstation. The current version of X, Version 11, has been implemented for several dif-
ferent computer architectures, for a wide variety of display hardware, and also for many
different operating systems. X Version 11 represents the fulfillment of the original de-
sign goals proposed by MIT, as follows:

• Portable — Support virtually any bitmap display and any interactive input device
(including keyboards, mice, tablets, joysticks, and touch screens). Make it easy to
implement the window system on different operating systems.

• Device-Independent Applications — Avoid rewriting, recompiling, or even relink-
ing in order to use different display/input hardware. Make it easy for an application
to work on both monochrome and color hardware.

• Network Transparent — Let an application run on one computer while using anoth-
er computer’s display, even if the other computer has a different operating system or
hardware architecture.

• Multitasking — Support multiple applications being displayed simultaneously.

• No User Interface Policy — Since no one agrees on what constitutes the best user
interface, make it possible for a broad range of user interface styles (or policies) to
be implemented, external to the window system and to the application programs.

• Cheap Windows — Windows should be abundant, and ubiquitous. Provide overlap-
ping windows and a simple mechanism for window hierarchy.

• High-Performance Graphics — Provide powerful interfaces for synthesizing 2-D
images (geometric primitives, high-quality text with multiple typefaces, and
scanned images).

• Extensible — Include a mechanism for adding new capabilities. Allow separate
sites to develop independent extensions without becoming incompatible with re-
mote applications.

Introduction to CLX

1-2 CLX Programmer’s Reference

Some of these goals lead directly to the basic X architecture — the client-server model.
The basic window system is implemented by the X server program. An application pro-
gram (the client) sends window system requests to the X server through a reliable two-
way byte-stream.

In general, the server and the client can be executing on separate host computers, in
which case the byte-stream is implemented via some network protocol (TCP, DECnet ,
Chaosnet, and so forth). The X server, which is connected to several client programs run-
ning concurrently, executes client requests in round-robin fashion. The server is respon-
sible for drawing client graphics on the display screen and for making sure that graphics
output to a window stays inside its boundary.

The other primary job of the X server is to channel input from the keyboard, pointer, and
other input devices back to the appropriate client programs. Input arrives at the client
asynchronously in the form of input events representing up/down transitions of keys or
pointer buttons, changes in the pointer position, and so on. In some cases, a request gen-
erates a return value (or reply) from the server, which is another kind of client input. Re-
plies and input events are received via the same byte-stream connecting the client with
the server.

Windows 1.2.1 The X Window System supports one or more screens containing overlapping
windows and subwindows. A screen is a physical monitor and hardware, which can be
either color or black and white. There can be multiple screens per display workstation. A
single server can provide display services for any number of screens. A set of screens for
a single user with one keyboard and one mouse is called a display.

All windows in an X server are arranged in a strict hierarchy. At the top of the hierarchy
are the root windows, which cover each of the display screens. Each root window is ei-
ther partially or completely covered by child windows. All windows, except for root
windows, have parents. Any window can in turn have its own children. In this way, an
application program can create a window tree of arbitrary depth on each screen.

A child window can be larger than its parent. That is, part or all of the child window can
extend beyond the boundaries of the parent. However, all output to a window is clipped
by the boundaries of its parent window. If several children of a window have overlapping
locations, one of the children is considered to be on top of/or raised over the others, ob-
scuring them. Window output to areas that are covered by other windows is suppressed.

A window has a border that is zero or more pixels in width and can be any pattern (pix-
map) or solid color. A window usually has a background pattern that is drawn by the X
server. Each window has its own coordinate system. Child windows obscure their par-
ents unless the child windows have no background. Graphics operations in the parent
window are usually clipped by the children.

X also provides objects called pixmaps for off-screen storage of graphics. Single-plane
pixmaps (that is, of depth 1) are sometimes referred to as bitmaps. Both pixmaps and
windows can be used interchangeably in most graphics functions. Pixmaps are also used
in various graphics operations to define patterns, or tiles. Windows and pixmaps togeth-
er are referred to as drawables.

Input Events 1.2.2 The X input mechanism is conceptually simple yet quite powerful. Most events
are attached to a particular window (that is, contain an identifier for the window receiv-
ing the event). A client program can receive multiple window input streams, all multi-
plexed over the single byte-stream connection to the server.

Introduction to CLX

1-3CLX Programmer’s Reference

Clients can tailor their input by expressing interest in only certain event types. The server
uses special event types to send important messages to the client. For example, the client
can elect to receive an :enter-notify event when the pointer cursor moves into a certain
window. Another vital message from the server is an :exposure event. This is a signal to
the client indicating that at least some portion of the window has suddenly become vis-
ible (perhaps the user moved another window which had been overlapping it). The client
is then responsible for doing what is necessary to redisplay the window’s image. Client
programs must be prepared to regenerate the contents of windows in this way on de-
mand.

Input is also subject to policy decisions about which client window receives keyboard
and pointer events. Since the pointer is free to roam between windows, just clicking on a
window is often enough to send a pointer event to that window. Keyboard events, how-
ever, must go to a keyboard focus window which has to be designated in some other way.
Usually, the arbiter of such input management policy is a program called the window
manager. The window manager gives the human user a way to make a window the key-
board focus, to manage the layout of windows on the screen, to represent windows with
icons, and so forth. In fact, the window manager client determines most of the so-called
look and feel of the X Window System.

A Quick Tour 1.3 The X Window System is defined by the X Window System Protocol
of CLX Specification, a detailed description of the encoding and the meaning of requests and

events sent between a client and a server. This standard protocol does not depend on any
particular programming language. As a result, each programming language must define
its own functional interface for using the X protocol. The standard X interface used by
Common Lisp programmers is called CLX. CLX is a set of data types, functions, and
macros which allow a Common Lisp client program to interact with an X server to send
requests and to receive input events and replies.

For the most part, CLX functions are closely tied to the underlying requests in the X pro-
tocol. Many CLX functions simply add requests to an output buffer. These requests later
execute asynchronously on the X display server. However, some functions of CLX lie
outside the scope of the protocol—for example, reading events and managing a client-
side event queue. CLX is also responsible for important batching and caching tasks that
minimize network communication.

The following paragraphs show an example of a CLX client program. All CLX functions
and macros are shown in upper case. Note that some of the terms used are unique to X,
while other terms that are common to other window systems have different meanings in
X. It may be helpful to refer to the glossary when you are uncertain of a term’s meaning in
the context of the X Window System.

A Simple Menu 1.3.1 The example client program creates and displays a simple pop-up menu consist-
ing of a column of strings—a title string followed by selectable menu item strings. The
implementation uses one window to represent the entire menu, plus a set of subwindows,
one for each menu item. Here is the definition of a structure which represents such a
menu.

Introduction to CLX

1-4 CLX Programmer’s Reference

(defstruct (menu)
“A simple menu of text strings.”
(title “Choose an item:”)
item–alist ;((item–window item–string))
window
gcontext
width
title–width
item–width
item–height
(geometry–changed–p t)) ;nil if unchanged since displayed

The window slot will contain the window object that represents the menu. The item-al-

ist represents the relationship between the menu items and their associated subwin-
dows. Each entry in item-alist is a list whose first element is a (sub)window object and
whose second element is the corresponding item string. A window object is an instance
of a CLX-defined data type which represents X windows. A window object actually car-
ries two pieces of information: an X window ID integer and a display object. A display
is another CLX-defined data type that represents a connection to a specific X display
server. The gcontext slot contains an instance of a CLX data type known as a graphics
context. A graphics context is a set of display attribute values, such as foreground color,
fill style, line style, text font, and so forth. Each X graphics request (and hence each CLX
graphics function call) must supply a graphics context to use in displaying the request.
The menu’s gcontext will thus hold all of the attribute values used during menu display.

Introduction to CLX

1-5CLX Programmer’s Reference

The first thing to do is make an instance of a menu object:

(defun create–menu (parent–window text–color background–color
text–font)
(make–menu

;; Create menu graphics context
:gcontext (CREATE–GCONTEXT :drawable parent–window

:foreground text–color
:background background–color
:font text–font)

;; Create menu window
:window (CREATE–WINDOW

:parent parent–window
:class :input–output
:x 0 ;temporary value
:y 0 ;temporary value
:width 16 ;temporary value
:height 16 ;temporary value
:border–width 2
:border text–color
:background background–color
:save–under :on
:override–redirect :on ;override window mgr when positioning
:event–mask (MAKE–EVENT–MASK :leave–window

 :exposure))))

create-window is one of the most important CLX functions, since it creates and returns a
window object. Several of its options are shown here. The default window class is :in-
put-output , but X provides for :input-only windows, too. Every window must have a
parent window, except for a system-defined root window, which represents an entire dis-
play screen. The :event-mask keyword value, a CLX event-mask data type, says that an
input event will be received for the menu window when the window is exposed and also
when the pointer cursor leaves the window. The window border is a pattern-filled or (as
in this case) a solid-colored boundary which is maintained automatically by the X server;
a client cannot draw in a window’s border, since all graphics requests are relative to the
origin (upper-left corner) of the window’s interior and are clipped by the server to this
inside region. Turning on the :save-under option is a hint to the X server that, when this
window is made visible, it may be more efficient to save the pixels it obscures, rather
than require several client programs to refresh their windows when the pop-up menu dis-
appears. This is a way to work around X’s client-managed refresh policy when only a
small amount of screen space is needed temporarily.

Why is :override-redirect turned on for the menu window? This is actually a little un-
usual, because it prevents any window manager client from redirecting the position of
the menu when it is popped up. Remember that the window manager represents the
user’s policy for controlling the positions of his windows, so this kind of redirection is
ordinarily correct. However, in this case, as a favor to the user, the menu avoids redirec-
tion in order to pop up the menu at a very specific location; that is, under the pointer cur-
sor.

What about the item subwindows? The menu-set-item-list function in the following
example creates them whenever the menu’s item list is changed. The upper-left x and y
coordinates and the width and height are not important yet, because they are computed
just before the menu is displayed. This function also calls create-window, demonstrat-
ing the equal treatment of parent and children windows in the X window hierarchy.

Introduction to CLX

1-6 CLX Programmer’s Reference

(defun menu–set–item–list (menu &rest item–strings)
;; Assume the new items will change the menu’s width and height
(setf (menu–geometry–changed–p menu) t)

;; Destroy any existing item windows
(dolist (item (menu–item–alist menu))
 (DESTROY–WINDOW (first item)))

;; Add (item–window item–string) elements to item–alist
(setf (menu–item–alist menu)

(let (alist)
 (dolist (item item–strings (nreverse alist))
 (push (list (CREATE–WINDOW

 :parent (menu–window menu)
 :x 0 ;temporary value
 :y 0 ;temporary value
 :width 16 ;temporary value
 :height 16 ;temporary value
 :background (GCONTEXT–BACKGROUND (menu–gcontext menu))
 :event–mask (MAKE–EVENT–MASK :enter–window

 :leave–window
 :button–press
 :button–release))

item)
 alist)))))

Displaying 1.3.2 The menu-recompute-geometry function (shown in the following
the Menu example) handles the job of calculating the size of the menu, based on its current item list

and its current text font. CLX provides a way to inquire the geometrical properties of a
font object (for example, its ascent and descent from the baseline) and also a text-extents
function. text-extents returns the geometry of a given string as displayed in a given font.
Notice the use of the with-state macro when setting a window’s geometry attributes.
CLX strives to preserve the familiar setf style of accessing individual window attributes,
even though an attribute access actually involves sending a request to a (possibly re-
mote) server and/or waiting for a reply. with-state tells CLX to batch together all read
and write accesses to a given window, using a local cache to minimize the number of
server requests. This CLX feature can result in a dramatic improvement in client perfor-
mance without burdening the programmer interface.

menu-recompute-geometry causes all the item subwindows to become mapped. Map-
ping a window means attempting to make it visible on the screen. However, a subwin-
dow will not actually be visible until it and all of its ancestors are mapped. Even then,
another window might be covering up the subwindow.

Introduction to CLX

1-7CLX Programmer’s Reference

(defun menu–recompute–geometry (menu)
 (when (menu–geometry–changed–p menu)
 (let* ((menu–font (GCONTEXT–FONT (menu–gcontext menu)))
 (title–width (TEXT–EXTENTS menu–font (menu–title menu)))
 (item–height (+ (FONT–ASCENT menu–font)
 (FONT–DESCENT menu–font)
 menu–item–margin))
 (item–width 0)
 (items (menu–item–alist menu))
 menu–width)

 ;; Find max item string width
 (setf item–width
 (+ *menu–item–margin*
 (dolist (next–item items item–width)
 (setf item–width (max item–width
 (TEXT–EXTENTS menu–font (second next–item)))))))

 ;; Compute final menu width, taking margins into account
 (setf menu–width (max title–width (+ item–width *menu–item–margin*)))
 (let ((window (menu–window menu)))

 ;; Update width and height of menu window
 (WITH–STATE (window)
 (setf (DRAWABLE–WIDTH window) menu–width
 (DRAWABLE–HEIGHT window) (* (1+ (length items)) item–height)))

 ;; Update width, height, position of item windows
 (let ((item–left (round (– menu–width item–width) 2))

 (next–item–top (– item–height (round *menu–item–margin* 2))))
 (dolist (next–item items)
 (let ((window (first next–item)))
 (WITH–STATE (window)
 (setf (DRAWABLE–HEIGHT window) item–height
 (DRAWABLE–WIDTH window) item–width
 (DRAWABLE–X window) item–left
 (DRAWABLE–Y window) next–item–top)))
 (incf next–item–top item–height))))

 ;; Map all item windows
 (MAP–SUBWINDOWS (menu–window menu))

 ;; Save item geometry
 (setf (menu–item–width menu) item–width
 (menu–item–height menu) item–height
 (menu–width menu) menu–width
 (menu–title–width menu) title–width
 (menu–geometry–changed–p menu) nil))))

Of course, the sample client must know how to draw/redraw the menu and its items, so
the function menu-refresh is defined next to handle that task (shown in the following
example). Note that the location of window output is given relative to the window origin.
Windows and subwindows have different coordinate systems. The location of the origin
(upper-left corner) of a subwindow’s coordinate system is given with respect to its parent
window’s coordinate system. Negative coordinates are valid, although only output to the
+x/+y quadrant of a window’s coordinate system will ever be visible.

Introduction to CLX

1-8 CLX Programmer’s Reference

(defun menu–refresh (menu)
 (let* ((gcontext (menu–gcontext menu))
 (baseline–y (FONT–ASCENT (GCONTEXT–FONT gcontext))))
 ;; Show title centered in “reverse–video”
 (let ((fg (GCONTEXT–BACKGROUND gcontext))
 (bg (GCONTEXT–FOREGROUND gcontext)))
 (WITH–GCONTEXT (gcontext :foreground fg :background bg)
 (DRAW–IMAGE–GLYPHS
 (menu–window menu)
 gcontext
 (round (– (menu–width menu)
 (menu–title–width menu)) 2) ;start x
 baseline–y ;start y
 (menu–title menu))))

 ;; Show each menu item (position is relative to item window)
 (let ((box–margin (round *menu–item–margin* 2)))
 (dolist (item (menu–item–alist menu))
 (DRAW–IMAGE–GLYPHS
 (first item) gcontext
 box–margin ;start x
 (+ baseline–y box–margin) ;start y
 (second item))))))

with-gcontext is a CLX macro that allows you temporarily to modify a graphics context
within the dynamic scope of the macro body. draw-image-glyphs is a CLX text drawing
function which produces a terminal-like rendering: foreground character on a back-
ground block. (More sophisticated text rendering functions are also available.) The
strange use of glyphs instead of string here actually highlights an important fact: X and
Common Lisp have totally different concepts of a character. A Common Lisp character
is an object whose implementation can comprehend a vast universe of text complexities
(typefaces, type styles, international character sets, symbols, and so forth). However, to
X, a string is just a sequence of integer indexes into the array of bitmaps represented by a
CLX font object. In general, draw-image-glyphs, text-extents, and other CLX text
functions accept a :translate keyword argument. Its value is a function which translates
the characters of a string argument into the appropriate font-and-index pairs needed by
CLX. This example relies upon the default translation function, which simply uses char-
code to compute an index into the current font.

Menu Input 1.3.3 Now that a menu can be displayed, the sample client program must define how
the menu will process user input. The menu-choose function (shown in the following
example) has the classic structure of an X client program. First, do some initialization
(for example, present the menu at a given location). Then, enter an input event loop.
Read an input event, process it, and repeat the loop until a termination event is received.
The event-case macro continues reading an event from the menu window’s display ob-
ject until one of its clauses returns non-nil . These clauses specify the action to be taken
for each event type and also bind values from the event report to local variables, such as
the event-window receiving the event. Notice that the :force-output-p option is en-
abled, causing event-case to begin by sending any client requests which CLX has not yet
output to the server. To improve performance, CLX quietly queues up requests and peri-
odically sends them off in a batch. However, in an interactive feedback loop such as this,
it is important to keep the display crisply up-to-date.

Introduction to CLX

1-9CLX Programmer’s Reference

(defun menu–choose (menu x y)
 ;; Display the menu so that first item is at x,y.
 (menu–present menu x y)

 (let ((items (menu–item–alist menu))
 (mw (menu–window menu))
 selected–item)

 ;; Event processing loop
 (do () (selected–item)
 (EVENT–CASE ((DRAWABLE–DISPLAY mw) :force–output–p t)
 (:exposure
 (count)
 ;; Discard all but final :exposure then display the menu
 (when (zerop count) (menu–refresh menu))
 t)

 (:button–release
 (event–window)
 ;;Select an item
 (setf selected–item (second (assoc event–window items)))
 t)

 (:enter–notify
 (window)
 ;;Highlight an item
 (menu–highlight–item menu (find window items :key #’first))
 t)

 (:leave–notify
 (window kind)
 (if (eql mw window)
 ;; Quit if pointer moved out of main menu window
 (setf selected–item (when (eq kind :ancestor) :none))
 ;; Otherwise, unhighlight the item window left
 (menu–unhighlight–item menu (find window items :key #’first)))
 t)

 (otherwise
 ()
 ;;Ignore and discard any other event
 t)))

 ;; Erase the menu
 (UNMAP–WINDOW mw)

 ;; Return selected item string, if any
 (unless (eq selected–item :none) selected–item)))

The event loop in menu-choose demonstrates an idiom used in all X programs: the con-
tents of a window are displayed (in this case, by calling menu-refresh) only when an
:exposure event is received, signaling that the server has actually made the window
viewable. The handling of :exposure in menu-choose also implements a little trick for
improving efficiency. In general, when a window is exposed after being previously ob-
scured (perhaps only partially), the server is free to send several :exposure events, one
for each rectangular tile of the exposed region. For small windows like this menu, it is not
worth the trouble to redraw the image one tile at a time. So the code above just ignores all
but the last tile exposure and redraws everything in one call to menu-refresh .

Introduction to CLX

1-10 CLX Programmer’s Reference

The Main 1.3.4 After all the preceding build-up and the other functions referenced
 Program (but not shown here) have been implemented, the code for the main client program is

very small.

(defun just–say–lisp (host &optional (font–name “fg–16”))
 (let* ((display (OPEN–DISPLAY host))
 (screen (first (DISPLAY–ROOTS display)))
 (fg–color (SCREEN–BLACK–PIXEL screen))
 (bg–color (SCREEN–WHITE–PIXEL screen))
 (nice–font (OPEN–FONT display font–name))

 ;; Create a menu as a child of the root window.
 (a–menu (create–menu (SCREEN–ROOT screen)
 fg–color bg–color nice–font)))

 (setf (menu–title a–menu) “Please pick your favorite language:”)
 (menu–set–item–list a–menu “Fortran” “APL” “Forth” “Lisp”)

 ;; Bedevil the user until he picks a nice programming language
 (unwind–protect
 (loop
 ;; Determine the current root window position of the pointer
 (multiple–value–bind (x y) (QUERY–POINTER (SCREEN–ROOT screen))

 (let ((choice (menu–choose a–menu x y)))
 (when (string–equal “Lisp” choice)
 (return)))))

 (CLOSE–DISPLAY display))))

Note that the main program event loop lies in the body of an unwind-protect form. This
is a good programming technique because, without this protection, an unexpected error
could cause the program to terminate without freeing the server resources it has created.
Server resources are CLX objects which refer to objects actually stored on the X server.
Examples of these are window, font, pixmap, cursor, colormap, and gcontext objects.
These server resources are created and destroyed by user requests. Server resources
created by a client are also destroyed when its display connection is closed. If client re-
sources are repeatedly created without being destroyed, then the server will eventually
run out of memory and fail.

Most server resources are potentially sharable between applications. In fact, windows
are manipulated explicitly by window manager programs. Fonts and cursors are typical-
ly shared automatically since the X server loads and unloads font storage as needed.
gcontext objects are not ordinarily shared between client applications.

Debugging 1.3.5 Typically, most CLX programs do not need to control the buffering
With CLX of output requests directly. However, CLX programmers need to be aware of the asyn-

chronous nature of client-server communication. It may be convenient to control the
CLX output buffer more directly, especially during debugging.

A client that wants a request to execute immediately instead of asynchronously can fol-
low it with a call to display-force-output. This function blocks (does not return) until all
previously buffered output requests have been sent. Otherwise, the output buffer is al-
ways flushed by a call to any function which returns a value from the server or which
waits for input (for example, get-property). Certain output requests can cause input
events to be sent. For example, map-window can cause :exposure events to be sent.
Synchronizing output with the resulting input can be done with the display-finish-out-
put function. This function blocks until all previously buffered output has been sent and
all resulting input events have been received.

Introduction to CLX

1-11CLX Programmer’s Reference

Functions that return information from the server block until an explicit reply is received
or an error occurs. If a nonblocking call results in an error, the error is generally not re-
ported until later. All errors (synchronous and asynchronous) are processed by calling an
error handler defined for the display. If the handler is a sequence it is expected to contain
handler functions specific to each error. The error code is used to index the sequence,
fetching the appropriate handler. Any results returned by the handler are ignored since it
is assumed that the handler either takes care of the error completely, or else signals.

Naming and 1.4 Throughout CLX, a number of conventions for naming and syntax of
Argument the CLX functions have been followed. These conventions are intended to
Conventions make the syntax of the functions more predictable.

The major naming conventions are as follows:

• To better differentiate the CLX symbols from other symbols, they have all been
placed in the package XLIB. External symbols have been explicitly exported.

• The display argument, where used, is always first in the argument list.

• All server resource objects, where used, occur at the beginning of the argument list,
immediately after the display variable.

• When a graphics context (gcontext) is present together with another type of server
resource (most commonly, a drawable), the graphics context occurs in the argument
list after the other server resource. Drawables out rank all other server resources.

• Source arguments always precede the destination arguments in the argument list.

• The x argument always precedes the y argument in the argument list.

• The width argument always precedes the height argument in the argument list.

• Where the x, y, width and height arguments are used together, the x and y arguments
always precede the width and height arguments.

• Where a mask is accompanied with a structure, the mask always precedes the struc-
ture in the argument list.

Programming 1.5 The major programming considerations are as follows:
Considerations

• Keyboards are the greatest variable between different manufacturer’s workstations.
If you want your program to be portable, you should be particularly conservative
here.

• Many display systems have limited amounts of off-screen memory. If you can, you
should minimize use of pixmaps and backing store.

• The user should have control of his screen real-estate. Therefore, you should write
your applications to react to window management, rather than presume control of
the entire screen. What you do inside of your top level window, however, is up to
your application.

• Coordinates and sizes in X are actually 16-bit quantities. They usually are declared
as an int16 in the functions. Values larger than 16 bits can be truncated silently. Sizes
(width and height) are unsigned quantities.

Introduction to CLX

1-12 CLX Programmer’s Reference

• The types color, colormap, cursor, display, font, gcontext, pixmap, screen, and
window are defined solely by a functional interface. Even though they are treated
like structures in this document, it is not specified whether they are implemented as
structures or classes. Although some interfaces are described as functions, they are
not required to be defined using defun. (It is a requirement that they be functions as
opposed to macros or special forms.)

Data Types 1.6 The following are some data type definitions that are commonly used in
CLX function definitions.

alist (key-type-and-name datum-type-and-name) ’list Type

alist defines an association list. An association list is a sequence, containing zero or more
repetitions of the given elements with each of the elements expressed as (type name).

angle ‘(number ,(* –2pi) ,(* 2pi)) Type

angle defines an angle in units of radians and is bounded by (–2π) and (2π). Note that we
are explicitly using a different angle representation than what is actually transmitted in
the protocol.

arc-seq ’(repeat-seq (int16 x) (int16 y) (card16 width) (card16 height) Type
(angle angle1) (angle angle2))

arc-seq defines a six-tuple sequence of the form (x, y, width, height, angle1, angle2). The
points x and y are signed, 16-bit quantities with a range from –32,768 to 32,767. The
width and height values are unsigned, 16-bit quantities and range from 0 to 65,535.
angle1 and angle2 are in units of radians, and bounded by (–2π) and (2π).

array-index ‘(integer 0 ,array-dimension-limit) Type

array-index defines a type which is a subtype of the integers and can be used to describe
all variables that can be array indices. The range is inclusive because start and end array
index specifiers can be one (1) past the end.

bit-gravity ’ (member gravity*) Type

A keyword that specifies which region of a window should be retained when the window
is resized.

 gravity — One of the following:

:center :north :south :static
:east :north-east :south-east :west
:forget :north-west :south-west

If a window is reconfigured without changing its inside width or height, then the contents
of the window moves with the window and are not lost. Otherwise, the contents of a re-
sized window are either moved or lost, depending on its bit-gravity attribute. See win-
dow-bit-gravity , in paragraph 4.3, Window Attributes, for additional information.

bitmap ’(array bit (* *)) Type

Specifies a two-dimensional array of bits.

bitmap-format Structure

A structure that describes the storage format of a bitmap.

Introduction to CLX

1-13CLX Programmer’s Reference

The bitmap-format structure contains slots for unit , pad, and lsb-first-p . The unit
member indicates the unit of increments used to maintain the bitmap data. The units
available for use are 8, 16, or 32 bits. The pad member indicates how many bits are need-
ed to pad the left edge of the scan-line. The lsb-first-p member is a predicate which indi-
cates the ordering of bits with the bitmap unit.

unit Slot of bitmap-format

Type: (member 8 16 32).

The size of a contiguous grouping of bits, which can be 8, 16, or 32. The default is 8.

pad Slot of bitmap-format

Type: (member 8 16 32).

The number of bits to left-pad the scan-line, which can be 8, 16, or 32. The default is 8.

lsb-first-p Slot of bitmap-format

Type: boolean.

A predicate indicating whether the least significant bit comes first (true) or not (nil).

Introduction to CLX

1-14 CLX Programmer’s Reference

boolean ’(or nil (not nil)) Type

boolean defines a type which is all inclusive. It is used for variables that can take on a
true (non-nil) or false (nil) value.

boole-constant ‘(member value*) Type

boole–constant defines a type that is a set of the values associated with the 16 boolean
operation-code constants for the Common Lisp language. It is used for the set of allowed
source and destination combination functions in a graphics context.

value — One of the following:

boole-1 boole-c1 boole-nand boole-xor
boole-2 boole-c2 boole-nor
boole-andboole-clr boole-orc1
boole-andc1 boole-eqv boole-orc2
boole-andc2 boole-ior boole-set

card8 ’(unsigned-byte 8) Type

An unsigned integer value that is a maximum of eight bits long. This gives a number of
this type a range from 0 to 255.

card16 ’(unsigned-byte 16) Type

An unsigned integer value that is a maximum of 16 bits long. This gives a number of this
type a range from 0 to 65,535.

card29 ’(unsigned-byte 29) Type

An unsigned integer value that is a maximum of 29 bits long. This gives a number of this
type a range from 0 to 536,870,911.

card32 ’(unsigned-byte 32) Type

An unsigned integer value that is a maximum of 32 bits long. This gives a number of this
type a range from 0 to 4,294,967,295.

color ’(satisfies color-p) Type

A color. See paragraph 9.2, Color Functions, for additional information.

colormap ’(satisfies colormap-p) Type

A colormap. See paragraph 9.3, Colormap Functions, for additional information.

cursor ’(satisfies cursor-p) Type

A cursor. See Section 10, Cursors, for additional information.

device-event-mask ’(or mask32 (list device-event-mask-class)) Type

Provides a way to specify a set of bits for an event bitmask. Two ways of specifying the
bits are allowed: by setting the event bits in a 32 bit mask, or by listing the keyword
names of the device related event bits in a list.

device-event-mask-class ’ (member event*) Type

A keyword name, for a device related event, that corresponds to a particular bit in an
event bitmask. The set of names is a subset of the names in the type event-mask-class.

event — One of the following:

Introduction to CLX

1-15CLX Programmer’s Reference

:button-1-motion :button-motion
:button-2-motion :button-press
:button-3-motion :key-press
:button-4-motion :key-release
:button-5-motion :pointer-motion

display ’(satisfies display-p) Type

A connection to an X server. See Section 2, Displays, for additional information.

drawable ’(or window pixmap) Type

Both windows and pixmaps can be used as sources and destinations in graphics opera-
tions. windows and pixmaps together are known as drawables. However, an :input-
only window cannot be used as a source or destination in a graphics operation.

draw-direction ’(member :left-to-right :right-to-left) Type

Defines a list of rotation directions for drawing arcs and fonts. draw-direction can have
the values of :left-to-right or :right-to-left .

error-key ’(member error*) Type

Defines a list of all predefined errors. All errors (synchronous and asynchronous) are
processed by calling an error handler in the display. The handler is called with the display
as the first argument and the error-key as its second argument.

error — One of the following:

:access :drawable :implementation :value
:alloc :font :length :window
:atom :gcontext :match
:colormap :id-choice :name
:cursor :illegal-request :pixmap

event-key ’(member event-type*) Type

Defines a list that specifies all predefined event-types. Clients are informed of informa-
tion asynchronously by means of events. These events can be either asynchronously
generated from devices or generated as side effects of client requests.

event-type — One of the following:

:button-press :exposure :motion-notify
:button-release :focus-in :no-exposure
:circulate-notify :focus-out :property-notify
:circulate-request :graphics-exposure :reparent-notify
:client-message :gravity-notify :resize-request
:colormap-notify :keymap-notify :selection-clear
:configure-notify :key-press :selection-notify
:configure-request :key-release :selection-request
:create-notify :leave-notify :unmap-notify
:destroy-notify :map-notify :visibility-notify
:enter-notify :map-request

event-mask ’(or mask32 (list event-mask-class)) Type

Provides a way to specify a set of bits for an event bitmask. Two ways of specifying the
bits are allowed: by setting the event bits in a 32 bit mask, or by listing the keyword
names of the event bits in a list.

Introduction to CLX

1-16 CLX Programmer’s Reference

event-mask-class ’ (member event*) Type

The elements of the type event-mask-class are keyword names that correspond to a par-
ticular bit in an event bitmask.

event — One of the following:

:button-1-motion :enter-window :pointer-motion-hint
:button-2-motion :exposure :property-change
:button-3-motion :focus-change :resize-redirect
:button-4-motion :key-press :structure-notify
:button-5-motion :key-release :substructure-notify
:button-motion :keymap-state :substructure-redirect
:button-press :leave-window :visibility-change
:button-release :owner-grab-button
:colormap-change :pointer-motion

make-event-keys event-mask Function
Returns: event-keywords — Type list.

Returns a list of event-mask-class keyword names for the event bits that are set in the
specified event mask.

event-mask — An event mask (type mask32).

make-event-mask &rest keys Function
Returns:
 event-mask — Type mask32.

Constructs an event mask from a set of event-mask-class keyword names.

keys — event-mask-class keywords.

font ’(satisfies font-p) Type

A text font. See Section 8, Fonts and Characters, for additional information.

fontable ’(or stringable font) Type

A fontable is either a font object or the name of one of the fonts in the font database.

font-props ’ list Type

A list that contains alternating keywords and integers.

gcontext ’(satisfies gcontext-p) Type

A graphics context. See Section 5, Graphics Contexts, for additional information.

gcontext-key ’(member type*) Type

A list of predefined types for use in gcontext processing. Various information for graph-
ics output is stored in a graphics context (GC or GContext), such as foreground pixel,
background pixel, line width, clipping region, and so forth.

type — One of the following:

Introduction to CLX

1-17CLX Programmer’s Reference

:arc-mode :exposures :line-width
:background :fill-rule :plane–mask
:cap-style :fill-style :stipple
:clip-mask :font :subwindow-mode
:clip-x :foreground :tile
:clip-y :function :ts-x
:dash-offset :join-style :ts-y
:dashes :line-style

grab-status ’(member grab-type*) Type

There are two kinds of grabs: active and passive. An active grab occurs when a single
client grabs the keyboard and/or pointer explicitly. Clients can also grab a particular key-
board key or pointer button in a window. The grab activates when the key or button is
actually pressed, and is called a passive grab. Passive grabs can be very convenient for
implementing reliable pop-up menus.

 grab-type — One of the following:

:already-grabbed
:frozen
:invalid-time
:not-viewable
:success

image-depth ’(integer 0 32) Type

Used in determining the depth of a pixmap, window, or image. The value specifies the
number of bits deep that a given pixel has within a given pixmap, window, or image.

index-size ’(member :default 8 16) Type

Used to control the element size of the destination buffer given to the translate function
when drawing glyphs. If :default is specified, the size is based on the current font, if
known; otherwise, 16 is used.

int8 ’(signed-byte 8) Type

A signed integer value that is a maximum of eight bits long. A number of this type can
have a range from –128 to 127.

int16 ’(signed-byte 16) Type

A signed integer value that is a maximum of 16 bits long. A number of this type can have
a range from –32,768 to 32,767.

int32 ’(signed-byte 32) Type

A signed integer value that is a maximum of 32 bits long. A number of this type can have
a range from –2,147,483,648 to 2,147,483,647.

keysym ’card32 Type

Used as an encoding of a symbol on a keycap on a keyboard. It is an unsigned integer
value represented in a maximum of 32 bits long. A keysym type can have a range from 0
to 4,294,967,295.

mask16 ’ card16 Type

A positional bitmask that contains 16 boolean flags.

Introduction to CLX

1-18 CLX Programmer’s Reference

mask32 ’ card32 Type

A positional bitmask that contains 32 boolean flags.

modifier-key ’(member modifier*) Type

A keyword identifying one of the modifier keys on the keyboard device.

modifier — One of the following:

:shift :mod-2
:lock :mod-3
:control :mod-4
:mod-1 :mod-5

modifier-mask ’(or (member :any) mask16 (list modifier-key)) Type

A bitmask or list of keywords that specifies a set of modifier keys. The keyword :any is
equivalent to any subset of modifier key.

pixarray ’(or (array pixel (* *)) Type
 (array card16 (* *))
 (array card8 (* *))
 (array (unsigned-byte 4) (* *))
 (array bit (* *)))

Specifies a two-dimensional array of pixels.

pixel ’(unsigned-byte 32) Type

An unsigned integer value that is a maximum of 32 bits long. This gives a pixel type a
value range from 0 to 4,294,967,295. Useful values are dependent on the class of color-
map being used.

pixmap ’(satisfies pixmap-p) Type

A pixmap. See paragraph 4.8, Pixmaps, for additional information.

pixmap-format Structure

A structure that describes the storage format of a pixmap.

The pixmap-format structure contains slots for depth, bits-per-pixel, and scanline-
pad. The depth member indicates the number of bit planes in the pixmap. The bits-per-
pixel member indicates the number of bits used to represent a single pixel. For X, a pixel
can be 1, 4, 8, 16, 24, or 32 bits wide. As for bitmap-format , the scanline-pad member
indicates how many pixels are needed to pad the left edge of the scan-line.

depth Slot of pixmap-format

Type: image-depth.

The number of bit planes in the pixmap.

bits-per-pixel Slot of pixmap-format

Type: (member 1 4 8 16 24 32).

The number of consecutive bits used to encode a single pixel. The default
is 8.

Introduction to CLX

1-19CLX Programmer’s Reference

scanline-pad Slot of pixmap-format

Type: (member 8 16 32).

The number of bits to left-pad the scan-line, which can be 8, 16, or 32. The default is 8.

point-seq ’(repeat-seq (int16 x) (int16 y)) Type

The point-seq type is used to define sequences of (x,y) pairs of points. The paired values
are 16-bit, signed integer quantities. This gives the points in this type a range from
–32,768 to 32,767.

pointer-event-mask ’(or mask32 (list pointer-event-mask-class)) Type

Provides a way to specify a set of bits for an event bitmask. Two ways of specifying the
bits are allowed: by setting the event bits in a 32 bit mask, or by listing the keyword
names of the pointer related event bits in a list.

pointer-event-mask-class ’ (member event*) Type

A keyword name, for a pointer related event, that corresponds to a particular bit in an
event bitmask. The set of names is a subset of the names in the type event-mask-class.

event — One of the following:

:button-1-motion :button-motion :leave-window
:button-2-motion :button-press :pointer-motion
:button-3-motion :button-release :pointer-motion-hint
:button-4-motion :enter-window
:button-5-motion :keymap-state

rect-seq ’(repeat-seq (int16 x) (int16 y) (card16 width) (card16 height)) Type

rect-seq defines a four-tuple sequence of the form (x, y, width, height). The points x and y
are signed, 16-bit quantities with a range from –32,768 to 32,767. The width and height
values are unsigned, 16-bit quantities and range from 0 to 65,535.

repeat-seq (&rest elts) ’sequence Type

A subtype used to define repeating sequences.

Introduction to CLX

1-20 CLX Programmer’s Reference

resource-id ’card29 Type

A numeric identifier that is assigned by the server to a server resource object.

rgb-val ’(float 0.0 1.0) Type

An rgb-val is a floating-point value between 0 and 1 that specifies a saturation for a red,
green, or blue additive primary. The 0 value indicates no saturation and 1 indicates full
saturation.

screen ’(satisfies screen-p) Type

A display screen. See Section 3, Screens, for further information.

seg-seq ’(repeat-seq (int16 x1) (int16 y1) (int16 x2) (int16 y2)) Type

Defines sequences of (x1, y1, x2, y2) sets of points. The point values are 16-bit, signed
integer quantities. This gives the points in this type a range from –32,768 to 32,767.

state-mask-key ’(or modifier-key (member button*) Type

A keyword identifying one of the display modifier keys or pointer buttons whose state is
reported in device events.

button — One of the following:

:button-1 :button-4
:button-2 :button-5
:button-3

make-state-keys state-mask Function
Returns:
 state-keywords — Type list.

Returns a list of state-mask-key symbols corresponding to the state-mask. A symbol
belongs to the returned list if, and only if, the corresponding state-mask bit is 1.

state-mask — A 16-bit mask of type mask16.

make-state-mask &rest keys Function
Returns:
 mask — Type mask16.

Returns a 16-bit mask representing the given state-mask-key symbols. The returned
mask contains a 1 bit for each keyword.

keys — A list of state-mask-key symbols.

stringable ’(or string symbol) Type

Used for naming something. This type can be either a string or a symbol whose symbol-
name is used as the string containing the name. The case of the characters in the string is
ignored when comparing stringables.

Introduction to CLX

1-21CLX Programmer’s Reference

timestamp ’(or null card32) Type

An encoding of a time. nil stands for the current time.

visual-info Structure

A structure that represents a visual type. The elements of this structure are id, class, red-
mask, green-mask, blue-mask, bits-per-rgb, and colormap-entries.

id Slot of visual-info

Type: card29.

A unique identification number.

class Slot of visual-info

Type: (member :direct-color :gray-scale :pseudo-color :static-color
 :static-gray :true-color).

The class of the visual type.

red-mask, green-mask, blue-mask Slots of visual-info

Type: pixel.

The red-mask, green-mask, and blue-mask elements are only meaningful for the :di-
rect-color and :true-color classes. Each mask has one contiguous set of bits with no in-
tersections.

bits-per-rgb Slot of visual-info

Type: card8.

Specifies the log base 2 of the approximate number of distinct color values (individually)
of red, green, and blue. Actual RGB values are unsigned 16-bit numbers.

colormap-entries Slot of visual-info

Type: card16.

Defines the number of available colormap entries in a newly created colormap. For :di-
rect-color and :true-color, this is the size of an individual pixel subfield.

Introduction to CLX

1-22 CLX Programmer’s Reference

win-gravity ’ (member gravity*) Type

A keyword that specifies how to reposition a window when its parent is resized.

gravity — One of the following:

:center :north-west :static
:east :south :unmap
:north :south-east :west
:north-east :south-west

If a parent window is reconfigured without changing its inside width or height, then all
child windows move with the parent and are not changed. Otherwise, each child of the
resized parent is moved, depending on the child’s gravity attribute. See window-gravi-
ty, in paragraph 4.3, Window Attributes, for additional information.

window ’(satisfies window-p) Type

A window. See Section 4, Windows and Pixmaps, for additional information.

xatom ’(or string symbol) Type

A name that has been assigned a corresponding unique ID by the server. xatoms are used
to identify properties, selections, and types defined in the X server. An xatom can be
either a string or symbol whose symbol-name is used as the xatom name. The case of
the characters in the string are significant when comparing xatoms.

2-23CLX Programmer’s Reference

DISPLAYS

Introduction 2.1 A particular X server, together with its screens and input devices, is called a dis-
play. The CLX display object contains all the information about the particular display
and its screens, as well as the state that is needed to communicate with the display over a
particular connection.

Before your program can use a display, you must establish a connection to the X server
driving your display. Once you have established a connection, you then can use the CLX
macros and functions discussed in this section to return information about the display.
This section discusses how to:

• Open (connect) a display

• Obtain information about a display

• Access and change display attributes

• Close (disconnect) a display

Opening the 2.2 The open-display function is used to open a connection to an X server.
Display

open-display host &key :display :protocol Function
Returns:
 display — Type display.

Returns a display that serves as the connection to the X server and contains all the infor-
mation about that X server.

host — Specifies the name of the host machine on which the server executes. A string
must be acceptable as a host, but otherwise the possible types are not constrained
and will likely be very system dependent.

:display — An integer that specifies which display device on the host should be used for
this connection. This is needed since multiple displays can be controlled by a single
X server. The default is display 0 (zero).

:protocol — A keyword argument that specifies which network protocol should be used
for connecting to the server (for example, :tcp, :dna, or :chaos). The set of possible
values and the default value are implementation specific.

Authorization, if any, is assumed to come from the environment. After a successful call
to open-display, all screens on the display can be used by the client application.

Displays

2-24 CLX Programmer’s Reference

Display 2.3 The complete set of display attributes is discussed in the following
Attributes paragraphs.

display-authorization-data display Function
Returns:
 authorization-data — Type string.

Returns the authorization data string for display that was transmitted to the server by
open-display during connection setup. The data is specific to the particular authoriza-
tion protocol that was used. The display-authorization-name function returns the pro-
tocol used.

display — A display object.

display-authorization-name display Function
Returns:
 authorization-name — Type string.

Returns the authorization protocol namestring for display that was transmitted by open-
display to the server during connection setup. The authorization-name indicates what
authorization protocol the client expects the server to use. Specification of valid authori-
zation mechanisms is not part of the X protocol. A server that implements a different
protocol than the client expects, or a server that only implements the host-based mecha-
nism, can simply ignore this information. If both name and data strings are empty, this is
to be interpreted as “no explicit authorization.”

display — A display object.

display-bitmap-format display Function
Returns:
 bitmap-format — Type bitmap-format .

Returns the bitmap-format information for the specified display.

display — A display object.

display-byte-order display Function
Returns:
 byte-order — Either :lsbfirst or :msbfirst .

Returns the byte-order to be employed in communication with the server for the given
display. The possible values are as follows:

• :lsbfirst — Values are transmitted least significant byte first.

• :msbfirst — Values are transmitted most significant byte first.

Except where explicitly noted in the protocol, all 16-bit and 32-bit quantities sent by the
client must be transmitted with this byte-order, and all 16-bit and 32-bit quantities re-
turned by the server are transmitted with this byte-order.

display — A display object.

display-display display Function
Returns:
 display-number — Type integer.

Returns the display-number for the host associated with display.

display — A display object.

Displays

2-25CLX Programmer’s Reference

display-error-handler display Function
Returns:
 error-handler — Type function or sequence.

Returns and (with setf) sets the error-handler function for the given display. CLX calls
(one of) the display error handler functions to handle server errors returned to the con-
nection. The default error handler, default-error-handler , signals conditions as they
occur. See Section 16, Errors, for a list of the conditions that CLX can signal. For more
information about errors and error handling, refer to the section entitled Common Lisp
Condition System in the Lisp Reference manual.

If the value of error-handler is a sequence, it is expected to contain a handler function for
each specific error. The error code is used as an index into the sequence to fetch the ap-
propriate handler function. If this element is a function, it is called for all errors. Any
results returned by the handler are ignored since it is assumed the handler either takes
care of the error completely or else signals. The arguments passed to the handler function
are the display object, a symbol naming the type of error, and a set of keyword-value
argument pairs that vary depending on the type of error. For all core errors, the keyword-
value argument pairs are:

:current-sequence card16
:major card8
:minor card16
:sequence card16

For colormap, cursor, drawable, font, gcontext, id-choice, pixmap, and window er-
rors, the keyword-value pairs are the core error pairs plus:

:resource-id card32

For :atom errors, the keyword-value pairs are the core error pairs plus:

:atom-id card32

For :value errors, the keyword-value pairs are the core error pairs plus:

:value card32

display — A display object.

display-image-lsb-first-p display Function
Returns:
 image-lsb-first-p — Type boolean.

Although the server is generally responsible for byte swapping communication data to
match the client, images (pixmaps/bitmaps) are always transmitted and received in for-
mats (including byte order) specified by the server. Within images for each scan-line unit
in bitmaps or for each pixel value in pixmaps, the leftmost bit in the image as displayed
on the screen is either the least or most significant bit in the unit. For the given display,
display-image-lsb-first-p returns non-nil if the leftmost bit is the least significant bit;
otherwise, it returns nil .

display — A display object.

display-keycode-range display Function
Returns:
 min-keycode, max-keycode — Type card8.

Returns min-keycode and max-keycode as multiple values. See the display-max-key-
code and display-min-keycode functions for additional information.

Displays

2-26 CLX Programmer’s Reference

display — A display object.

display-max-keycode display Function
Returns:
 max-keycode — Type card8.

Returns the maximum keycode value for the specified display. This value is never great-
er than 255. Not all keycodes in the allowed range are required to have corresponding
keys.

display — A display object.

display-max-request-length display Function
Returns:
 max-request-length — Type card16.

Returns the maximum length of a request, in four-byte units, that is accepted by the spe-
cified display. Requests larger than this generate a length error, and the server will read
and simply discard the entire request. This length is always at least 4096 (that is, requests
of length up to and including 16384 bytes are accepted by all servers).

display — A display object.

display-min-keycode display Function
Returns:
 min-keycode — Type card8.

Returns the minimum keycode value for the specified display. This value is never less
than eight. Not all keycodes in the allowed range are required to have corresponding
keys.

display — A display object.

display-motion-buffer-size display Function
Returns:
 motion-buffer-size — Type card32.

Returns the approximate size of the motion buffer for the specified display. The server
can retain the recent history of pointer motion at a finer granularity than is reported by
:motion-notify events. Such history is available through the motion-events function.

display — A display object.

display-p display Function
Returns:
 display-p — Type boolean.

Returns non-nil if display is a display object; otherwise, returns nil .

display-pixmap-formats display Function
Returns:
 pixmap-formats — Type list.

Returns the list of pixmap-format values for the given display. This list contains one
entry for each depth value. The entry describes the format used to represent images of
that depth. An entry for a depth is included if any screen supports that depth, and all
screens supporting that depth must support (only) the format for that depth.

display — A display object.

Displays

2-27CLX Programmer’s Reference

display-plist display Function
Returns:
 plist — Type list.

Returns and (with setf) sets the property list for the specified display. This function pro-
vides a hook where extensions can add data.

display — A display object.

display-protocol-major-version display Function
Returns:
 protocol-major-version — Type card16.

Returns the major version number of the X protocol associated with the specified dis-
play. In general, the major version would increment for incompatible changes. The re-
turned protocol version number indicates the protocol the server actually supports. This
might not equal the version supported by the client. The server can (but need not) refuse
connections from clients that offer a different version than the server supports. A server
can (but need not) support more than one version simultaneously.

display — A display object.

display-protocol-minor-version display Function
Returns:
 protocol-minor-version — Type card16.

Returns the minor protocol revision number associated with the specified display. In
general, the minor version would increment for small upward compatible changes in the
X protocol.

display — A display object.

display-protocol-version display Function
Returns:
 protocol-major-version, protocol-minor-version — Type card16.

Returns protocol-major-version and protocol-minor-version as multiple values. See the
display-protocol-major-version and display-protocol-minor-version functions for
additional information.

display — A display object.

display-resource-id-base display Function
Returns:
 resource-id-base — Type resource-id.

Returns the resource-id-base value that was returned from the server during connection
setup for the specified display. This is used in combination with the resource-id-mask to
construct valid IDs for this connection.

display — A display object.

Displays

2-28 CLX Programmer’s Reference

display-resource-id-mask display Function
Returns:
 resource-id-mask — Type resource-id.

Returns the resource-id-mask that was returned from the server during connection setup
for the specified display. The resource-id-mask contains a single contiguous set of bits
(at least 18) which the client uses to allocate resource IDs for types window, pixmap,
cursor, font, gcontext, and colormap by choosing a value with (only) some subset of
these bits set, and oring it with the resource-id-base. Only values constructed in this way
can be used to name newly created server resources over this connection. Server re-
source IDs never have the top three bits set. The client is not restricted to linear or contig-
uous allocation of server resource IDs. Once an ID has been freed, it can be reused, but
this should not be necessary.

An ID must be unique with respect to the IDs of all other server resources, not just other
server resources of the same type. However, note that the value spaces of server resource
identifiers, atoms, visualids, and keysyms are distinguished by context, and as such are
not required to be disjoint (for example, a given numeric value might be both a valid win-
dow ID, a valid atom, and a valid keysym.)

display — A display object.

display-roots display Function
Returns:
 roots — A list of screens.

Returns a list of all the screen structures available for the given display.

display — A display object.

display-vendor display Function
Returns:
 vendor-name, release-number — Type card32.

Returns vendor-name and release-number as multiple values. See the display-vendor-
name and display-release-number functions for additional information.

display — A display object.

display-vendor-name display Function
Returns:
 vendor-name — Type string.

Returns a string that provides some vendor identification of the X server implementation
associated with the specified display.

display — A display object.

display-version-number display Function
Returns:
 version-number — Type card16.

Returns the X protocol version number for this implementation of CLX.

display — A display object.

display-xid display Function
Returns:
 resource-allocator — Type function.

Returns the function that is used to allocate server resource IDs for this display.

display — A display object.

Displays

2-29CLX Programmer’s Reference

with-display display &body body Macro

This macro is for use in a multi-process environment. with-display provides exclusive
access to the local display object for multiple request generation. It need not provide
immediate exclusive access for replies. That is, if another process is waiting for a reply
(while not in a with-display), then synchronization need not (but can) occur immediate-
ly. Except where noted, all routines effectively contain an implicit with-display where
needed, so that correct synchronization is always provided at the interface level on a per-
call basis. Nested uses of this macro work correctly. This macro does not prevent concur-
rent event processing (see with-event-queue).

display — A display.

Managing the 2.4 Most CLX functions cause output requests to be generated to an X
Output Buffer server. Output requests are not transmitted immediately but instead are stored in an out-

put buffer for the appropriate display. Requests in the output buffer are typically sent
only when the buffer is filled. Alternatively, buffered requests can be sent prior to proc-
essing an event in the input event queue (see paragraph 12.3, Processing Events). In ei-
ther case, CLX sends the output buffer automatically without explicit instructions from
the client application.

However, in some cases, explicit control over the output buffer is needed, typically to
ensure that the X server is in a consistent state before proceeding further. The display-
force-output and display-finish-output functions allow a client program to synchro-
nize with buffered output requests.

display-after-function display Function
Returns:
 after-function — Type function or null .

Returns and (with setf) sets the after-function for the given display. If after-function is
non-nil , it is a function that is called after every protocol request is generated, even those
inside an explicit with-display, but never called from inside the after-function. The
function is called inside the effective with-display for the associated request. The de-
fault value is nil . This can be set, for example, to #’display-force-output or #’display-
finish-output.

display — A display object.

display-force-output display Function

Forces any buffered output to be sent to the X server.

display — A display object.

display-finish-output display Function

Forces any buffered output to be sent to the X server and then waits until all requests have
been received and processed. Any errors generated are read and handled by the display
error handler. Any events generated by output requests are read and stored in the event
queue.

display — A display object.

Closing the 2.5 To close or disconnect a display from the X server, use close-display.
Display

Displays

2-30 CLX Programmer’s Reference

close-display display Function

Closes the connection to the X server for the specified display. It destroys all server re-
sources (window, font, pixmap, colormap, cursor, and gcontext), that the client ap-
plication has created on this display, unless the close down mode of the server resource
has been changed (see set-close-down-mode). Therefore, these server resources should
never be referenced again. In addition, this function discards any output requests that
have been buffered but have not yet been sent.

display — A display object.

3-31CLX Programmer’s Reference

SCREENS

Screens and 3.1 An X display supports graphical output to one or more screens. Each
Visuals screen has its own root window and window hierarchy. Each window belongs to exactly

one screen and cannot simultaneously appear on another screen.

The kinds of graphics hardware used by X screens can vary greatly in their support for
color and in their methods for accessing raster memory. X uses the concept of a visual
type (usually referred to simply as a visual) which uniquely identifies the hardware capa-
bilities of a display screen. Fundamentally, a visual is represented by a card29 integer
ID, which uniquely identifies the visual type relative to a single display. CLX also repre-
sents a visual with a visual-info structure that contains other attributes associated with a
visual (see paragraph 1.6, Data Types). A screen can support more than one depth (that
is, pixel size), and for each supported depth, a screen may support more than one visual.
However, it is more typical for a screen to have only a single depth and a single visual
type.

A visual represents various aspects of the screen hardware, as follows:

• A screen can be color or gray-scale.

• A screen can have a colormap that is either writable or read-only.

• A screen can have a single colormap or separate colormaps for each of the red,
green, and blue components. With separate colormaps, a pixel value is decomposed
into three parts to determine indexes into each of the red, green, and blue colormaps.

CLX supports the following classes of visual types: :direct-color, :gray-scale, :pseu-
do-color, :static-color, :static-gray, and :true-color. The following tables show how
the characteristics of a screen determine the class of its visual type.

For screens with a single colormap:

 Color Gray-Scale

 Read-only :static-color :static-gray
 Writable :pseudo-color :gray-scale

For screens with red, green, and blue colormaps:

 Read-only :true-color
 Writable :direct-color :gray-scale

The visual class also indicates how screen colormaps are handled. See paragraph 9.1,
Colormaps and Colors.

Screen 3.2 In CLX, each display screen is represented by a screen structure. The
Attributes display-roots function returns the list of screen structures for the display. The following

paragraphs discuss the attributes of CLX screen structures.

Screens

3-32 CLX Programmer’s Reference

screen-backing-stores screen Function
Returns:
 backing-stores-type — One of :always, :never, or :when-mapped.

Returns a value indicating when the screen supports backing stores, although it may be
storage limited in the number of windows it can support at once. The value returned can
be one of :always, :never, or :when-mapped.

screen — A screen.

screen-black-pixel screen Function
Returns:
 black-pixel — Type pixel.

Returns the black pixel value for the specified screen.

screen — A screen.

screen-default-colormap screen Function
Returns:
 default-colormap — Type colormap.

Returns the default-colormap for the specified screen. The default-colormap is initially
associated with the root window. Clients with minimal color requirements creating win-
dows of the same depth as the root may want to allocate from this map by default. Most
routine allocations of color should be made out of this colormap.

screen — A screen.

screen-depths screen Function
Returns:
 depths — Type alist.

Returns an association list that specifies what drawable depths are supported on the spe-
cified screen. Elements of the returned association list have the form (depth visual*),
where each visual is a visual-info structure. Pixmaps are supported for each depth listed,
and windows of that depth are supported if at least one visual type is listed for the depth.
A pixmap depth of one is always supported and listed, but windows of depth one might
not be supported. A depth of zero is never listed, but zero-depth :input-only windows
are always supported.

screen — A screen.

screen-event-mask-at-open screen Function
Returns:
 event-mask-at-open — Type mask32.

Returns the initial root event mask for the specified screen.

screen — A screen.

Screens

3-33CLX Programmer’s Reference

screen-height screen Function
Returns:
 height — Type card16.

Returns the height of the specified screen in pixel units.

screen — A screen.

screen-height-in-millimeters screen Function
Returns:
 height-in-millimeters — Type card16.

Returns the height of the specified screen in millimeters. The returned height can be used
with the width in millimeters to determine the physical size and the aspect ratio of the
screen.

screen — A screen.

screen-max-installed-maps screen Function
Returns:
 max-installed-colormaps — Type card16.

Returns the maximum number of colormaps that can be installed simultaneously with
install-colormap.

screen — A screen.

screen-min-installed-maps screen Function
Returns:
 min-installed-colormaps — Type card16.

Returns the minimum number of colormaps that can be guaranteed to be installed simul-
taneously.

screen — A screen.

screen-p screenFunction
Returns:
 screen-p — Type boolean.

Returns non-nil if the screen argument is a screen structure; otherwise, returns nil .

screen-plist screen Function
Returns:
 plist — Type list.

Returns and (with setf) sets the property list for the specified screen. This function pro-
vides a hook where extensions can add data.

screen — A screen.

screen-root screen Function
Returns:
 root-window — Type window or null .

Returns the root-window for the specified screen. This function is useful with functions
that take a parent window as an argument. The class of the root window is always :input-
output.

screen — A screen.

Screens

3-34 CLX Programmer’s Reference

screen-root-depth screen Function
Returns:
 root-window-depth — Type image-depth.

Returns the depth of the root window for the specified screen. Other depths can also be
supported on this screen.

screen — A screen.

screen-root-visual screen Function
Returns:
 root-window-visual — Type card29.

Returns the default visual type for the root window for the specified screen.

screen — A screen.

screen-save-unders-p screen Function
Returns:
 save-unders-p — Type boolean.

If true, the server can support the save-under mode in create-window and in changing
window attributes.

screen — A screen.

screen-white-pixel screen Function
Returns:
 white-pixel — Type pixel.

Returns the white pixel value for the specified screen.

screen — A screen.

screen-width screen Function
Returns:
 width — Type card16.

Returns the width of the specified screen in pixel units.

screen — A screen.

screen-width-in-millimeters screen Function
Returns:
 width-in-millimeters — Type card16.

Returns the width of the specified screen in millimeters. The returned width can be used
with the height in millimeters to determine the physical size and the aspect ratio of the
screen.

screen — A screen.

4-35CLX Programmer’s Reference

WINDOWS AND PIXMAPS

Drawables 4.1 Both windows and pixmaps can be used as sources and destinations in graphics
operations. These are collectively known as drawables. The following functions apply
to both windows and pixmaps.

drawable-display drawable Function

Returns the display for the specified drawable.

drawable — A drawable object.

drawable-equal drawable-1 drawable-2 Function

Returns true if the two arguments refer to the same server resource, and nil if they do not.

drawable-1, drawable-2 — drawable objects.

drawable-id drawable Function
Returns:
 id — Type resource-id.

Returns the unique resource ID assigned to the specified drawable.

drawable — A drawable object.

drawable-p drawable Function
Returns:
 boole — Type boolean.

Returns true if the argument is a drawable and nil otherwise.

drawable-plist drawable Function
Returns:
 plist — A property list.

Returns and (with setf) sets the property list for the specified drawable. This function
provides a hook where extensions can add data.

Creating 4.2 A window is a drawable that can also receive input events. CLX
Windows represents a window with a window object. The create-window function creates a new

window object.

create-window &key :parent :x :y :width :height (:depth 0) Function
(:border-width 0) (:class :copy) (:visual :copy) :background
:border :gravity :bit-gravity :backing-store :backing-planes :backing-pixel
:save-under :event-mask :do-not-propagate-mask :override-redirect :colormap
:cursor
Returns:
 window — Type window.

Creates and returns a window. A :parent window must be specified; the first window
created by a client will have a root window as its :parent. The new window is initially
unmapped and is placed on top of its siblings in the stacking order. A :create-notify
event is generated by the server.

Windows and Pixmaps

4-36 CLX Programmer’s Reference

The :class of a window can be :input-output or :input-only . Windows of class :input-
only cannot be used as the destination drawable for graphics output and can never re-
ceive :exposure events, but otherwise operate the same as :input-output windows. The
:class can also be :copy, in which case the new window has the same class as its :parent.

For an :input-output window, the :visual and :depth must be a combination supported
by the :parent’s screen, but the :depth need not be the same as the :parent’s. The :par-
ent of an :input-output window must also be :input-output . A :depth of 0 means that
the depth of the :parent is used.

For an :input-only window, the :depth must be zero, and the :visual must be supported
by the :parent’s screen. The :parent of an :input-only window can be of any class. The
only attributes that can be given for an :input-only window are :cursor, :do-not-prop-
agate-mask, :event-mask, :gravity , and :override-redirect .

:parent — The parent window. This argument is required.

:x, :y — int16 coordinates for the outside upper-left corner of the new window with re-
spect to the origin (inside upper-left corner) of the :parent. These arguments are
required.

:width , :height — card16 values for the size of the new window. These arguments are
required.

:depth — A card16 specifying the depth of the new window.

:class — One of :input-outpu t, :input-only , or :copy.

:visual — A card29 ID specifying the visual type of the new window.

:background, :backing-pixel, :backing-planes, :backing-store, :bit-gravity , :bor-
der, :border-width , :colormap, :cursor, :do-not-propagate-mask, :event-
mask, :gravity , :override-redirect , :save-under — Initial attribute values for the
new window. If nil , the default value is defined by the X protocol. See paragraph
4.3, Window Attributes.

Windows and Pixmaps

4-37CLX Programmer’s Reference

Window 4.3 The following paragraphs describe the CLX functions used to return or
Attributes change window attributes. Using the with-state macro improves the performance of at-

tribute access by batching related accesses in the minimum number of server requests.

drawable-border-width drawable Function
Returns:
 border-width — Type card16.

Returns the border-width of the drawable in pixels. It always returns zero if the drawable
is a pixmap or an :input-only window. Used with setf, this function also changes the
border width of the :input-only window. The default border width of a new window is
zero.

Changing just the border width leaves the outer left corner of a window in a fixed posi-
tion but moves the absolute position of the window’s origin. It is an error to make the
border width of an :input-only window nonzero.

When changing the border-width of a window, if the override-redirect attribute of the
window is :off and some other client has selected :substructure-redirect on the parent,
a :configure-request event is generated, and no further processing is performed. Other-
wise, the border-width is changed.

drawable — A drawable object.

drawable-depth drawable Function
Returns:
 depth — Type card8.

Returns the depth of the specified drawable (bits per pixel).

drawable — A drawable object.

drawable-height drawable Function
Returns:
 inside-height — Type card16.

drawable-width drawable Function
Returns:
 inside-width — Type card16.

These functions return the height or width of the drawable. These coordinates define the
inside size of the drawable, in pixels. Used with setf, these functions also change the
inside height or width of a window. However, the height or width of a pixmap cannot be
changed.

Changing the width and height resizes a window without changing its position or stack-
ing priority.

Changing the size of a mapped window may cause the window to lose its contents and
generate an :exposure event. If a mapped window is made smaller, :exposure events are
generated on windows that it formerly obscured.

When changing the size of a window, if the override-redirect attribute of the window is
:off and some other client has selected :substructure-redirect on the parent, a :config-
ure-request event is generated, and no further processing is performed. Otherwise, if
another client has selected :resize-redirect on the window, a :resize-request event is
generated, and the current inside width and height are maintained. Note that the over-
ride-redirect attribute of the window has no effect on :resize-redirect and that :sub-
structure-redirect on the parent has precedence over :resize-redirect on the window.

Windows and Pixmaps

4-38 CLX Programmer’s Reference

When the inside size of the window is changed, the children of the window can move
according to their window gravity. Depending on the window’s bit gravity, the contents
of the window can also be moved.

drawable — A drawable object.

drawable-x drawable Function
Returns:
 outside-left — Type int16.

drawable-y drawable Function
Returns:
 outside-top — Type int16.

These functions return the x or y coordinate of the specified drawable. They always re-
turn zero if the drawable is a pixmap. These coordinates define the location of the top left
pixel of the window’s border or of the window, if it has no border. Used with setf, these
functions also change the x or y coordinate of a window. However, the x or y coordinate
of a pixmap cannot be changed.

Changing the x and y coordinates moves a window without changing its size or stacking
priority. Moving a mapped window generates :exposure events on any formerly ob-
scured windows.

When changing the position of a window, if the override-redirect attribute of the window
is :off and some other client has selected :substructure-redirect on the parent, a :con-
figure-request event is generated, and no further processing is performed. Otherwise,
the window is moved.

drawable — A drawable object.

window-all-event-masks window Function
Returns:
 all-event-masks — Type mask32.

Returns the inclusive-or of the event masks selected on the specified window by all cli-
ents.

window — A window.

setf (window-background) window background Function
Returns:
 background — Either a pixel, a pixmap, :none, or :parent-relative.

Changes the background attribute of the window to the specified value. This operation is
not allowed on an :input-only window. Changing the background does not cause the
window contents to be changed. Note that the background of a window cannot be re-
turned from the X server. The default background of a new window is :none.

In general, the server automatically fills in exposed areas of the window when they are
first made visible. A background pixmap is tiled to fill each area. However, if the back-
ground is :none, the server will not modify exposed areas. If the background is :parent-
relative, the window and its parent must have the same depth. In this case, the window
shares the same background as its parent. The parent’s background is not copied and is
reexamined whenever the window’s background is required. If the background is :par-
ent-relative, the background pixmap tile origin is the same as the parent’s; otherwise,
the tile origin is the window origin.

window — A window.

background — Either a pixel, a pixmap, :none, or :parent-relative.

Windows and Pixmaps

4-39CLX Programmer’s Reference

window-backing-pixel window Function
Returns:
 backing-pixel — Type pixel.

Returns and (with setf) changes the value of the backing-pixel attribute for the specified
window. Changing the backing-pixel attribute of a mapped window may have no imme-
diate effect. The default backing-pixel of a new window is zero.

window — A window.

window-backing-planes window Function
Returns:
 backing-planes — Type pixel.

Returns and (with setf) changes the value of the backing-planes attribute for the speci-
fied window. Changing the backing-planes attribute of a mapped window may have no
immediate effect. The default backing-planes of a new window is all one’s.

window — A window.

window-backing-store window Function
Returns:
 backing-store-type — One of :always, :not-useful, or :when-mapped.

Returns and (with setf) changes the value of the backing-store attribute for the specified
window. Changing the backing-store attribute of an obscured window to :when-
mapped or :always may have no immediate effect. The default backing-store of a new
window is :not-useful.

window — A window.

window-bit-gravity window Function
Returns:
 bit-gravity — Type bit-gravity .

Returns and (with setf) changes the bit-gravity attribute of the window. If a window is
reconfigured without changing its inside width or height, the contents of the window
move with the window and are not lost. Otherwise, the contents of the resized window
are either moved or lost, depending on its bit-gravity attribute. The default bit-gravity of
a new window is :forget.

For example, suppose a window’s size is changed by W pixels in width and H pixels in
height. The following table shows, for each bit-gravity value, the change in position (rel-
ative to the window origin) that results for each pixel of the window contents.

Bit-Gravity X Change Y Change

:center W/2 H/2
:east W H/2
:north W/2 0
:north-east W 0
:north-west 0 0
:south W/2 H
:south-east W H
:south-west 0 H
:west 0 H/2

A :static bit-gravity indicates the contents or window should not move relative to the
origin of the root window.

Windows and Pixmaps

4-40 CLX Programmer’s Reference

A server can choose to ignore the specified bit-gravity attribute and use :forget instead.
A :forget bit-gravity attribute indicates that the window contents are always discarded
after a size change, even if backing-store or save-under attributes are :on. The window’s
background is displayed (unless it is :none), and zero or more :exposure events are gen-
erated.

window — A window.

setf (window-border) window border Function
Returns:
 border — Either a pixel, a pixmap, or :copy.

Changes the border attribute of the window to the specified value. This operation is not
allowed on an :input-only window. Changing the border attribute also causes the win-
dow border to be repainted. Note that the border of a window cannot be returned from the
X server. The default border of a new window is :copy.

A border pixmap is tiled to fill the border. The border pixmap tile origin is the same as the
background tile origin. A border pixmap and the window must have the same root and
depth. If the border is :copy, the parent’s border is copied and used; subsequent changes
to the parent’s border do not affect the window border.

window — A window.

border — Either a pixel, a pixmap, or :copy.

window-class window Function
Returns:
 class — Either :input-output or :input-only .

Returns the class of the specified window.

window — A window.

window-colormap window Function
Returns:
 colormap — Type colormap or null .

Returns and (with setf) changes the value of the colormap attribute for the specified win-
dow. A value of :copy is never returned, since the parent’s colormap attribute is actually
copied, but the attribute can be set to :copy in a setf form. Changing the colormap of a
window (defining a new map, not changing the contents of the existing map) generates a
:colormap-notify event. Changing the colormap of a visible window may have no im-
mediate effect on the screen (see install-colormap). The default colormap of a new win-
dow is :copy.

window — A window.

window-colormap-installed-p window Function
Returns:
 colormap-installed-p — Type boolean.

Returns non-nil if the colormap associated with this window is installed. Otherwise, this
function returns nil .

window — A window.

Windows and Pixmaps

4-41CLX Programmer’s Reference

setf (window-cursor) window cursor Function
Returns:
 cursor — Type cursor or :none.

Changes the cursor attribute of the window to the specified value. Changing the cursor of
a root window to :none restores the default cursor. Note that the cursor of window cannot
be returned from the X server. The default cursor of a new window is :none.

window — A window.

cursor — Either cursor or :none.

window-display window Function
Returns:
 display — Type display.

Returns the display object associated with the specified window.

window — A window.

window-do-not-propagate-mask window Function
Returns:
 do-not-propagate-mask — Type mask32.

Returns and (with setf) changes the do-not-propagate-mask attribute for the window.
The default do-not-propagate-mask of a new window is zero.

If a window receives an event from one of the user input devices, and if no client has
selected to receive the event, the event can instead be propagated up the window hierar-
chy to the first ancestor for which some client has selected it. However, any event type
selected by the do-not-propagate-mask is not be propagated. The types of events that can
be selected by the do-not-propagate-mask are those of type device-event-mask-class.
See paragraph 12.2, Selecting Events.

window — A window.

window-equal window-1 window-2 Function
Returns:
 boolean.

Returns non-nil if the two arguments are the same window, and nil if they are not.

window-1, window-2 — The windows to compare for equality.

window-event-mask window Function
Returns:
 event-mask — Type mask32.

Returns and (with setf) changes the value of the event-mask attribute for the window.
The default event-mask of a new window is zero.

window — A window.

window-gravity window Function
Returns:
 gravity — Type win-gravity .

Returns and (with setf) changes the gravity attribute of the window. If a parent window is
reconfigured without changing its inside width or height, then all child windows move
with the parent and are not changed. Otherwise, each child of the resized parent is
moved, depending on the child’s gravity attribute. The default gravity of a new window
is :north-west.

Windows and Pixmaps

4-42 CLX Programmer’s Reference

For example, suppose the size of the window’s parent is changed by W pixels in width
and H pixels in height. The following table shows, for each possible gravity value, the
resulting change in the window’s position relative to its parent’s origin. When the win-
dow is moved, two events are generated—a :configure-notify event followed by a
:gravity-notify event.

Gravity X Change Y Change

:center W/2 H/2
:east W H/2
:north W/2 0
:north-east W 0
:north-west 0 0
:south W/2 H
:south-east W H
:south-west 0 H
:west 0 H/2

A :static gravity indicates that the position of the window should not move relative to the
origin of the root window.

An :unmap gravity is like :north-west, except the window is also unmapped and an
:unmap-notify event is generated. This :unmap-notify event is generated after the
:configure-notify event is generated for the parent.

window — A window.

window-id window Function
Returns:
 The resource-id of the window.

Returns the unique ID assigned to window.

window — A window.

window-map-state window Function
Returns:
 map-state — One of :unmapped, :unviewable, or :viewable.

Returns the map state of window. A window is :unviewable if it is mapped but some
ancestor is unmapped.

window — A window.

window-override-redirect window Function
Returns:
 override-redirect — Either :on or :off .

Returns and (with setf) changes the value of the override-redirect attribute for window.
The default override-redirect of a new window is :off .

The override-redirect attribute determines whether or not attempts to change window
geometry or parent hierarchy can be redirected by a window manager or some other cli-
ent. The functions that might be affected by the override-redirect attribute are circulate-
window-down, circulate-window-up, drawable-border-width , drawable-height,
drawable-width, drawable-x, drawable-y, map-window, and window-priority .

window — A window.

Windows and Pixmaps

4-43CLX Programmer’s Reference

window-p object Function
Returns:
 window-p — Type boolean.

Returns non-nil if the object argument is a window; otherwise, it returns nil .

window-plist window Function
Returns:
 plist — A property list.

Returns and (with setf) sets the property list for the specified window. This function pro-
vides a hook where extensions can hang data.

window — A window.

setf (window-priority window) (&optional sibling) mode Function
Returns:
 mode — One of :above, :below, :bottom-if , :opposite, or :top-if .

Changes the stacking priority element of the window to the specified value. It is an error
if the sibling argument is specified and is not actually a sibling of the window. Note that
the priority of an existing window cannot be returned from the X server.

When changing the priority of a window, if the override-redirect attribute of the window
is :off and some other client has selected :substructure-redirect on the parent, a :config-
ure-request event is generated, and no further processing is performed. Otherwise, the
priority is changed.

window — A window.

sibling — An optional argument specifying that window is to be restacked relative to this
sibling window.

mode — One of :above, :below, :bottom-if , :opposite, or :top-if .

window-save-under window Function
Returns:
 save-under — Either :on or :off .

Returns and (with setf) changes the value of the save-under attribute for the specified
window. Changing the save-under attribute of a mapped window may have no immedi-
ate effect.

window — A window.

window-visual window Function
Returns:
 visual-type — Type card29.

Returns the visual-type associated with the specified window.

window — A window.

with-state drawable &body body Macro

Batches successive read and write accesses to window attributes and drawable geome-
try, in order to minimize the number of requests sent to the server. Batching occurs auto-
matically within the dynamic extent of the body. The body is not executed within a
with-display form.

Windows and Pixmaps

4-44 CLX Programmer’s Reference

All window attributes can be returned or changed in a single request. Similarly, all draw-
able geometry values can be returned or changed in a single request. with-state com-
bines accesses to these values into the minimum number of server requests necessary to
guarantee that each read access returns the current server state of the drawable. The
number of server requests sent depends on the sequence of calls to reader and setf func-
tions within the dynamic extent of the body. There are two groups of reader and setf
functions—the Window Attributes group and the Drawable Geometry group—as shown
in Table 4-1.

Windows and Pixmaps

4-45CLX Programmer’s Reference

Table 4-1 Groups of Reader and Setf Functions

Group Reader Functions Setf Functions

Window window-all-event-masks window-background
Attributes window-backing-pixel window-backing-pixel

window-backing-planes window-backing-planes
window-backing-store window-backing-store
window-bit-gravity window-bit-gravity
window-class window-border
window-colormap window-colormap
window-colormap- window-cursor
 installed-p window-do-not-propagate-mask
window-do-not- window-event-mask
 propagate-mask window-gravity
window-event-mask window-override-redirect
window-gravity window-save-under
window-map-state
window-override-redirect
window-save-under
window-visual

Drawable drawable-border-width drawable-border-width
Geometry drawable-depth drawable-height

drawable-height drawable-width
drawable-root drawable-x
drawable-width drawable-y
drawable-x window-priority
drawable-y

The results from a sequence of calls to setf functions in a given group are cached and sent
in a single server request, either upon exit from the body or when a reader function from
the corresponding group is called.

with-state sends a single request to update all its cached values for the drawable before
the first call to a reader function within the body and also before the first call to a reader
function following a sequence of calls to setf functions from the corresponding group.

drawable — A display.

body — The forms in which attributes accesses are batched.

Stacking Order 4.4 Sibling windows can stack on top of each other. Windows above can obscure or
occlude lower windows. This relationship between sibling windows is known as the
stacking order. The window-priority function can be used to change the stacking order
of a single window. CLX also provides functions to raise or lower children of a window.
Raising a mapped window can generate :exposure events for the window and any
mapped subwindows that were formerly obscured. Lowering a mapped window can
generate :exposure events on any windows it formerly obscured.

circulate-window-down window Function

Lowers the highest mapped child of the specified window that partially or completely
occludes another child to the bottom of the stack. Completely unobscured children are
unaffected. Exposure processing is performed on formerly obscured windows.

Windows and Pixmaps

4-46 CLX Programmer’s Reference

If some other client has selected :substructure-redirect on the window, a :circulate-re-
quest event is generated, and no further processing is performed. Otherwise, the child
window is lowered and a :circulate-notify event is generated if the window is actually
restacked.

window — A window.

circulate-window-up window Function

Raises the lowest mapped child of the specified window that is partially or completely
occluded by another child to the top of the stack. Completely unobscured children are
unaffected. Exposure processing is performed on formerly obscured windows.

If another client has selected :substructure-redirect on the window, a :circulate-re-
quest event is generated, and no further processing is performed. Otherwise, the child
window is raised and a :circulate-notify event is generated if the window is actually re-
stacked.

window — A window.

Window 4.5 All the windows in X are arranged in a strict hierarchy. At the top of
Hierarchy the hierarchy are the root windows, which cover the display screens. Each root window

is partially or completely covered by its child windows. All windows, except for root
windows, have parents. Child windows can have their own children. In this way, a tree of
arbitrary depth on each screen can be created. CLX provides several functions for ex-
amining and modifying the window hierarchy.

drawable-root drawable Function
Returns:
 root-window — Type window.

Returns the root window of the specified drawable.

drawable — A drawable.

query-tree window &key (:result-type ‘list) Function
Returns:

children — Type sequence of window.
parent — Type window or null .
root — Type window.

Returns the children windows, the parent window, and the root window for the specified
window. The children are returned as a sequence of windows in current stacking order,
from bottom-most (first) to top-most (last). The :result-type specifies the type of chil-
dren sequence returned.

window — A window.

:result-type — A valid type specifier for a sub-type of sequence. The default is a list.

reparent-window window parent x y Function

Changes a window’s parent within a single screen. There is no way to move a window
between screens.

The specified window is reparented by inserting it as a child of the specified parent. If the
window is mapped, an unmap-window operation is automatically performed on the
specified window. The window is then removed from its current position in the hierarchy
and inserted as the child of the specified parent. The window is placed on top in the stack-
ing order with respect to sibling windows.

Windows and Pixmaps

4-47CLX Programmer’s Reference

After reparenting the specified window, a :reparent-notify event is generated. The over-
ride-redirect attribute of the window is passed on in this event. Window manager clients
normally should ignore this event if this attribute is :on. See Section 12, Events and In-
put, for more information on :reparent-notify event processing. Finally, if the specified
window was originally mapped, a map-window operation is automatically performed
on it.

The X server performs normal exposure processing on formerly obscured windows. It
might not generate :exposure events for regions from the initial unmap-window opera-
tion if they are immediately obscured by the final map-window operation.

It is an error if any of the following are true:

• The new parent window is not on the same screen as the old parent window.

• The new parent window is the specified window or an inferior of the specified win-
dow.

• The specified window has a :parent-relative background attribute and the new par-
ent window is not the same depth as the specified window.

window — A window.

parent — The new parent window.

x, y — The position (type int16) of the window in its new parent. These coordinates are
relative to the parent’s origin, and specify the new position of the upper, left, outer
corner of the window.

translate-coordinates source source-x source-y destination Function
Returns:

destination-x — Type int16 or null .
destination-y — Type int16 or null .
destination-child — Type window or null .

Returns the position defined by source-x and source-y (relative to the origin of the source
window), expressed as coordinates relative to the origin of the destination window.

source — A window defining the source coordinate system.

source-x, source-y — Coordinates (int16) relative to the origin of the source window.

destination — A window defining the destination coordinate system.

Mapping 4.6 A window is considered mapped if a map-window call has been made
Windows on it. When windows are first created, they are not mapped because an application may

wish to create a window long before it is mapped to the screen. A mapped window may
not be visible on the screen for one of the following reasons:

• It is obscured by another opaque sibling window.

• One of its ancestors is not mapped.

• It is entirely clipped by an ancestor.

Windows and Pixmaps

4-48 CLX Programmer’s Reference

A subwindow will appear on the screen as long as all of its ancestors are mapped and not
obscured by a sibling or clipped by an ancestor. Mapping a window that has an un-
mapped ancestor does not display the window, but marks it as eligible for display when
the ancestor becomes mapped. Such a window is called unviewable. When all its ances-
tors are mapped, the window becomes viewable and remains visible on the screen if not
obscured by any sibling or ancestor.

Any output to a window not visible on the screen is discarded. :exposure events are gen-
erated for the window when part or all of it becomes visible on the screen. A client only
receives the :exposure events if it has selected them. Mapping or unmapping a window
does not change its stacking order priority.

map-window window Function

Maps the window. This function has no effect when the window is already mapped.

If the override-redirect attribute of the window is :off and another client has selected
:substructure-redirect on the parent window, the X server generates a :map-request
event and the map-window function does not map the window. Otherwise, the window is
mapped, and the X server generates a :map-notify event.

If the window becomes visible and no earlier contents for it are remembered, map-win-
dow tiles the window with its background. If no background was defined for the win-
dow, the existing screen contents are not altered, and the X server generates one or more
:exposure events. If a backing-store was maintained while the window was unmapped,
no :exposure events are generated. If a backing-store will now be maintained, a full win-
dow exposure is always generated. Otherwise, only visible regions may be reported.
Similar tiling and exposure take place for any newly viewable inferiors.

map-window generates :exposure events on each :input-output window that it causes
to become visible.

window — A window.

Windows and Pixmaps

4-49CLX Programmer’s Reference

map-subwindows window Function

Maps all child windows for a specified window in top-to-bottom stacking order. The X
server generates an :exposure event on each newly visible window. This function is
much more efficient than mapping each child individually.

window — A window.

unmap-window window Function

Unmaps the specified window and causes the X server to generate an :unmap-notify
event. If the specified window is already unmapped, unmap-window has no effect. Nor-
mal exposure processing on formerly obscured windows is performed. Any child win-
dow is no longer viewable. Unmapping the window generates :exposure events on
windows that were formerly obscured by window and its children.

window — A window.

unmap-subwindows window Function

Unmaps all child windows for the specified window in bottom to top stacking order. The
X server generates an :unmap-notify event on each child and :exposure events on for-
merly obscured windows. Using this function is much more efficient than unmapping
child windows individually.

window — A window.

Destroying 4.7 CLX provides functions to destroy a window or destroy all children of
Windows a window. Note that by default, windows are destroyed when a connection is closed. For

further information, see paragraph 2.4, Closing the Display, and paragraph 12.4, Client
Termination.

destroy-window window Function

Destroys the specified window as well as all of its inferiors. The windows should never
again be referenced. If the specified window is mapped, it is automatically unmapped.
The window and all of its inferiors are then destroyed, and a :destroy-notify event is
generated for each window. The ordering of the :destroy-notify events is such that for
any given window being destroyed, :destroy-notify is generated on the window’s infe-
riors before being generated on the window. The ordering among siblings and across
sub-hierarchies is not otherwise constrained. If the window is a root window, no win-
dows are destroyed. Destroying a mapped window generates :exposure events on other
windows that the mapped window obscured.

window — A window.

destroy-subwindows window Function

Destroys all inferiors of the specified window, in bottom to top stacking order. The X
server generates a :destroy-notify event for each window. This is much more efficient
than deleting many windows individually. The inferiors should never be referenced
again.

window — A window.

Windows and Pixmaps

4-50 CLX Programmer’s Reference

Pixmaps 4.8 A pixmap is a three-dimensional array of bits. A pixmap is normally
thought of as a two-dimensional array of pixels, where each pixel can be a value from 0 to
2
n

� 1, where n is the depth of the pixmap. A pixmap can also be thought of as a stack of n
bitmaps. A bitmap is a single bit pixmap of depth 1. CLX provides functions to:

• Create or free a pixmap

• Test if an object is a pixmap

• Test if two pixmap objects are equal

• Return the pixmap resource ID from a pixmap object

Note that pixmaps can only be used on the screen where they were created. Pixmaps are
off-screen server resources that are used for a number of operations. These include de-
fining patterns for cursors or as the source for certain raster operations.

create-pixmap &key :width :height :depth :drawable Function
Returns:
 pixmap — Type pixmap.

Creates a pixmap of the specified :width , :height, and :depth. It is valid to pass a win-
dow whose class is :input-only as the :drawable argument. The :width and :height ar-
guments must be nonzero. The :depth must be supported by the screen of the specified
:drawable.

:width , :height — The nonzero width and height (type card16).

:depth — The depth (type card8) of the pixmap.

:drawable — A drawable which determines the screen where the pixmap will be used.

free-pixmap pixmap Function

Allows the X server to free the pixmap storage when no other server resources reference
it. The pixmap should never be referenced again.

pixmap — A pixmap.

pixmap-display pixmap Function
Returns:
 display — Type display.

Returns the display object associated with the specified pixmap.

pixmap — A pixmap.

pixmap-equal pixmap-1 pixmap-2 Function

Returns true if the two arguments refer to the same server resource, and nil if they do not.

pixmap-1, pixmap-2 — A three-dimensional array of bits to be tested.

pixmap-id pixmap Function
Returns:
 id — Type resource-id.

Returns the unique resource ID that has been assigned to the specified pixmap.

pixmap — A pixmap.

Windows and Pixmaps

4-51CLX Programmer’s Reference

pixmap-p object Function
Returns:
 pixmap — Type boolean.

Returns true if the argument is a pixmap object and nil otherwise.

pixmap-plist pixmap Function
Returns:
 plist — A property list.

Returns and (with setf) sets the property list for the specified pixmap. This function pro-
vides a hook where extensions can add data.

pixmap — A pixmap.

Windows and Pixmaps

4-52 CLX Programmer’s Reference

5-53CLX Programmer’s Reference

GRAPHICS CONTEXTS

Introduction 5.1 Clients of the X Window System specify the visual attributes of graphical output
primitives by using graphics contexts. A graphics context is a set of graphical attribute
values such as foreground color, font, line style, and so forth. Like a window, a graphics
context is another kind of X server resource which is created and maintained at the re-
quest of a client program. The client program, which may use several different graphics
contexts at different times, is responsible for specifying a graphics context to use with
each graphical output function.

CLX represents a graphics context by an object of type gcontext and defines functions to
create, modify, and manipulate gcontext objects. By default, CLX also records the con-
tents of graphics contexts in a cache associated with each display. This local caching of
graphics contexts has two important advantages:

1. Communication efficiency — Changes to attribute values in a gcontext are first
made only in the local cache. Just before a gcontext is actually used, CLX automati-
cally sends any changes to the X server, batching all changes into a single request.

2. Inquiring gcontext contents — Accessor functions can be used to return the value of
any individual gcontext component by reading the copy of the gcontext from the
cache. This kind of inquiry is not supported by the basic X protocol. There is no way
for a client program to request an X server to return the contents of a gcontext.

Caching graphics contexts can result in a synchronization problem if more than one cli-
ent program modifies a graphics context. However, this problem is unusual. Sharing a
graphics context among several clients, while possible, is not expected to be useful and is
not very easy to do. At any rate, a client program can choose to not cache a gcontext
when it is created.

Each client program must determine its own policy for creating and using graphics con-
texts. Depending on the display hardware and the server implementation, creating a new
graphics context can be more or less expensive than modifying an existing one. In gener-
al, some amount of graphics context information can be cached in the display hardware,
in which case modifying the hardware cache is faster than replacing it. Typical display
hardware can cache only a small number of graphics contexts. Graphics output is fastest
when only a few graphics contexts are used without heavy modifications.

This section explains the CLX functions used to:

• Create a graphics context

• Return the contents of a graphics context

• Change the contents of a graphics context

• Copy a graphics context

• Free a graphics context

Graphics Contexts

5-54 CLX Programmer’s Reference

Creating 5.2 To create a graphics context, use create-gcontext.
Graphics
Contexts

create-gcontext &key :arc-mode :background (:cache-p t) :cap-style Function
:clip-mask :clip-ordering :clip-x :clip-y :dash-offset :dashes
:drawable :exposures :fill-rule :fill-style :font :foreground
:function :join-style :line-style :line-width :plane-mask :stipple
:subwindow-mode :tile :ts-x :ts-y
Returns:
 gcontext — Type gcontext.

Creates, initializes, and returns a graphics context (gcontext). The graphics context can
only be used with destination drawables having the same root and depth as the specified
:drawable. If :cache-p is non-nil , the graphics context state is cached locally, and
changing a component has no effect unless the new value differs from the cached value.
Changes to a graphics context (setf and with-gcontext) are always deferred regardless
of the cache mode and sent to the server only when required by a local operation or by an
explicit call to force-gcontext-changes.

:cache-p — Specifies if this graphics context should be cached locally by CLX. If nil
then the state is not cached, otherwise a local cache is kept.

:drawable — The drawable whose root and depth are to be associated with this graph-
ics context. This is a required keyword argument.

:arc-mode, :background, :cap-style, :clip-mask, :clip-ordering , :clip-x , :clip-y,
:dash-offset, :dashes, :exposures, :fill-rule , :fill-style , :font , :foreground,
:function , :join-style, :line-style, :line-width , :plane-mask, :stipple, :subwin-
dow-mode, :tile , :ts-x, :ts-y — Initial attribute values for the graphics context.

Graphics Contexts

5-55CLX Programmer’s Reference

All of the graphics context components are set to the values that are specified by the key-
word arguments, except that a value of nil causes the default value to be used. These de-
fault values are as follows:

Component Default Value

arc-mode :pie-slice
background 1
cap-style :butt
clip-mask :none
clip-ordering :unsorted
clip-x 0
clip-y 0
dash-offset 0
dashes 4 (that is, the list ’(4, 4))
exposures :on
fill-rule :even-odd
fill-style :solid
font server dependent
foreground 0
function boole-1
join-style :miter
line-style :solid
line-width 0
plane-mask A bit mask of all ones
stipple Pixmap of unspecified size filled with ones
subwindow-mode :clip-by-children
tile Pixmap of an unspecified size filled with the

foreground pixel (that is, the client-specified pixel
if any, or else 0)

ts-x 0
ts-y 0

Note that foreground and background do not default to any values that are likely to be
useful on a color display. Since specifying a nil value means use the default, this implies
for clip-mask that an empty rectangle sequence cannot be specified as an empty list;
:none must be used instead. Specifying a stringable for font causes an implicit open-
font call to occur.

Graphics 5.3 The following paragraphs describe the CLX functions used to return or
Context change the attributes of a gcontext. Functions that return the contents of a
Attributes gcontext return nil if the last value stored is unknown (for example, if

the gcontext was not cached or if the gcontext was not created by the inquiring client).

gcontext-arc-mode gcontext Function
Returns:
 arc-mode — Either :chord or :pie-slice.

Returns and (with setf) changes the arc-mode attribute of the specified graphics context.

The arc-mode attribute of a graphics context controls the kind of filling, if any, to be done
by the draw-arcs function. A value of :chord specifies that arcs are filled inward to the
chord between the end points of the arc. :pie-slice specifies that arcs are filled inward to
the center point of the arc, creating a pie slice effect.

Graphics Contexts

5-56 CLX Programmer’s Reference

gcontext — A gcontext.

gcontext-background gcontext Function
Returns:
 background — Type card32.

Returns and (with setf) changes the background attribute of the specified graphics con-
text.

The background attribute specifies the pixel value drawn for pixels that are not set in a
bitmap and for pixels that are cleared by a graphics operation, such as the gaps in dashed
lines.

gcontext — A gcontext.

gcontext-cache-p gcontext Function
Returns:
 cache-p — Type boolean.

Returns and (with setf) changes the local cache mode for the gcontext. If true, the state of
the gcontext is cached by CLX and changes to its attributes have no effect unless the new
value differs from its cached value.

gcontext — A gcontext.

gcontext-cap-style gcontext Function
Returns:
 cap-style — One of :butt , :not-last, :projecting , or :round .

Returns and (with setf) changes the cap-style attribute of the specified graphics context.

The cap-style attribute of a graphics context defines how the end points of a path are
drawn. The possible values and their interpretations are as follows:

Cap-Style Interpretation

:butt Square at the end point (perpendicular to the slope of the
line) with no projection beyond.

:not-last Equivalent to :butt , except that for a line-width of zero
or one the final end point is not drawn.

:projecting Square at the end, but the path continues beyond the
end point for a distance equal to half the line-width.
This is equivalent to :butt for line-width zero or one.

:round A circular arc with the radius equal to 1/2 of the
line-width, centered on the end point. This is equivalent
to :butt for line-width zero or one.

The following table describes what happens when the end points of a line are identical.
The effect depends on both the cap style and line width.

Graphics Contexts

5-57CLX Programmer’s Reference

Cap-Style Line-Width Effect

:butt thin Device dependent, but the desired
effect is that a single pixel is drawn.

:butt wide Nothing is drawn.

:not-last thin Device dependent, but the desired
effect is that nothing is drawn.

:projecting thin Same as :butt with thin line-width.

:projecting wide The closed path is a square, aligned
with the coordinate axes, centered at
the end point, with sides equal to the
line-width.

:round wide The closed path is a circle, centered

at the end point, with diameter equal
to the line-width.

:round thin Same as :butt with thin line-width.

gcontext — A gcontext.

gcontext-clip-mask gcontext &optional ordering Function

Returns and (with setf) changes the clip-mask attribute of the graphics context.

When changing the clip-mask attribute, the new clip-mask can be specified as a pixmap
or a rect-seq or as the values :none or nil . The ordering argument can be specified only
with setf when the new clip-mask is a rect-seq.

The clip-mask attribute of a graphics context affects all graphics operations and is used
to restrict output to the destination drawable. The clip-mask does not clip the source of a
graphics operation. A value of :none for clip-mask indicates that no clipping is to be
done.

If a pixmap is specified as the clip-mask, it must have depth one and the same root as the
specified graphics context. Pixels where the clip-mask has a one bit are drawn. Pixels
outside the area covered by the clip-mask or where the clip-mask has a zero bit are not
drawn.

If a sequence of rectangles is specified as the clip-mask, the output is clipped to remain
contained within the rectangles. The rectangles should be non-intersecting, or the results
of graphics operations will be undefined. The rectangle coordinates are interpreted rela-
tive to the clip origin. Note that the sequence of rectangles can be empty, which effective-
ly disables output. This is the opposite of setting the clip-mask to :none.

Graphics Contexts

5-58 CLX Programmer’s Reference

If known by the client, the ordering of clip-mask rectangles can be specified to provide
faster operation by the server. A value of :unsorted means the rectangles are in arbitrary
order. A value of :y-sorted means that the rectangles are non-decreasing in their Y ori-
gin. A :yx-sorted value is like :y-sorted with the additional constraint that all rectangles
with an equal Y origin are non-decreasing in their X origin. A :yx-banded value addi-
tionally constrains :yx-sorted by requiring that, for every possible Y scan line, all rec-
tangles that include that scan line have an identical Y origins and Y extents. If incorrect
ordering is specified, the X server may generate an error, but it is not required to do so. If
no error is generated, the results of the graphics operations are undefined.

gcontext — A gcontext.

ordering — One of :unsorted, :y-sorted, :yx-banded, :yx-sorted, or nil .

gcontext-clip-x gcontext Function
Returns:
 clip-x — Type int16.

Returns and (with setf) changes the clip-x attribute of the specified graphics context.

The clip-x and clip-y attributes specify the origin for the clip-mask, whether it is a pix-
map or a sequence of rectangles. These coordinates are interpreted relative to the origin
of whatever destination drawable is specified in a graphics operation.

gcontext — A gcontext.

gcontext-clip-y gcontext Function
Returns:
 clip-y — Type int16.

Returns and (with setf) changes the clip-y attribute of the specified graphics context.

The clip-x and clip-y attributes specify the origin for the clip-mask, whether it is a pix-
map or a sequence of rectangles. These coordinates are interpreted relative to the origin
of whatever destination drawable is specified in a graphics operation.

gcontext — A gcontext.

gcontext-dash-offset gcontext Function
Returns:
 dash-offset — Type card16.

Returns and (with setf) changes the dash-offset attribute of the specified graphics con-
text.

The dash-offset attribute of a graphics context defines the phase of the pattern contained
in the dashes attribute. This phase specifies how many elements (pixels) into the path the
pattern should actually begin in any single graphics operation. Dashing is continuous
through path elements combined with a join-style, but is reset to the dash-offset each
time a cap-style is applied at a line end point.

gcontext — A gcontext.

gcontext-dashes gcontext Function
Returns:
 dashes — Type sequence or card8.

Returns and (with setf) changes the dashes attribute of the specified graphics context.
The sequence must be non-empty and the elements must be non-zero card8 values.

Graphics Contexts

5-59CLX Programmer’s Reference

The dashes attribute in a graphics context specifies the pattern that is used for graphics
operations which use the dashed line styles. It is a non-nil sequence with each element
representing the length of a single dash or space. The initial and alternating elements of
the dashes are the even dashes, while the others are the odd dashes. An odd length se-
quence is equivalent to the same sequence concatenated with itself to produce an even
length sequence. All of the elements of a dashes sequence must be non-zero.

Specifying a single integer value, N, for the dashes attribute is an abbreviated way of
specifying a two element sequence with both elements equal to the specified value [N,
N].

The unit of measure for dashes is the same as in the ordinary coordinate system. Ideally, a
dash length is measured along the slope of the line, but server implementations are only
required to match this ideal for horizontal and vertical lines.

gcontext — A gcontext.

gcontext-display gcontext Function
Returns:
 display — Type display.

Returns the display object associated with the specified gcontext.

gcontext — A gcontext.

gcontext-equal gcontext-1 gcontext-2 Function
Returns:
 equal-p — Type boolean.

Returns true if the two arguments refer to the same server resource, and nil if they do not.

gcontext-1, gcontext-2 — A gcontext.

gcontext-exposures gcontext Function
Returns:
 exposures — Either :off or :on.

Returns and (with setf) changes the exposures attribute of the specified graphics context.

The exposures attribute in a graphics context controls the generation of :graphics-expo-
sure events for calls to the copy-area and copy-plane functions. If :on, :graphics-ex-
posure events will be reported when calling the copy-area and copy-plane functions
with this graphics context. Otherwise, if :off , the events will not be reported.

gcontext — A gcontext.

gcontext-fill-rule gcontext Function
Returns:
 fill-rule — Either :even-odd or :winding .

Returns and (with setf) changes the fill-rule attribute of the specified graphics context.

The fill-rule attribute in a graphics context specifies the rule used to determine the interi-
or of a filled area. It can be specified as either :even-odd or :winding .

The :even-odd rule defines a point to be inside if any infinite ray starting at the point
crosses the border an odd number of times. Tangencies do not count as a crossing.

Graphics Contexts

5-60 CLX Programmer’s Reference

The :winding rule defines a point to be inside if any infinite ray starting at the point
crosses an unequal number of clockwise and counterclockwise directed border seg-
ments. A clockwise directed border segment crosses the ray from left to right as observed
from the point. A counterclockwise segment crosses the ray from right to left as observed
from the point. The case where a directed line segment is coincident with the ray is unin-
teresting because you can simply choose a different ray that is not coincident with a seg-
ment.

For both :even-odd and :winding , a point is infinitely small, and the border is an infi-
nitely thin line. A pixel is inside if the center point of the pixel is inside, and the center
point is not on the border. If the center point is on the border, the pixel is inside if, and
only if, the polygon interior is immediately to its right (x increasing direction). Pixels
with centers along a horizontal edge are a special case and are inside if, and only if, the
polygon interior is immediately below (y increasing direction).

gcontext — A gcontext.

gcontext-fill-style gcontext Function
Returns:
 fill-style — One of :opaque-stippled, :solid, :stippled, or :tiled.

Returns and (with setf) changes the fill-style attribute of the specified graphics context.

The fill-style attribute of a graphics context defines the contents of the source for line,
text, and fill graphics operations. It determines whether the source image is drawn with a
solid color, a tile, or a stippled tile. The possible values and their meanings are as follows:

Fill-Style Meaning

:opaque-stippled Filled with a tile with the same width and height as
stipple, but with the background value used everywhere
stipple has a zero and the foreground pixel value used
everywhere stipple has a one.

:solid Filled with the foreground pixel value.

:stippled Filled with the foreground pixel value masked by
stipple.

:tiled Filled with tile.

When drawing lines with line-style :double-dash, the filling of the odd dashes are con-
trolled by the fill-style in the following manner:

Fill-Style Effect

:opaque-stippled Same as for even dashes.

:solid Filled with the background pixel value.

:stippled Filled with the background pixel value masked by
stipple.

:tiled Filled the same as the even dashes.

Graphics Contexts

5-61CLX Programmer’s Reference

gcontext — A gcontext.

gcontext-font gcontext &optional metrics-p Function
Returns:
 font — Type font or null .

Returns and (with setf) changes the font attribute of the specified graphics context. If the
stored font is known, it is returned. If it is not known and the metrics-p argument is nil ,
then nil is returned. If the font is not known and metrics-p is true, then a pseudo-font is
constructed and returned. For a constructed pseudo-font, full metric and property infor-
mation can be obtained, but it does not have a name or a resource ID, and attempts to use
it where a resource ID is required results in an invalid-font error.

The font attribute in a graphics context defines the default text font used in text drawing
operations. When setting the value of the font attribute, either a font object or a font
name can be used. If a font name is passed, open-font is call automatically to get the font
object.

gcontext — A gcontext.

metrics-p — Specifies whether a pseudo-font is returned when the real font stored in the
graphics context is not known. The default is nil , which means do not return a pseu-
do-font.

gcontext-foreground gcontext Function
Returns:
 foreground — Type card32.

Returns and (with setf) changes the foreground attribute of the specified graphics con-
text.

The foreground attribute of a graphics context specifies the pixel value drawn for set bits
in a bitmap and for bits set by a graphics operation.

gcontext — A gcontext.

gcontext-function gcontext Function
Returns:
 function — Type boole-constant.

Returns the function of the specified graphics context.

In all graphic operations, given a source pixel and a corresponding destination pixel, the
resulting pixel drawn is computed bitwise on the bits of the source and destination pix-
els. That is, a logical operation is used to combine each bit plane of corresponding source
and destination pixels. The graphics context function attribute specifies the logical op-
eration used via one of the 16 operation codes defined by Common Lisp for the boole
function.

The following table shows each of the logical operation codes that can be given by the
function attribute. For each operation code, its result is shown as a logical function of a
source pixel S and a destination pixel D.

Graphics Contexts

5-62 CLX Programmer’s Reference

Symbol Result

boole-1 S
boole-2 D
boole-andc1 (logandc1 S D)
boole-andc2 (logandc2 S D)
boole-and (logand S D)
boole-c1 (lognot S)
boole-c2 (lognot D)
boole-clr 0
boole-eqv (logeqv S D)
boole-ior (logior S D)
boole-nand (lognand S D)
boole-nor (lognor S D)
boole-orc1 (logorc1 S D)
boole-orc2 (logorc2 S D)
boole-set 1
boole-xor (logxor S D)

gcontext — A gcontext.

gcontext-id gcontext Function
Returns:
 id — Type resource-id.

Returns the unique ID that has been assigned to the specified graphics context.

gcontext — A gcontext.

gcontext-join-style gcontext Function
Returns:
 join-style — One of :bevel, :miter , or :round .

Returns and (with setf) changes the join-style attribute of the specified graphics context.

Graphics Contexts

5-63CLX Programmer’s Reference

The join-style attribute of a graphics context defines how the segment intersections are
drawn for wide polylines. The possible values and their interpretations are as follows:

Join-Style Interpretation

:bevel Uses :butt end point styles with the triangular notch
filled.

:miter The outer edges of two lines extend to meet at an angle.

:round A circular arc with diameter equal to the line-width,
centered on the join point.

When the end points of a polyline segment are identical, the effect is as if the segment
was removed from the polyline. When a polyline is a single point, the effect is the same
as when the cap-style is applied at both end points.

gcontext — A gcontext.

gcontext-line-style gcontext Function
Returns:
 line-style — One of :dash, :double-dash, or :solid.

Returns and (with setf) changes the line-style attribute of the specified graphics context.

The line-style attribute of a graphics context specifies how (which sections of) lines are
drawn for a path in graphics operations. The possible values and their meanings are as
follows:

Line-Style Meaning

:solid The full path is drawn.

:double-dash The full path is drawn, but the even dashes are filled
differently than the odd dashes. The :butt style is used
where even and odd dashes meet (see paragraph 5.4.7,
Fill-Rule and Fill-Style).

:on-off-dash Only the even dashes are drawn, with cap-style applied
to all internal ends of the individual dashes, except
:not-last is treated as :butt .

gcontext — A gcontext.

gcontext-line-width gcontext Function
Returns:
 line-width — Type card16.

Returns the line-width of the specified graphics context.

The line-width is measured in pixels and can be greater than or equal to one (wide line) or
can be the special value zero (thin line).

Graphics Contexts

5-64 CLX Programmer’s Reference

Wide lines are drawn centered on the path described by the graphics operation. Unless
otherwise specified by the join-style or cap-style, the bounding box of a wide line with
end points [x1, y1], [x2, y2], and width w is a rectangle with vertices at the following real
coordinates:

[x1 – (w*sin/2), y1 + (w*cos/2)], [x1+ (w*sin/2), y1 – (w*cos/2)],
[x2 – (w*sin/2), y2 + (w*cos/2)], [x2 + (w*sin/2), y2 – (w*cos/2)]

where sin is the sine of the angle of the line and cos is the cosine of the angle of the line. A
pixel is part of the line and, hence, is drawn if the center of the pixel is fully inside the
bounding box (which is viewed as having infinitely thin edges). If the center of the pixel
is exactly on the bounding box, it is part of the line if, and only if, the interior is immedi-
ately to its right (x increasing direction). Pixels with centers on a horizontal edge are a
special case and are part of the line if, and only if, the interior is immediately below (y
increasing direction).

Thin lines (zero line-width) are always one pixel wide lines drawn using an unspecified,
device dependent algorithm. There are only two constraints on this algorithm.

1. If a line is drawn unclipped from [x1,y1] to [x2,y2] and if another line is drawn un-
clipped from [x1+dx,y1+dy] to [x2+dx,y2+dy], a point [x,y] is touched by drawing
the first line if, and only if ,the point [x+dx,y+dy] is touched by drawing the second
line.

2. The effective set of points comprising a line cannot be affected by clipping. That is,
a point is touched in a clipped line if, and only if, the point lies inside the clipping
region and the point would be touched by the line when drawn unclipped.

A wide line drawn from [x1,y1] to [x2,y2] always draws the same pixels as a wide line
drawn from [x2,y2] to [x1,y1], not counting cap-style and join-style. Implementors are
encouraged to make this property true for thin lines, but it is not required. A line-width of
zero may differ from a line-width of one in which pixels are drawn. This permits the use
of many manufacturer’s line drawing hardware, which may run much faster than the
more precisely specified wide lines.

In general, drawing a thin line is faster than drawing a wide line of width one. However,
because of their different drawing algorithms, thin lines may not mix well, aesthetically
speaking, with wide lines. If it is desirable to obtain precise and uniform results across all
displays, a client should always use a line-width of one, rather than a line-width of zero.

gcontext — A gcontext.

gcontext-p gcontext Function
Returns:
 gcontext — Type boolean.

Returns non-nil if the argument is a graphics context and nil otherwise.

gcontext-plane-mask gcontext Function
Returns:
 plane-mask — Type card32.

Returns the plane-mask of the specified graphics context.

Graphics Contexts

5-65CLX Programmer’s Reference

The plane-mask attribute of a graphics context specifies which bit planes of the destina-
tion drawable are modified during a graphic operation. The plane-mask is a pixel value
in which a 1 bit means that the corresponding bit plane will be modified and a 0 bit means
that the corresponding bit plane will not be affected during a graphic operations. Thus,
the actual result of a graphic operation depends on both the function and plane-mask at-
tributes of the graphics context and is given by the following expression:

(logior (logand

 (boole function source destination)

 plane-mask)

 (logandc2

 destination

 plane-mask))

gcontext — A gcontext.

gcontext-plist gcontext Function
Returns:
 gcontext-p — Type list.

Returns and (with setf) sets the property list for the specified gcontext. This function pro-
vides a hook where extensions can add data.

gcontext — A gcontext.

gcontext-stipple gcontext Function
Returns:
 stipple — Type pixmap.

Returns the stipple of the specified graphics context.

The stipple attribute of a graphics context is a bitmap used to prevent certain pixels in the
destination of graphics operations from being affected by tiling.

The stipple and tile have the same origin. This origin point is interpreted relative to the
origin of whatever destination drawable is specified in a graphics request. The stipple
pixmap must have depth one and must have the same root as the graphics context. The
tile pixmap must have the same root and depth as the graphics context. For stipple opera-
tions where the fill-style is :stippled (but not :opaque-stippled), the stipple pattern is
tiled in a single plane and acts as an additional clip mask to be anded with the clip-mask.
Any size pixmap can be used for stipple or tile, although some sizes may be faster to use
than others.

Specifying a pixmap for stipple or tile in a graphics context might or might not result in a
copy being made. If the pixmap is later used as the destination for a graphics operation,
the change might or might not be reflected in the graphics context. If the pixmap is used
both as the destination for a graphics operation and as a stipple or tile, the results are not
defined.

Some displays have hardware support for tiling or stippling with patterns of specific
sizes. Tiling and stippling operations that restrict themselves to those sizes may run
much faster than such operations with arbitrary size patterns. CLX provides functions to
determine the best size for stipple or tile (see query-best-stipple and query-best-tile).

gcontext — A gcontext.

Graphics Contexts

5-66 CLX Programmer’s Reference

gcontext-subwindow-mode gcontext Function
Returns:
 subwindow-mode — One of :clip-by-children or :include-inferiors .

Returns and (with setf) changes the subwindow-mode attribute of the specified graphics
context.

The subwindow-mode attribute of a graphics context specifies whether subwindows ob-
scure the contents of their parent window during a graphics operation. For a value of
:clip-by-children , both source and destination windows are clipped by all viewable :in-
put-output class children. This clipping is in addition to the clipping provided by the
clip-mode attribute. For a value of :include-inferiors , neither the source nor destination
window is clipped by its inferiors. This results in the inclusion of subwindow contents in
the source and the drawing through of subwindow boundaries of the destination. The use
of :include-inferiors on a window of one depth with mapped inferiors of differing depth
is not illegal, but the semantics are not defined by the core protocol.

gcontext — A gcontext.

gcontext-tile gcontext Function
Returns:
 tile — Type pixmap.

Returns the tile of the specified graphics context.

The tile attribute is a pixmap used to fill in areas for graphics operations. It is so named
because copies of it are laid out side by side to fill the area.

The stipple and tile have the same origin. This origin point is interpreted relative to the
origin of whatever destination drawable is specified in a graphics request. The stipple
pixmap must have depth one and must have the same root as the graphics context. The
tile pixmap must have the same root and depth as the graphics context. For stipple opera-
tions where the fill-style is :stippled (but not :opaque-stippled), the stipple pattern is
tiled in a single plane and acts as an additional clip mask to be anded with the clip-mask.
Any size pixmap can be used for stipple or tile, although some sizes may be faster to use
than others.

Specifying a pixmap for stipple or tile in a graphics context might or might not result in a
copy being made. If the pixmap is later used as the destination for a graphics operation,
the change might or might not be reflected in the graphics context. If the pixmap is used
both as the destination for a graphics operation and as a stipple or tile, the results are not
defined.

Some displays have hardware support for tiling or stippling with patterns of specific
sizes. Tiling and stippling operations that restrict themselves to those sizes may run
much faster than such operations with arbitrary size patterns. CLX provides functions to
determine the best size for stipple or tile (see query-best-stipple and query-best-tile).

gcontext — A gcontext.

Graphics Contexts

5-67CLX Programmer’s Reference

gcontext-ts-x gcontext Function
Returns:
 ts-x — Type int16.

Returns the ts-x attribute of the specified graphics context.

The ts-x and ts-y attributes of a graphics context are the coordinates of the origin for tile
pixmaps and the stipple.

gcontext — A gcontext.

gcontext-ts-y gcontext Function
Returns:
 ts-y — Type int16.

Returns the ts-y attribute of the specified graphics context.

The ts-x and ts-y attributes of a graphics context are the coordinates of the origin for tile
pixmaps and the stipple.

gcontext — A gcontext.

query-best-stipple width height drawable Function
Returns:
 best-width, best-height — Type card16.

Returns the best-width and best-height for stipple pixmaps on the drawable.

The drawable indicates the screen and possibly the window class and depth. An :input-
only window cannot be specified as the drawable. The size is returned as width and
height values.

width, height — Specifies the width and height of the desired stipple pattern.

drawable — A drawable.

query-best-tile width height drawable Function
Returns:
 best-width, best-height — Type card16.

Returns the best-width and best-height for tile pixmaps on the drawable.

The drawable indicates the screen and possibly the window class and depth. An :input-
only window cannot be specified as the drawable. The size is returned as width and
height values.

width, height — Specifies the width and height of the desired tile pattern.

drawable — A drawable.

Copying 5.3 CLX provides functions to copy some or all attribute values from
Graphics one graphics context to another. These functions are generally more efficient
Contexts than using setf to copy gcontext attributes individually.

copy-gcontext source destination Function

Copies all the values of the attributes of the source graphics context into the destination
graphics context. The source and destination graphics contexts must have the same root
and depth.

 source — The source gcontext.

Graphics Contexts

5-68 CLX Programmer’s Reference

destination — The destination gcontext.

copy-gcontext-components source destination &rest keys Function

Copies the values of the specified attributes of the source graphics context to the destina-
tion graphics context. The source and destination graphics contexts must have the same
root and depth.

source — The source gcontext.

destination — The destination gcontext.

keys — The remaining arguments are keywords, of type gcontext-key, which specify
which attributes of the graphics context are to be copied.

Destroying 5.5 To destroy a graphics context, use free-gcontext.
Graphics
Contexts

free-gcontext gcontext Function

Deletes the association between the assigned resource ID and the specified graphics con-
text, and then destroys the graphics context.

gcontext — A gcontext.

Graphics 5.6 CLX provides a set of functions to control the automatic graphics
Context context caching mechanism.
Cache

force-gcontext-changes gcontext Function

Forces any delayed changes to the specified graphics context to be sent out to the server.
Note that force-gcontext-changes is called by all of the graphics functions.

gcontext — A gcontext.

with-gcontext gcontext &key :arc-mode :background :cap-style :clip-mask Macro
:clip-ordering :clip-x :clip-y :dashes :dash-offset :exposures
:fill-rule :fill-style :font :foreground :function :join-style
:line-style :line-width :plane-mask :stipple :subwindow-mode
:tile :ts-x :ts-y &allow-other-keys &body body

Changes the indicated graphics context components to the specified values only within
the dynamic extent of the body. with-gcontext works on a per-process basis in a multi-
processing environment. The body is not surrounded by a with-display form. If there is
no local cache for the specified graphics context, or if some of the component states are
unknown, with-gcontext does the save and restore by creating a temporary graphics
context and copying components to and from it using copy-gcontext-components.

gcontext — A gcontext.

:arc-mode, :background, :cap-style, :clip-mask, :clip-ordering , :clip-x , :clip-y,
:dashes, :dash-offset, :exposures, :fill-rule , :fill-style , :font , :foreground,
:function , :join-style, :line-style, :line-width , :plane-mask, :stipple, :subwin-
dow-mode, :tile , :ts-x, :ts-y —These keyword arguments and associated values
specify which graphics context components are to be changed. Any components not
specified are left unmodified. See paragraph 5.2, Creating Graphics Contexts, for
more information.

body — The body of code which will have access to the altered graphics context.

6-69CLX Programmer’s Reference

GRAPHIC OPERATIONS

Introduction 6.1 Once connected to an X server, a client can use CLX functions to perform graphic
operations on drawables.

This section describes CLX functions to:

• Operate on areas and planes

• Draw points

• Draw lines

• Draw rectangles

• Draw arcs

• Draw text

Area and Plane 6.2 clear-area clears an area or an entire window to the background.
Operations Since pixmaps do not have backgrounds, they cannot be filled by using the functions de-

scribed in the following paragraphs. Instead, you should use draw-rectangle, which sets
the pixmap to a known value. See paragraph 6.5, Drawing Rectangles, for information
on draw-rectangle.

clear-area window &key (:x 0) (:y 0) :width :height :exposures-p Function

Draws a rectangular area in the specified window with the background pixel or pixmap
of the window. The :x and :y coordinates are relative to the window origin, and specify
the upper-left corner of the rectangular area that is to be cleared. A nil or zero value for
:height or :width clears the remaining area (height – y or width – x). If the window has a
defined background tile, the rectangle is tiled by using a plane-mask of all ones and a
function of :copy. If the window has background :none, the contents of the window are
not changed. In either case, if :exposures-p is non-nil , then one or more :exposure
events are generated for regions of the rectangle that are either visible or are being re-
tained in a backing store.

To clear the entire area in a specified window, use (clear-area window).

window — A window.

:x, :y — Upper-left corner of the area to be cleared. These coordinates are relative to the
window origin. Type is int16.

:width — The width of the area to clear or nil to clear to the remaining width of the win-
dow. Type is card16 or null .

:height — The height of the area to clear or nil to clear to the remaining height of the
window. Type is card16 or null .

:exposures-p — Specifies if :exposure events should be generated for the affected
areas. Type boolean.

Graphic Operations

6-70 CLX Programmer’s Reference

copy-area source gcontext source-x source-y width height Function
destination destination-x destination-y

Copies the specified rectangular area from the source drawable to the specified rectan-
gular area of the destination drawable, combining them as specified in the supplied
graphics context (gcontext). The x and y coordinates are relative to their respective draw-
able origin, with each pair specifying the upper left corner of the area.

If either regions of the source area are obscured and have not been retained in backing
store, or regions outside the boundaries of the source drawable are specified, those re-
gions are not copied. Instead, the following occurs on all corresponding destination re-
gions that are either visible or are retained in backing store:

• If the destination rectangle is a window with a background other than :none, these
corresponding regions of the destination are tiled, using plane-mask of all ones and
function of boole-1 (copy source), with that background.

• If the exposures attribute of the graphics context is :on, then :graphics-exposure
events for all corresponding destination regions are generated (regardless of tiling
or whether the destination is a window or a pixmap).

• If exposures is :on but no regions are exposed, a :no-exposure event is generated.
Note that by default, exposures is :on for new graphics contexts. See Section 5,
Graphics Contexts, for further information.

source — Source drawable.

gcontext — The graphics context to use during the copy operation.

source-x, source-y — The x and y coordinates of the upper-left corner of the area in the
source drawable. These coordinates are relative to the source drawable origin.
Type is int16.

width, height — The width and height of the area being copied. These apply to both the
source and destination areas. Type is card16.

destination — The destination drawable.

destination-x, destination-y — The x and y coordinates of the upper left corner of the
area in the destination drawable. These coordinates are relative to the destination
drawable origin. Type is int16.

copy-plane source gcontext plane source-x source-y width height Function
destination destination-x destination-y

Uses a single bit plane of the specified rectangular area of the source drawable along
with the specified graphics context (gcontext) to modify the specified rectangle area of
the destination drawable. The drawables specified by the source and destination argu-
ments must have the same root but need not have the same depth.

Effectively, this operation forms a pixmap of the same depth as destination and with a
size specified by the source area. It then uses the foreground and background from the
graphics context (foreground where the bit-plane in source contains a one bit, back-
ground where the bit-plane in source contains a zero bit), and the equivalent of a copy-
area operation is performed with all the same exposure semantics. This can also be
thought of as using the specified region of the source bit-plane as a stipple with a fill-
style of :opaque-stippled for filling a rectangular area of the destination.

source — The source drawable.

gcontext — The graphics context to use during the copy operation.

Graphic Operations

6-71CLX Programmer’s Reference

plane — Specifies the bit-plane of the source drawable. Exactly one bit must be set.
Type is pixel.

source-x, source-y — The x and y coordinates of the upper-left corner of the area in the
source drawable. These coordinates are relative to the source drawable origin.
Type is int16.

width, height — The width and height of the area being copied. These apply to both the
source and destination areas. Type is card16.

destination — The destination drawable.

destination-x, destination-y — The x and y coordinates of the upper-left corner of the
destination area in the destination drawable. These coordinates are relative to the
destination drawable origin. Type is int16.

Drawing Points 6.3 The draw-point and draw-points functions make use of the following graphics
context components: function, plane-mask, foreground, subwindow-mode, clip-x,
clip-y, clip-ordering, clip-region and clip-mask.

The draw-point function uses the foreground pixel and function components of the
graphics context to draw a single point into the specified drawable, while draw-points
draws multiple points into the specified drawable. These functions are not affected by
the tile or stipple in the graphics context.

draw-point drawable gcontext x y Function

Combines the foreground pixel in the gcontext with the pixel in the drawable specified
by the x and y coordinates.

drawable — The destination drawable.

gcontext — The graphics context for drawing the point.

x, y — The x and y coordinates of the point drawn. Type is int16.

draw-points drawable gcontext points &optional relative-p Function

Combines the foreground pixels in the graphics context with the pixels at each point in
the drawable. The points are drawn in the order listed.

draw-points requires a mode argument, relative-p that indicates whether the points are
relative to the destination origin or to the previous point. In either case, the first point is
always relative to the destination origin. The rest of the points are relative either to the
drawable’s origin or to the previous point, depending on the value of relative-p.

drawable — The destination drawable.

gcontext — The graphics context for drawing the points.

points — A list of points to be drawn in the order listed. The first point is always relative
to the drawable’s origin; if relative-p, the rest of the points are drawn relative to the
previous point, else they are drawn relative to the drawable’s origin. Type is point-
seq.

relative-p — Specifies the coordinate mode used for drawing the pixels either relative to
the origin or to the previous point. Type boolean.

Drawing Lines 6.4 The draw-line, draw-lines, and draw-segments functions use the following
graphics context components: background, cap-style, clip-x-origin, clip-y-origin, clip-
mask, dash-list, dash-offset, fill-style, foreground, function, plane-mask, line-width,
line-style, stipple, subwindow-mode, tile, ts-x-origin, and ts-y-origin.

Graphic Operations

6-72 CLX Programmer’s Reference

The draw-lines function also uses the join-style graphics context component.

draw-line drawable gcontext x1 y1 x2 y2 &optional relative-p Function

Draws a line from the point x1,y1 to the point x2,y2. When relative-p is true, the first
point is relative to the destination origin but the second point is relative to the first point.
When relative-p is nil , both points are relative to the destination origin.

drawable — The destination drawable.

gcontext — The graphics context for drawing the line.

x1, y1, x2, y2 — The end points of the line.

relative-p — Specifies the coordinate mode used for drawing the line either relative to
the origin or the previous point. In either case, the first point is always drawn relative
to the drawable’s origin.

draw-lines drawable gcontext points &key :relative-p :fill-p Function
(:shape :complex)

Draws a line between each pair of points in the points list. The lines are drawn in the order
listed and join correctly at all intermediate points. The join-style graphics context com-
ponent defines the type of joint to use. When the first and last points coincide, the first
and last lines also join correctly to produce a hollow polygon.

When :relative-p is true, the first point is always relative to the destination origin, but the
rest are relative to the previous point. When :relative-p is nil , the rest of the points are
drawn relative to the destination origin.

When :fill-p is true, the polygon defined by the points list is filled. The :shape keyword
provides the server with a hint about how to fill the polygon. :shape can be either :com-
plex (by default), :convex, or :non-convex.

The :convex operand is the simplest type of area and the fastest to fill. A fill area is con-
vex if every straight line connecting any two interior points is entirely inside the area. For
example, triangles and rectangles are convex polygons.

The :non-convex operand is for filling an area that is not convex and is also not self-in-
tersecting. Filling this type of area is harder than filling a convex area, but easier than
filling one that is self-intersecting. For example, the shape of the letter “T” is non-convex
and non-self-intersecting.

The :complex operand is the most general (and therefore the hardest) type of fill area. A
complex fill area can be non-convex and self-intersecting. For example, draw the outline
of a bow tie, without lifting your pencil or tracing over an edge twice. This shape is non-
convex and intersects itself at the knot in the middle.

NOTE: Unless you are sure that a shape is :convex or :non-convex, it should always be
drawn as a :complex shape. If :convex or :non-convex is specified incorrectly, the
graphics result is undefined.

drawable — The destination drawable.

gcontext — The graphics context for drawing the lines.

points — A list of points that define the lines. Type is point-seq.

:relative-p — The coordinate mode of the points.

Graphic Operations

6-73CLX Programmer’s Reference

:fill-p — When true, a filled polygon is drawn instead of a polyline.

:shape — A hint that allows the server to use the most efficient area fill algorithm. Either
:convex, :non-convex, or :complex.

draw-segments drawable gcontext segments Function

Draws multiple lines, not necessarily connected. segments is a sequence of the form {x1
y1 x2 y2}*, in which each subsequence specifies the end points of a line segment. Line
segments are drawn in the order given by segments. Unlike draw-lines, no joining is
performed at coincident end points.

drawable — The destination drawable to receive the line segments.

gcontext — Specifies the graphics context for drawing the lines.

segments — The points list for the segments to draw. Type is seq.

Drawing 6.5 The draw-rectangle and draw-rectangles functions draw hollow or
Rectangles filled outlines of the specified rectangle or rectangles as if a five-point polyline were spe-

cified for each rectangle, as follows:

[x,y,] [x+width,y] [x+width,y+height] [x,y+height] [x,y]

draw-rectangle and draw-rectangles use the following graphics context components:
background, function, plane-mask, foreground, subwindow-mode, cap-style, clip-x,
clip-y, clip-ordering, clip-region and clip-mask, dash-list, dash-offset, fill-style, join-
style, line-width, line-style, stipple, tile, ts-x-origin, and ts-y-origin.

draw-rectangle drawable gcontext x y width height &optional fill-p Function

Draws a rectangle defined by the x, y, width, and height arguments.

drawable — The destination drawable.

gcontext — The graphics context for drawing the rectangle.

x, y — The x and y coordinates that define the upper left corner of the rectangle. The
coordinates are relative to the destination origin. Type is int16.

width, height — Specifies the width and height that define the outline of the rectangle.
Type is card16.

fill-p — Specifies whether the rectangle is filled or not. Type boolean.

draw-rectangles drawable gcontext rectangles &optional fill-p Function

Draws the rectangles in the order listed in rectangles. For the specified rectangle or rec-
tangles, no pixel is drawn more than once. The x and y coordinates of each rectangle are
relative to the destination origin and define the upper left corner of the rectangle. If rec-
tangles intersect, the intersecting pixels are drawn multiple times.

drawable — The destination drawable.

gcontext — The graphics context.

rectangles — A list specifying the upper left corner x and y, width and height of the rec-
tangles. Type is rect-seq.

fill-p — Specified if the rectangles are filled or not. Type is boolean.

Graphic Operations

6-74 CLX Programmer’s Reference

Drawing Arcs 6.6 draw-arc draws a single circular or an elliptical arc, while draw-arcs draws mul-
tiple circular or elliptical arcs. draw-arc and draw-arcs use the following graphics con-
text components: arc-mode, background, cap-style, clip-x, clip-y, clip-mask, dash-list,
dash-offset, fill-style, foreground, join-style, function, plane-mask, line-width, line-
style, stipple, subwindow-mode, tile, ts-x-origin, and ts-y-origin.

draw-arc drawable gcontext x y width height angle1 angle2 &optional fill-p Function

Draws either a circular or an elliptical arc. Also, outlined or filled arcs can be drawn.
Each arc is specified by a rectangle (x, y, width, and height) and two angles (angle1 and
angle2). The angles are signed integers in radians, with positive indicating counter-
clockwise motion and negative indicating clockwise motion. The start of the arc is speci-
fied by angle1, and the path and extent of the arc is specified by angle2 relative to the
start of the arc. If the magnitude of angle2 is greater than 360 degrees, it is truncated to
360 degrees. The x and y coordinates of the rectangle are relative to the drawable’s ori-
gin.

For example, an arc specified as [x,y,width,height,angle1,angle2] has the origin of the
major and minor axes at:

[x+(width/2),y+(height/2)]

The infinitely thin path describing the entire circle/ellipse intersects the horizontal axis
at:

[x,y+(height/2)] and [x+width,y+(height/2)]

The intersection of the vertical axis is at:

[x+(width/2),y] and [x+(width/2),y+height]

These coordinates can be fractional; that is, they are not truncated to discrete coordi-
nates. Note that the angle values are slightly different in CLX than in the X protocol spec-
ification.

If fill-p is nil , then only the outline of the arc is drawn. Otherwise, if fill-p is true, draw-
arc fills the area bounded by the arc outline and one or two line segments, depending on
the arc-mode. If the arc-mode is :chord, the filled area is bounded by the arc outline and
the line segment joining the arc end points. If the arc-mode is :pie-slice, the filled area is
bounded by the arc outline and the two line segments joining each arc end point with the
center point.

drawable — The destination drawable.

gcontext — The graphics context for drawing the arc.

x, y — The x and y coordinates of the arc rectangle relative to the origin of the drawable.
Type is int16.

width, height — Specifies the width and height of the rectangle. These are the major and
minor axes of the arc. Type is card16.

angle1 — Specifies the start of the arc in radians. Type is angle.

angle2 — Specifies the direction and end point of the arc. Type is angle.

fill-p — Specifies whether the arc is filled or not. Type boolean.

Graphic Operations

6-75CLX Programmer’s Reference

draw-arcs drawable gcontext arcs &optional fill-p Function

Draws circular or elliptical, outlined or filled arcs. Each arc is specified by a rectangle
and two angles. For a more detailed description, see draw-arc.

The arcs are filled in the order listed. For any given arc, no pixel is drawn more than once.
If regions intersect, the intersecting pixels are drawn multiple times.

drawable — Specifies the drawable where you want the arcs drawn.

gcontext — Specifies the graphics context for drawing the arc.

arcs — A sequence containing the width, height, angle1, and angle2 arguments defining
the arcs. See draw-arc for more detail. Type is arc-seq.

fill-p — Specifies whether the arcs are filled or not. Type is boolean.

Drawing Text 6.7 CLX provides functions for drawing text using text fonts provided by the X server.
An X font is array of character bit maps indexed by integer codes. See Section 8 for a
complete discussion of the CLX functions used to manage fonts and characters.

Since Common Lisp programs typically represent text as sequences of characters (that
is, strings), CLX text functions must be prepared to convert a Common Lisp character
into the integer code used to index the appropriate character bitmap in a given font. The
:translate argument to a text function is a function which performs this conversion. The
default :translate function handles all characters that satisfy graphic-char-p by con-
verting each character into its ASCII code. Note that the assumption made by the default
:translate function—that is, that an X font indexes bitmaps by ASCII codes—is often
valid, but other encodings are possible. In general, a :translate function can perform
complex transformations. It can be used to convert non-character input, to handle non-
ASCII character encodings, and to change the fonts used to access character bitmaps.
The complete behavior of a :translate function is given below by describing a prototyp-
ical translate-function.

CLX offers two different ways to draw text—filled text and block text. The draw-glyph
and draw-glyphs functions create filled text, in which each character image is treated as
an area to be filled according to the fill-style of the given graphics context, without other-
wise disturbing the surrounding background. In addition, filled text sends a complex
type of server request which allows a series of font indices, font changes, and horizontal
position changes to be compiled into a single request. Filled text functions use
the following graphics context attributes: background, clip-mask, clip-x-origin, clip-y-
origin, fill-style, font, foreground, function, plane-mask, stipple, subwindow-mode,
tile, ts-x-origin, ts-y-origin.

Block text is a rendering style commonly used by display terminals, in which each char-
acter image appears in the foreground pixel inside a rectangular character cell drawn in
the graphics context background pixel. The draw-image-glyph and draw-image-
glyphs functions create block text. Block text functions use the following graphics con-
text attributes: background, clip-mask, clip-x-origin, clip-y-origin, font, foreground,
plane-mask, stipple, subwindow-mode, tile, ts-x-origin, ts-y-origin.

Graphic Operations

6-76 CLX Programmer’s Reference

draw-glyph drawable gcontext x y element &key :translate :width Function
(:size :default)
Returns:
 output-p — Type boolean.
 width — Type int32 or null .

Draws a single character of filled text represented by the given element. The given x and
y specify the left baseline position for the character. The first return value is true if the
character is successfully translated and drawn, or nil if the :translate function did
not translate it. The second return value gives the total pixel width of the character actu-
ally drawn, if known.

Specifying a :width is a hint to improve performance. The :width is assumed to be the
total pixel width of the character actually drawn. Specifying :width permits appending
the output of subsequent calls to the same protocol request, provided gcontext has not
been modified in the interim. If :width is not specified, appending of subsequent output
might not occur (unless :translate returns the character width).

The :size specifies the element size of the destination buffer given to :translate (either 8,
16, or :default). If :default is specified, the size is based on the current font, if known;
otherwise, 16 is used.

drawable — The destination drawable.

gcontext — The graphics context for drawing text.

x, y — The left baseline position for the character drawn.

element — A character or other object to be translated into a font index.

:translate — A function to translate text to font indexes. Default is #’translate-default.

:width — The total pixel width of the character actually drawn, if known.

:size — Specifies the element size of the destination buffer given to :translate (8, 16, or
:default).

draw-glyphs drawable gcontext x y sequence &key (:start 0) :end :translate Function
:width (:size :default)
Returns:
 new-start — Type array-index or null .
 width — Type int32 or null .

Draws the filled text characters represented by the given sequence. :start and :end de-
fine the elements of the sequence which are drawn. The given x and y specify the left
baseline position for the first character. The first return value is nil if all characters
are successfully translated and drawn; otherwise, the index of the first untranslated se-
quence element is returned. The second return value gives the total pixel width of the
characters actually drawn, if known.

Specifying a :width is a hint to improve performance. The :width is assumed to be the
total pixel width of the character sequence actually drawn. Specifying :width permits
appending the output of subsequent calls to the same protocol request, provided gcon-
text has not been modified in the interim. If :width is not specified, appending of subse-
quent output might not occur (unless :translate returns the character width).

The :size specifies the element size of the destination buffer given to :translate (either
8, 16, or :default). If :default is specified, the size is based on the current font, if known;
otherwise, 16 is used.

drawable — The destination drawable.

gcontext — The graphics context for drawing text.

Graphic Operations

6-77CLX Programmer’s Reference

x, y — The left baseline position for the character drawn.

sequence — A sequence of characters or other objects to be translated into font indexes.

:start , :end — Start and end indexes defining the elements to draw.

:translate — A function to translate text to font indexes. Default is #’translate-default.

:width — The total total pixel width of the character actually drawn, if known.

:size — The element size of the destination buffer given to :translate (8, 16, or :de-
fault).

draw-image-glyph drawable gcontext x y element &key :translate :width Function
(:size :default)
Returns:
 output-p — Type boolean.
 width — Type int32 or null .

Draws a single character of block text represented by the given element. The given x and
y specify the left baseline position for the character. The first return value is true if the
character is successfully translated and drawn, or nil if the :translate function did
not translate it. The :translate function is allowed to return an initial font change. The
second return value gives the total pixel width of the character actually drawn, if known.

The :translate function may not return a horizontal position change, since draw-
image-glyph does not generate complex output requests.

Specifying a :width is a hint to improve performance. The :width is assumed to be the
total pixel width of the character actually drawn. Specifying :width permits appending
the output of subsequent calls to the same protocol request, provided gcontext has not
been modified in the interim. If :width is not specified, appending of subsequent output
might not occur (unless :translate returns the character width).

The :size specifies the element size of the destination buffer given to :translate (either 8,
16, or :default). If :default is specified, the size is based on the current font, if known;
otherwise, 16 is used.

drawable — The destination drawable.

gcontext — The graphics context for drawing text.

x, y — The left baseline position for the character drawn.

element — A character or other object to be translated into a font index.

:translate — A function to translate text to font indexes. Default is #’translate-de-
fault .

:width — The total pixel width of the character actually drawn, if known.

:size — Specifies the element size of the destination buffer given to :translate (8, 16, or
:default).

Graphic Operations

6-78 CLX Programmer’s Reference

draw-image-glyphs drawable gcontext x y sequence &key (:start 0) :end Function
:translate :width (:size :default)
Returns:
 new-start — Type array-index or null .
 width — Type int32 or null .

Draws the block text characters represented by the given sequence. :start and :end de-
fine the elements of the sequence which are drawn. The given x and y specify the left
baseline position for the first character. The first return value is nil if all characters
are successfully translated and drawn; otherwise, the index of the first untranslated se-
quence element is returned. The :translate function is allowed to return an initial font
change. The second return value gives the total pixel width of the characters actually
drawn, if known.

The :translate function may not return a horizontal position change, since draw-
image-glyphs does not generate complex output requests.

Specifying a :width is a hint to improve performance. The :width is assumed to be the
total pixel width of the character sequence actually drawn. Specifying :width permits
appending the output of subsequent calls to the same protocol request, provided gcon-
text has not been modified in the interim. If :width is not specified, appending of subse-
quent output might not occur (unless :translate returns the character width).

The :size specifies the element size of the destination buffer given to :translate (either
8, 16, or :default). If :default is specified, the size will be based on the current font, if
known; otherwise, 16 is used.

drawable — The destination drawable.

x, y — The left baseline position for the character drawn.

gcontext — The graphics context for drawing text.

sequence — A sequence of characters or other objects to be translated into font indexes.

:start , :end — Start and end indexes defining the elements to draw.

:translate — A function to translate text to font indexes. Default is #’translate-de-
fault .

:width — The total total pixel width of the character actually drawn, if known.

:size — The element size of the destination buffer given to :translate (8, 16, or :de-
fault).

translate-function source source-start source-end font destination Function
destination-start
Returns:
 first-not-done — Type array-index.
 to-continue — Type int16, font, or null .
 current-width — Type int32 or null .

A function used as the :translate argument for text functions. Converts elements of the
source (sub)sequence into font indexes for the given font and stores them into the des-
tination vector.

Graphic Operations

6-79CLX Programmer’s Reference

The destination vector is created automatically by CLX. destination is guaranteed to
have room for (– source-end source-start) integer elements, starting at destination-start.
Elements of destination can be either card8 or card16 integers, depending on the con-
text. font is the current font, if known, or nil otherwise. Starting with the element at
source-start, translate-function should translate as many elements of source as pos-
sible (up to the source-end element) into indexes in the current font, and store them into
destination. The first return value should be the source index of the first untranslated ele-
ment.

The second return value indicates the changes which should be made to the current text
output request before translating the remaining source elements. If no further elements
need to be translated, the second return value should be nil . If a horizontal motion is re-
quired before further translation, the second return value should be the change in x posi-
tion. If a font change is required for further translation, the second return value should be
the new font.

If known, the pixel width of the translated text can be returned as the third value; this can
allow for appending of subsequent output to the same protocol request, if no overall
width has been specified at the higher level.

source — A sequence of characters or other objects to be translated.

source-start — An array-index specifying the first source element to be translated.

source-end — An array-index specifying the end of the source subsequence to be trans-
lated.

font — The font indexed by translated source elements.

destination — A vector where translated source elements are stored.

destination-start — An array-index specifying the position to begin storing trans-
lated source elements.

Graphic Operations

6-80 CLX Programmer’s Reference

7-81CLX Programmer’s Reference

IMAGES

Introduction 7.1 The X protocol provides for the transfer of images (two-dimensional arrays of pix-
el data) between a client program and a drawable. The format for image data can vary
considerably. In order to present a uniform data representation for the manipulation of a
variety of images, CLX defines a special image data type. Additional image subtypes —
image-xy and image-z — allow for the representation of an image either as a sequence
of bit planes or as an array of pixels. CLX includes functions for accessing image ob-
jects; for transferring image data between image objects, drawables, and files; and also
for direct transfer of raw image data.

Image Types 7.2 The image data type is the base type for all image objects. image-xy and image-z
are subtypes of the image type which furnish accessors specialized for different image
representations.

Basic Images 7.2.1 The following paragraphs describe the CLX functions that can be used to access
all types of image objects.

image-blue-mask image Function
Returns:
 mask — Type pixel or null .

Returns (and with setf) changes the mask that selects the pixel subfield for blue intensity
values. The mask is non-nil only for images for :direct-color or :true-color visual
types.

image — An image object.

image-depth image Function
Returns:
 depth — Type card8.

Returns the depth (that is, the number of bits per pixel) for the image.

image — An image object.

image-green-mask image Function
Returns:
 mask — Type pixel or null .

Returns (and with setf) changes the mask that selects the pixel subfield for green intensi-
ty values. The mask is non-nil only for images for :direct-color or :true-color visual
types.

image — An image object.

Images

7-82 CLX Programmer’s Reference

image-height image Function
Returns:
 height — Type card16.

Returns the height of the image in pixels.

image — An image object.

image-name image Function
Returns:
 name — Type stringable or null .

Returns and (with setf) changes the name string optionally associated with the image.

image — An image object.

image-plist image Function
Returns:
 plist — Type list.

Returns and (with setf) changes the image property list. The property list is a hook for
added application extensions.

image — An image object.

image-red-mask image Function
Returns:
 mask — Type pixel or null .

Returns (and with setf) changes the mask which selects the pixel subfield for red intensi-
ty values. The mask is non-nil only for images for :direct-color or :true-color visual
types.

image — An image object.

image-width image Function
Returns:
 width — Type card16.

Returns the width of the image in pixels.

image — An image object.

image-x-hot image Function
Returns:
 x-position — Type card16 or null .

Returns and (with setf) changes the x position of the hot spot for an image used as a cur-
sor glyph. The hot spot position is specified relative to the upper-left origin of the image.

image — An image object.

image-y-hot image Function
Returns:
 y-position — Type card16 or null .

Returns and (with setf) changes the y position of the hot spot for an image used as a cur-
sor glyph. The hot spot position is specified relative to the upper-left origin of the image.

image — An image object.

Images

7-83CLX Programmer’s Reference

XY-Format 7.2.2 The image-xy subtype represents an image as a sequence of bitmaps,
Images one for each plane of the image, in most-significant to least-significant bit order. The

following paragraphs describe the additional CLX functions that can be used to access
image-xy objects.

image-xy-bitmap-list image Function
Returns:
 bitmaps — Type list of bitmap.

Returns and (with setf) changes the list of bitmap planes for the image.

image — An image-xy object.

Z-Format 7.2.3 The image-z subtype represents an image as a two-dimensional array
Images of pixels, in scanline order. The following paragraphs describe the additional CLX func-

tions that can be used to access image-z objects.

image-z-bits-per-pixel image Function
Returns:
 pixel-data-size — One of 1, 4, 8, 16, 24, or 32.

Returns and (with setf) changes the number of bits per data unit used to contain a pixel
value for the image. Depending on the storage format for image data, this value can be
larger than the actual image depth.

image — An image-z object.

image-z-pixarray image Function
Returns:
 pixarray — Type pixarray .

Returns and (with setf) changes the two-dimensional array of pixel data for the image.

image — An image-z object.

Image Functions 7.3 The following paragraphs describe the CLX functions used to:

• Create an image object.

• Copy an image or a subimage.

• Read an image from a drawable.

• Display an image to a drawable.

create-image &key :bit-lsb-first-p :bits-per-pixel :blue-mask Function
:byte-lsb-first-p :bytes-per-line :data :depth :format
:green-mask :height :name :plist :red-mask :width
:x-hot :y-hot
Returns:
 image — Type image.

Creates an image object from the given :data and returns either an image, image-xy, or
an image-z, depending on the type of image :data. If the :data is a list, it is assumed to be
a list of bitmaps and an image-xy is created. If the :data is a pixarray , an image-z is
created. Otherwise, the :data must be an array of bytes (card8), in which case a basic
image object is created.

Images

7-84 CLX Programmer’s Reference

If the :data is a list, each element must be a bitmap of equal size. :width and :height
default to the bitmap width — (array-dimension bitmap 1) — and the bitmap height
— (array-dimension bitmap 0) — respectively. :depth defaults to the number of bit-
maps.

If the :data is a pixarray , :width and :height default to the pixarray
width — (array-dimension pixarray 1), and the pixarray height —
(array-dimension pixarray 0), respectively. :depth defaults to (pixarray-depth
:data). The :bits-per-pixel is rounded to a valid size, if necessary. By default, the :bits-
per-pixel is equal to the :depth.

If the :data is an array of card8, the :width and :height are required to interpret the
image data correctly. The :bits-per-pixel defaults to the :depth, and the :depth defaults
to 1. :bytes-per-line defaults to:

(floor (length :data) (* :bits-per-pixel :height))

The :format defines the storage format of image data bytes and can be one of the follow-
ing values:

• :xy-pixmap — The :data is organized as a set of bitmaps representing image bit
planes, appearing in most-significant to least-significant bit order.

• :z-pixmap — The :data is organized as a set of pixel values in scanline order.

• :bitmap — Similar to :xy-pixmap, except that the :depth must be 1, and 1 and 0
bits represent the foreground and background pixels, respectively.

By default, the :format is :bitmap if :depth is 1; otherwise, :z-pixmap.

:bit-lsb-first-p — For a returned image, true if the order of bits in each :data byte is
least-significant bit first.

:bits-per-pixel — One of 1, 4, 8, 16, 24, or 32.

:blue-mask — For :true-color or :direct-color images, a pixel mask.

:byte-lsb-first-p — For a returned image, true if the :data byte order is least-significant
byte first.

:bytes-per-line — For a returned image, the number of :data bytes per scanline.

:data — Either a list of bitmaps, a pixarray , or an array of card8 bytes.

:depth — The number of bits per displayed pixel.

:format — One of :bitmap , :xy-format , or :z-format .

:green-mask — For :true-color or :direct-color images, a pixel mask.

:height — A card16 for the image height in pixels.

:name — An optional stringable for the image name.

:plist — An optional image property list.

:red-mask — For :true-color or :direct-color images, a pixel mask.

:width — A card16 for the image width in pixels.

:x-hot — For a cursor image, the x position of the hot spot.

:y-hot — For a cursor image, the y position of the hot spot.

Images

7-85CLX Programmer’s Reference

copy-image image &key (:x 0) (:y 0) :width :height :result-type Function
Returns:
 new-image — Type image.

Returns a new image, of the given :result-type, containing a copy of the portion of the
image defined by :x, :y, :width , and :height. By default, :width is:

(– (image-width image) :x)

and :height is:

(– (image-height image) :y)

If necessary, the new image is converted to the :result-type, that can be one of the fol-
lowing values:

• ’image-x — A basic image object is returned.

• ’image-xy — An image-xy is returned.

• ’image-z — An image-z is returned.

image — An image object.

:x, :y — card16 values defining the position of the upper-left corner of the subimage
copied.

:width , :height — card16 values defining the size of subimage copied.

:result-type — One of ’image-x, ’image-xy, or ’image-z.

get-image drawable &key :x :y :width :height :plane-mask Function
(:format :z-format) :result-type
Returns:
 image — Type image.

Returns an image containing pixel values from the region of the drawable given by :x,
:y, :width , and :height. The bits for all planes selected by 1 bits in the :plane-mask are
returned as zero; the default :plane-mask is all 1 bits. The :format of the returned pixel
values may be either :xy-format or :z-format .

Images

7-86 CLX Programmer’s Reference

The :result-type defines the type of image object returned:

• ’image-x — A basic image object is returned.

• ’image-xy — An image-xy is returned.

• ’image-z — An image-z is returned.

By default, :result-type is ’image-z if :format is :z-format and ’image-xy if :format is
:xy-format .

drawable — A drawable.

:x, :y — card16 values defining the upper-left drawable pixel returned. These argu-
ments are required.

:width , :height — card16 values defining the size of the image returned. These argu-
ments are required.

:plane-mask — A pixel mask.

:format — Either :xy-pixmap or :z-pixmap.

:result-type — One of ’image-x, ’image-xy, or ’image-z.

put-image drawable gcontext image &key (:src-x 0) (:src-y 0) :x :y Function
:width :height :bitmap-p

Displays a region of the image defined by :src-x, :src-y, :width , and :height on the des-
tination drawable, with the upper-left pixel of the image region displayed at the draw-
able position given by :x and :y. By default, :width is:

(– (image-width image) :src-x)

and :height is:

(– (image-height image) :src-y)

The following attributes of the gcontext are used to display the image: clip-mask, clip-x,
clip-y, function, plane-mask, and subwindow-mode.

The :bitmap-p argument applies only to images of depth 1. In this case, if :bitmap-p is
true or if the image is a basic image object created with :format :bitmap , the image is
combined with the foreground and background pixels of the gcontext. 1 bits of the
image are displayed in the foreground pixel and 0 bits are displayed in the background
pixel.

drawable — The destination drawable.

gcontext — The graphics context used to display the image.

image — An image object.

:src-x, :src-y — card16 values defining the upper-left position of the image region to
display.

:x, :y — The position in the drawable where the image region is displayed. These argu-
ments are required.

:width , :height — card16 values defining the size of the image region displayed.

:bitmap-p — If image is depth 1, then if true, foreground and background pixels are
used to display 1 and 0 bits of the image.

Images

7-87CLX Programmer’s Reference

Image Files 7.4 CLX provides functions that allow images to be written to a file in a standard X
format. The following paragraphs describe the CLX functions used to:

• Read an image from a file.

• Write an image to a file.

read-bitmap-file pathname Function
Returns:
 image — Type image.

Reads an image file in standard X format and returns an image object. The returned
image can have depth greater than one.

pathname — An image file pathname.

write-bitmap-file pathname image &optional name Function

Writes the image to an image file in standard X format. The image can have depth greater
than one. The name is an image identifier written to the file; the default name is (or
(image-name image) ’image).

pathname — An image file pathname.

image — An image object.

name — A stringable image name.

Direct Image 7.5 For cases where the image representation is not needed, CLX provides
Transfer functions to read and display image data directly.

get-raw-image drawable &key :data (:start 0) :x :y :width :height Function
:plane-mask (:format :z-format) (:result-type ’ (vector card8))

Returns:
data — Type sequence or card8.
depth — Type card8.
visual — Type card29.

Returns a sequence of image data from the region of the drawable given by :x, :y,
:width , and :height. If :data is given, it is modified beginning with the element at the
:start index and returned. The depth and visual type ID of the drawable are also re-
turned.

The bits for all planes selected by 1 bits in the :plane-mask are returned as zero; the de-
fault :plane-mask is all 1 bits. The :format of the returned pixel values may be either
:xy-format or :z-format . The :result-type defines the type of image data returned.

The calling program is responsible for handling the byte-order and bit-order returned by
the server for the drawable’s display (see display-byte-order and display-image-lsb-
first-p).

drawable — A drawable.

:data — An optional sequence of card8.

:start — The index of the first :data element modified.

:x, :y — card16 values defining the size of the image returned. These arguments are
required.

Images

7-88 CLX Programmer’s Reference

:width , :height — card16 values defining the size of the image returned.These argu-
ments are required.

:plane-mask — A pixel mask.

:format — Either :xy–pixmap or :z–pixmap. This argument is required.

:result-type — The type of image data sequence to return.

put-raw-image drawable gcontext data &key (:start 0) :depth :x :y Function
:width :height (:left-pad 0) :format

Displays a region of the image data defined by :start , :left-pad, :width, and :height on
the destination drawable, with the upper-left pixel of the image region displayed at the
drawable position given by :x and :y.

The :format can be either :xy-pixmap, :z-pixmap, or :bitmap . If :xy-pixmap or
:z-pixmap formats are used, :depth must match the depth of the destination drawable.
For :xy-pixmap, the data must be in XY format. For :z-pixmap, the data must be in Z
format for the given :depth.

If the :format is :bitmap , the :depth must be 1. In this case, the image is combined with
the foreground and background pixels of the gcontext. 1 bits of the image are displayed
in the foreground pixel and 0 bits are displayed in the background pixel.

The :left-pad must be zero for :z-pixmap format. For :bitmap and :xy-pixmap for-
mats, the :left-pad must be less than the bitmap-scanline-pad for the drawable’s display
(see display-bitmap-format). The first :left-pad bits in every scanline are to be ig-
nored by the server; the actual image begins that many bits into the data.

The following attributes of the gcontext are used to display the image: clip-mask, clip-x,
clip-y, function, plane-mask, and subwindow-mode.

The calling program is responsible for handling the byte-order and bit-order required by
the server for the drawable’s display (see display-byte-order and display-image-lsb-
first-p).

drawable — The destination drawable.

gcontext — The graphics context used to display the image.

data — A sequence of integers.

:start — The index of the first element of data displayed.

:depth — The number of bits per pixel displayed. This argument is required.

:x, :y — The position in the drawable where the image region is displayed. These argu-
ments are required.

:width , :height — card16 values defining the size of the image region displayed. These
arguments are required.

:left-pad — A card8 specifying the number of leading bits to discard for each image
scanline.

:format — One of :bitmap , :xy-pixmap, or :z-pixmap.

8-89CLX Programmer’s Reference

FONTS AND CHARACTERS

Introduction 8.1 An X server maintains a set of fonts used in the text operations requested by client
programs. An X font is an array of character bit maps (or glyphs) indexed by integer
codes. In fact, font glyphs can also represent cursor shapes or other images and are not
limited to character images. X supports both linear and matrix encoding of font indexes.
With linear encoding, a font index is interpreted as a single 16-bit integer index into a
one-dimensional array of glyphs. With matrix encoding, a font index is interpreted as a
pair of 8-bit integer indexes into a two-dimensional array of glyphs. The type of index
encoding used is font-dependent.

In order to access or use a font, a client program must first open it using the open-font
function, sending a font name string as an identifier. open-font creates a CLX font ob-
ject used to refer to the font in subsequent functions. Afterward, calling open-font with
the same font name returns the same font object. When a font is no longer in use, a client
program can call close-font to destroy the font object.

A font has several attributes which describe its geometry and its glyphs. CLX provides
functions to return the attributes of a font, as well functions for accessing the attributes of
individual font glyphs. Glyph attributes are referred to as character attributes, since
characters are the most common type of font glyphs. A font also has a property list of
values recorded by the X server. However, the set of possible font properties and their
values are not standardized and are implementation-dependent. Typically, CLX main-
tains a cache of font and character attributes, in order to minimize server requests. How-
ever, the font cache mechanism is implementation-dependent and cannot be controlled
by the client. In some cases, CLX may create a pseudo-font object solely for the purpose
of accessing font attributes. A pseudo-font is represented by a special type of font object
that cannot be used in a gcontext. If necessary, CLX can automatically convert a pseu-
do-font into a true font, if the name of the pseudo-font is known.

The set of available fonts is server-dependent; that is, font names are not guaranteed to
be portable from one server to the next. However, the public X implementation from
MIT includes a set of fonts that are typically available with most X servers.

The following paragraphs describe CLX functions to:

• Open and close fonts.

• List available fonts.

• Access font attributes.

• Access character attributes.

• Return the size of a text string.

Opening Fonts 8.2 The following paragraphs discuss the CLX functions for opening and closing
fonts.

Fonts and Characters

8-90 CLX Programmer’s Reference

open-font display name Function
Returns:
 font — Type font.

Opens the font with the given name and returns a font object. The name string should
contain only ISO Latin-1 characters; case is not significant.

 display — A display object.

 name — A font name string.

close-font font Function

Deletes the association between the resource ID and the font. The font is freed when no
other server resource references it. The font can be unloaded by the X server if this is the
last reference to the font by any client. In any case, the font should never again be refer-
enced because its resource ID is destroyed. This might not generate a protocol request if
the font is reference-counted locally or if it is a pseudo-font.

font — A font object.

discard-font-info fonts Function

Discards any state that can be re-obtained with open-font. This is simply a performance
hint for memory-limited systems.

font — A font object.

Listing Fonts 8.3 The following paragraphs describe CLX functions that return fonts or font names
that match a given pattern string. Such pattern strings should contain only ISO Latin-1
characters; case is not significant. The following pattern characters can be used for wild-
card matching:

#* — Matches any sequence of zero or more characters.

#\? — Matches any single character.

For example, the pattern “T?mes Roman” matches the name “Times Roman” but not the
name “Thames Roman”. However, the pattern “T*mes Roman” matches both names.

font-path display &key (:result-type ’list) Function
Returns:
 paths — Type sequence of either string or pathname.

Returns a list (by default) of names containing the current search path for fonts. With
setf, this function sets the search path for font lookup. There is only one search path per
server, not one per client. The interpretation of the names is server-dependent, but they
are intended to specify directories to be searched in the order listed.

Setting the path to the empty list restores the default path defined for the server. Note that
as a side-effect of executing this request, the server is guaranteed to flush all cached in-
formation about fonts for which there are currently no explicit resource IDs allocated.

display — A display object.

:result-type — Specifies the type of resulting sequence.

list-font-names display pattern &key (:max-fonts 65535) (:result-type ’list) Function
Returns:
 font-name — Type sequence of string.

Returns a sequence of strings containing the font names that match the pattern. The fonts
available are determined by the font search path; see font-path). The maximum number
of font names returned is determined by :max-fonts.

Fonts and Characters

8-91CLX Programmer’s Reference

display — A display object.

pattern — A string used to match font names. Only font names that match the pattern are
returned.

:max-fonts — The maximum number of font names returned. Default is 65535.

:result-type — The type of sequence to return. Default is ’list.

list-fonts display pattern &key (:max-fonts 65535) (:result-type ’list) Function
Returns:
 font — Type sequence of font.

Returns a sequence of pseudo-fonts corresponding to the available fonts whose names
match the pattern. The fonts available are determined by the font search path; see font-
path). The maximum number of font objects returned is determined by :max-fonts.

display — A display object.

pattern — A string used to match font names. Only fonts whose name matches the pat-
tern are returned.

:max-fonts — The maximum number of fonts returned. Default is 65535.

:result-type — The type of sequence to return. Default is ’list .

Font Attributes 8.4 The following paragraphs describe the CLX functions used to access font attrib-
utes.

font-all-chars-exist-p font Function
Returns:
 exists-p — Type boolean.

Returns true if glyphs exist for all indexes in the range returned by font-min-char and
font-max-char. Returns nil if an index in the range corresponds to empty glyph.

font — A font object.

font-ascent font Function
Returns:
 ascent — Type int16.

Returns the vertical ascent of the font used for interline spacing. The ascent defines the
nominal distance in pixels from the baseline to the bottom of the previous line of text.
Some font glyphs may actually extend beyond the font ascent.

font — A font object.

font-default-char font Function
Returns:
 index — Type card16.

Returns the index of the glyph drawn when an invalid or empty glyph index is specified.
If the default index specifies an invalid or empty glyph, an invalid or empty index has no
effect.

font — A font object.

Fonts and Characters

8-92 CLX Programmer’s Reference

font-descent font Function
Returns:
 descent — Type int16.

Returns the vertical descent of the font used for interline spacing. The descent defines
the nominal distance in pixels from the baseline to the top of the next line of text. Some
font glyphs may actually extend beyond the font descent.

font — A font object.

font-direction font Function
Returns:
 direction — Type draw-direction .

Returns the nominal drawing direction for the font. The font drawing direction is only a
hint that indicates whether the char-width of most font glyphs is positive (:left-to-right
direction) or negative (:right-to-left direction). Note that X does not provide any di-
rect support for vertical text.

font — A font object.

font-display font Function
Returns:
 display — Type display.

Returns the display object associated with the specified font.

font — A font object.

font-equal font-1 font-2 Function

Returns true if the two arguments refer to the same server resource and nil if they do not.

font-1, font-2 — The font objects.

font-id font Function
Returns:
 id — Type resource-id.

Returns the unique resource ID assigned to the specified font.

font — A font object.

font-max-byte1 font Function
Returns:
 max-byte1 — Type card8.

Returns zero if the font uses linear index encoding. Otherwise, if the font uses matrix
index encoding, a value between 1 and 255 is returned that specifies the maximum value
for the most significant byte of font indexes.

font — A font object.

font-max-byte2 font Function
Returns:
 max-byte2 — Type card8.

Returns zero if the font uses linear index encoding. Otherwise, if the font uses matrix
index encoding, a value between 1 and 255 is returned that specifies the maximum value
for the least significant byte of font indexes.

font — A font object.

Fonts and Characters

8-93CLX Programmer’s Reference

font-max-char font Function
Returns:
 index — Type card16.

Returns the maximum valid value used for linear encoded indexes. This function is not
meaningful for fonts that use matrix index encoding.

font — A font object.

font-min-byte1 font Function
Returns:
 min-byte1 — Type card8.

Returns zero if the font uses linear index encoding. Otherwise, if the font uses matrix
index encoding, a value between 1 and 255 is returned that specifies the minimum value
for the most significant byte of font indexes.

font — A font object.

font-min-byte2 font Function
Returns:
 min-byte2 — Type card8.

Returns zero if the font uses linear index encoding. Otherwise, if the font uses matrix
index encoding, a value between 1 and 255 is returned that specifies the minimum value
for the least significant byte of font indexes.

font — A font object.

font-min-char font Function
Returns:
 index — Type card16.

Returns the minimum valid value used for linear encoded indexes. This function is not
meaningful for fonts that use matrix index encoding.

font — A font object.

font-name font Function
Returns:
 name — Type string or null .

Returns the name of the font, or nil if font is a pseudo-font.

font — A font object.

font-p font Function
Returns:
 font-p — Type boolean.

Returns true if the argument is a font object and nil otherwise.

font-plist font Function
Returns:
 plist — Type list.

Returns and (with setf) sets the property list for the specified font. This function provides
a hook where extensions can add data.

font — A font object.

Fonts and Characters

8-94 CLX Programmer’s Reference

font-properties font Function
Returns:
 properties — Type list.

Returns the list of font properties recorded by the X server. The returned list is a property
list of keyword/value pairs. The set of possible font property keywords is implementa-
tion-dependent.

font — A font object.

font-property font name Function
Returns:
 property — Type int32 or null .

Returns the value of the font property specified by the name keyword. The property val-
ue, if it exists, is returned as an uninterpreted 32-bit integer.

font — A font object.

name — A font property keyword.

max-char-ascent font Function
Returns:
 ascent — Type int16.

Returns the maximum char-ascent value for all characters in font.

font — A font object.

max-char-attributes font Function
Returns:
 attributes — Type int16.

Returns the maximum char-attributes value for all characters in font.

font — A font object.

max-char-descent font Function
Returns:
 descent — Type int16.

Returns the maximum char-descent value for all characters in font.

font — A font object.

max-char-left-bearing font Function
Returns:
 left-bearing — Type int16.

Returns the maximum char-left-bearing value for all characters in font.

font — A font object.

max-char-right-bearing font Function
Returns:
 right-bearing — Type int16.

Returns the maximum char-right-bearing value for all characters in font.

font — A font object.

max-char-width font Function
Returns:
 width — Type int16.

Returns the maximum char-width value for all characters in font.

Fonts and Characters

8-95CLX Programmer’s Reference

font — A font object.

min-char-ascent font Function
Returns:
 ascent — Type int16.

Returns the minimum char-ascent for all characters in font.

font — A font object.

min-char-attributes font Function
Returns:
 attributes — Type int16.

Returns the minimum char-attributes for all characters in font.

font — A font object.

min-char-descent font Function
Returns:
 descent — Type int16.

Returns the minimum char-descent for all characters in font.

font — A font object.

min-char-left-bearing font Function
Returns:
 left-bearing — Type int16.

Returns the minimum char-left-bearing for all characters in font.

font — A font object.

min-char-right-bearing font Function
Returns:
 right-bearing — Type int16.

Returns the minimum char-right-bearing for all characters in font.

font — A font object.

min-char-width font Function
Returns:
 width — Type int16.

Returns the minimum char-width for all characters in font.

font — A font object.

Fonts and Characters

8-96 CLX Programmer’s Reference

Character 8.5 The following paragraphs describe the CLX functions used to access
Attributes the attributes of individual font glyphs.

char-ascent font index Function
Returns:
 ascent — Type int16 or null .

Returns the vertical distance in pixels from the baseline to the top of the given font glyph.
Returns nil if the index is invalid or specifies an empty glyph, or if the font is a pseudo-
font.

font — A font object.

index — An int16 font index.

char-attributes font index Function
Returns:
 attributes — Type int16 or null .

Returns font-specific attributes of the given glyph. The interpretation of such attributes
is server-dependent. Returns nil if the index is invalid or specifies an empty glyph, or if
the font is a pseudo-font.

font — A font object.

index — An int16 font index.

char-descent font index Function
Returns:
 descent — Type int16 or null .

Returns the vertical distance in pixels from the baseline to the bottom of the given font
glyph. Returns nil if the index is invalid or specifies an empty glyph, or if the font is a
pseudo-font.

font — A font object.

index — An int16 font index.

char-left-bearing font index Function
Returns:
 left-bearing — Type int16 or null .

Returns the left side bearing of the given font glyph. If draw-glyph is called with hori-
zontal position x, the leftmost pixel of the glyph is drawn at the position (+ x left-bear-
ing). Returns nil if the index is invalid or specifies an empty glyph, or if the font is a
pseudo-font.

font — A font object.

index — An int16 font index.

char-right-bearing font index Function
Returns:
 right-bearing — Type int16 or null .

Returns the right side bearing of the given font glyph. If draw-glyph is called with hori-
zontal position x, the rightmost pixel of the glyph is drawn at the position (+ x right-bear-
ing). Returns nil if the index is invalid or specifies an empty glyph, or if the font is a
pseudo-font.

font — A font object.

Fonts and Characters

8-97CLX Programmer’s Reference

index — An int16 font index.

char-width font index Function
Returns:
 width — Type int16 or null .

Returns the width of the given font glyph. The width is defined to be equal to (– right-
bearing left-bearing). Returns nil if the index is invalid or specifies an empty glyph, or if
the font is a pseudo-font.

font — A font object.

index — An int16 font index.

Querying 8.6 CLX defines functions to return the size of text drawn in a specified
Text Size font. See paragraph 6.7, Drawing Text, for a description of the :translate function used

by the functions in the following paragraphs.

text-extents font sequence &key (:start 0) :end :translate Function
Returns:

width — Type int32.
ascent — Type int16.
descent — Type int16.
left — Type int32.
right — Type int32.
font-ascent — Type int16.
direction — Type draw-direction .
first-not-done — Type array-index or null .

Returns the complete geometry of the given sequence when drawn in the given font. The
font can be a gcontext, in which case the font attribute of the given graphics context is
used. :start and :end define the elements of the sequence which are used.

The returned width is the total pixel width of the translated character sequence. The re-
turned ascent and descent give the vertical ascent and descent for characters in the trans-
lated sequence. The returned left gives the left bearing of the leftmost character. The
returned right gives the right bearing of the rightmost character. The returned font-as-
cent and font-descent give the maximum vertical ascent and descent for all characters in
the font. If :translate causes font changes, then font-ascent and font-descent will be the
maximums over all fonts used. The direction returns the preferred draw direction for
the font. If :translate causes font changes, then the direction will be nil . The first-not-
done value returned is nil if all elements of the sequence were successfully translated;
otherwise the index of the first untranslated element is returned.

font — The font (or gcontext) used for measuring characters.

sequence — A sequence of characters or other objects to be translated into font indexes.

:start , :end — Start and end indexes defining the elements to draw.

:translate — A function to translate text to font indexes. Default is #’translate-default.

Fonts and Characters

8-98 CLX Programmer’s Reference

text-width font sequence &key (:start 0) :end :translate Function
Returns:
 width — Type int32.
 first-not-done — Type array-index or null .

Returns the total pixel width of the given sequence when drawn in the given font. The
font can be a gcontext, in which case the font attribute of the given graphics context is
used. :start and :end define the elements of the sequence which are used. The second
value returned is nil if all elements of the sequence were successfully translated; other-
wise the index of the first untranslated element is returned.

font — The font (or gcontext) used for measuring characters.

sequence — A sequence of characters or other objects to be translated into font indexes.

:start , :end — Start and end indexes defining the elements to draw.

:translate — A function to translate text to font indexes. Default is #’translate-default.

9-99CLX Programmer’s Reference

COLORS

Colormaps 9.1 In X, a color is defined by a set of three numeric values, representing
and Colors intensities of red, green, and blue. Red, green, and blue are referred to as the primary

hues. A colormap is a list of colors, each indexed by an integer pixel value. Each entry in
a colormap is called a color cell. Raster graphics displays store pixel values in a special
screen hardware memory. As the screen hardware scans this memory, it reads each pixel
value, looks up the color in the corresponding cell of a colormap, and displays the color
on its screen.

The colormap abstraction applies to all classes of visual types supported by X, including
those for screens which are actually monochrome. For example, :gray-scale screens use
colormaps in which colors actually specify the monochrome intensity. A typical black-
and-white monochrome display has a :static-gray screen with a two-cell colormap.

The following list describes how pixel values and colormaps are handled for each visual
class.

• :direct-color — A pixel value is decomposed into separate red, green, and blue sub-
fields. Each subfield indexes a separate colormap. Entries in all colormaps can be
changed.

• :gray-scale — A pixel value indexes a single colormap that contains monochrome
intensities. Colormap entries can be changed.

• :pseudo-color — A pixel value indexes a single colormap that contains color inten-
sities. Colormap entries can be changed.

• :static-color — Same as :pseudo-color, except that the colormap entries are prede-
fined by the hardware and cannot be changed.

• :static-gray — Same as :gray-scale, except that the colormap entries are prede-
fined by the hardware and cannot be changed.

• :true-color — Same as :direct-color, except that the colormap entries are prede-
fined by the hardware and cannot be changed. Typically, each of the red, green, and
blue colormaps provides a (near) linear ramp of intensity.

CLX provides functions to create colormaps, access and modify colors and color cells,
and install colormaps in screen hardware.

Color Functions 9.2 A color is represented by a CLX color object, in which each of the red, green, and
blue values is specified by an rgb-val — a floating point number between 0.0 and 1.0.
(see paragraph 1.6, Data Types). The value 0.0 represents the minimum intensity, while
1.0 represents the maximum intensity. CLX automatically converts rgb-val values into
16-bit integers when sending colors to an X server. The X server, in turn, scales 16-bit
color values to match the actual intensity range supported by the screen.

Colors used on :gray-scale screens must have the same value for each of red, green, and
blue. Only one of these values is used by screen hardware to determine intensity; howev-
er, CLX does not define which of red, green, or blue is actually used.

Colors

9-100 CLX Programmer’s Reference

The following paragraphs describe the CLX functions used to create, access, and modify
colors.

make-color &key (:blue 1.0) (:green 1.0) (:red 1.0) &allow-other-keys Function
Returns:
 color — Type color.

Creates, initializes, and returns a new color object with the specified values for red,
green, and blue.

:blue, :green, :red — rgb-val values that specify the saturation for each primary.

color-blue color Function
Returns:
 blue-intensity — Type rgb-val.

Returns and (with setf) sets the value for blue in the color.

color — A color object.

color-green color Function
Returns:
 green-intensity — Type rgb-val.

Returns and (with setf) sets the value for green in the color.

color — A color object.

color-p color Function
Returns:
 color-p — Type boolean.

Returns non-nil if the argument is a color object and nil otherwise.

color-red color Function
Returns:
 red-intensity — Type rgb-val.

Returns and (with setf) sets the value for red in the color.

color — A color object.

color-rgb colorFunction
Returns:
 red, green, blue — Type rgb-val.

Returns the values for red, green, and blue in the color.

color — A color object.

 Colors

9-101CLX Programmer’s Reference

Colormap 9.3 A colormap is represented in CLX by a colormap object. A CLX
Functions program can create and manipulate several colormap objects. However, the colors con-

tained in a colormap are made visible only when the colormap is installed. Each win-
dow is associated with a colormap that is used to translate window pixels into colors
(see window-colormap). However, a window will appear in its true colors only if its
associated colormap is installed.

The total number of colormaps that can be installed depends on the screen hardware.
Most hardware devices allow exactly one colormap to be installed at any time. That is,
screen-min-installed-maps and screen-max-installed-maps are both equal to 1.
Installing a new colormap can cause a previously installed colormap to be uninstalled.
It is important to remember that the set of installed colormaps is a hardware resource
shared cooperatively among all client programs connected to an X server.

A CLX program can control the contents of colormaps by allocating color cells in one of
two ways: read-only or read-write. Allocating a read-only color cell establishes a color
value for a specified pixel value that cannot be changed. However, read-only color cells
can be shared among all client programs. Read-only allocation is the best strategy for
making use of limited colormap hardware in a multi-client environment.

Alternatively, allocating a read-write color cell allows a client the exclusive right to set
the color value stored in the cell. A cell allocated read-write by one client cannot be allo-
cated by another client, not even as a read-only cell. Note that read-write allocation is
not allowed for screens whose visual type belongs to one of the :static-gray, :static-col-
or, or :true-color classes. For screens of these classes, colormap cells cannot be modi-
fied.

Two entries of the default colormap, typically containing the colors black and white, are
automatically allocated read-only. The pixel values for these entries can be returned by
the functions screen-black-pixel and screen-white-pixel. Applications that need only
two colors and also need to operate on both monochrome and color screens should al-
ways use these pixel values. The names black and white are intended to reflect relative
intensity levels and need not reflect the actual colors displayed for these pixel values.

Each screen has a default colormap, which is initially installed. By conventions, clients
should allocate only read-only cells from the default colormap.

Creating 9.3.1 CLX provides functions for creating and freeing new colormap
Colormaps objects.

create-colormap visual window &optional alloc-p Function
Returns:
 colormap — Type colormap.

Creates and returns a colormap of the specified visual type for the screen containing the
window. The visual type must be one of those supported by the screen.

Initial color cell values are undefined for visual types belonging to the :gray-scale,
:pseudo-color, and :direct-color classes. Color cell values for visual types belonging to
the :static-gray, :static-color, and :true-color classes have initial values defined by the
visual type. However, X does not define the set of possible visual types or their initial
color cell values.

If alloc-p is true, all colormap cells are permanently allocated read-write and cannot be
freed by free-colors. It is an error for alloc-p to be true when the visual type belongs to
the :static-gray, :static-color, or :true-color classes.

Colors

9-102 CLX Programmer’s Reference

visual — A visual type ID.

window — A window.

alloc-p — Specifies whether colormap cells are permanently allocated read-write.

copy-colormap-and-free colormap Function
Returns:
 new-colormap — Type colormap.

Creates and returns a new colormap by copying, then freeing, allocated cells from the
specified colormap.

All color cells allocated read-only or read-write in the original colormap have the same
color values and the same allocation status in the new-colormap. The values of unallo-
cated color cells in the new-colormap are undefined. After copying, all allocated color
cells in the original colormap are freed, as if free-colors was called. The unallocated
cells of the original colormap are not affected.

If alloc-p was true when the original colormap was created, then all color cells of the
new-colormap are permanently allocated read-write, and all the color cells of the origi-
nal colormap are freed.

colormap — A colormap.

free-colormap colormap Function

Destroys the colormap and frees its server resource. If the colormap is installed, it is
uninstalled. For any window associated with the colormap, the window is assigned a nil
colormap, and a :colormap-notify event is generated. The colors displayed for a win-
dow with a nil colormap are undefined.

However, this function has no effect if the colormap is a screen default colormap.

colormap — A colormap.

Installing 9.3.2 The following paragraphs describe the CLX functions to install and
Colormaps uninstall colormaps and to return the set of installed colormaps.

Initially, the default colormap for a screen is installed (but is not in the required list).

install-colormap colormap Function

Installs the colormap. All windows associated with this colormap immediately display
with true colors. As a side-effect, additional colormaps might be implicitly uninstalled
by the server.

If the specified colormap is not already installed, a :colormap-notify event is generated
on every window associated with this colormap. In addition, for every other colormap
that is implicitly uninstalled, a :colormap-notify event is generated on every associated
window.

colormap — A colormap.

installed-colormaps window &key (:result-type ’list) Function
Returns:
 colormap — Type sequence of colormap.

Returns a sequence containing the installed colormaps for the screen of the specified
window. The order of the colormaps is not significant.

window — A window.

 Colors

9-103CLX Programmer’s Reference

:result-type — A sub-type of sequence that indicates the type of sequence to return.

uninstall-colormap colormap Function

Uninstalls the colormap. However, the colormap is not actually uninstalled if this would
reduce the set of installed colormaps below the value of screen-min-installed-maps. If
the colormap is actually uninstalled, a :colormap-notify event is generated on every as-
sociated window.

colormap — A colormap.

Allocating Colors 9.3.3 The following paragraphs describe the functions for allocating read-only and
read-write color cells, allocating color planes, and freeing color cells.

alloc-color colormap color Function
Returns:
 pixel — Type pixel.
 screen-color, exact-color — Type color.

Returns a pixel for a read-only color cell in the colormap. The color in the allocated cell is
the closest approximation to the requested color possible for the screen hardware. The
other values returned give both the approximate color stored in the cell and the exact col-
or requested.

The requested color can be either a color object or a stringable containing a color name.
If a color name is given, a corresponding color value is looked up (see lookup-color)
and used. Color name strings must contain only ISO Latin-1 characters; case is not sig-
nificant.

colormap — A colormap.

color — A color object or a stringable containing a color name.

alloc-color-cells colormap colors &key (:planes 0) :contiguous-p Function
(:result-type ’list)
Returns:
 pixels, mask — Type sequence of pixels.

Returns a sequence of pixels for read-write color cells in the colormap. The allocated
cells contain undefined color values. The visual type class of the colormap must be ei-
ther :gray-scale, :pseudo-color, or :direct-color.

The colors argument and the :planes argument define the number of pixels and the num-
ber of masks returned, respectively. The number of colors must be positive, and the num-
ber of planes must be non-negative. A total of (* colors (expt 2 planes)) color cells are
allocated. The pixel values for the allocated cells can be computed by combining the re-
turned pixels and masks.

The length of the returned masks sequence is equal to :planes. Each mask of the returned
masks sequence defines a single bitplane. None of the masks have any 1 bits in common.
Thus, by selectively combining masks with logior, (expt 2 planes) distinct combined
plane masks can be computed.

The length of the returned pixels sequence is equal to colors. None of the pixels have any
1 bits in common with each other or with any of the returned masks. By combining pixels
and plane masks with logior, (* colors (expt 2 planes)) distinct pixel values can be pro-
duced.

Colors

9-104 CLX Programmer’s Reference

If the colormap class is :gray-scale or :pseudo-color, each mask will have exactly one
bit set. If the colormap class is :direct-color, each mask will have exactly three bits set.
If :contiguous-p is true, combining all masks with logior produces a plane mask with
either one set of contiguous bits (for :gray-scale and :pseudo-color) or three sets of
contiguous bits (for :direct-color).

colormap — A colormap.

colors — A positive number defining the length of the pixels sequence returned.

:planes — A non-negative number defining the length of the masks sequence returned.

:contiguous-p — If true, the masks form contiguous sets of bits.

:result-type — A subtype of sequence that indicates the type of sequences returned.

alloc-color-planes colormap colors &key (:reds 0) (:greens 0) (:blues 0) Function
:contiguous-p (:result-type ’list)
Returns:
 pixels — Type sequence of pixel.
 red-mask, green-mask, blue-mask — Type pixel.

Returns a sequence of pixels for read-write color cells in the colormap. The allocated
cells contain undefined color values. The visual type class of the colormap must be ei-
ther :gray-scale, :pseudo-color, or :direct-color.

The colors argument defines the number of pixels returned. The :reds, :greens, and
:blues arguments define the number of bits set in the returned red, green, and blue
masks, respectively. The number of colors must be positive, and the number of bits for
each mask must be non-negative. A total of (* colors (expt 2 (+ reds greens blues))) col-
or cells are allocated. The pixel values for the allocated cells can be computed by com-
bining the returned pixels and masks.

Each mask of the returned masks defines a pixel subfield for the corresponding primary.
None of the masks have any 1 bits in common. By selectively combining subsets of the
red, green, and blue masks with logior, (expt 2
(+ reds greens blues) distinct combined plane masks can be computed.

The length of the returned pixels sequence is equal to colors. None of the pixels have any
1 bits in common with each other or with any of the returned masks. By combining pixels
and plane masks with logior, (* colors (expt 2 (+ reds greens blues)) distinct pixel values
can be produced.

If :contiguous-p is true, each of returned masks consists of a set of contiguous bits. If the
colormap class is :direct-color, each returned mask lies within the pixel subfield for its
primary.

colormap — A colormap.

colors — A positive number defining the length of the pixels sequence returned.

:planes — A non-negative number defining the length of the masks sequence returned.

:contiguous-p — If true, then the masks form contiguous sets of bits.

:result-type — A subtype of sequence that indicates the type of sequences returned.

free-colors colormap pixels &optional (plane-mask 0) Function

Frees a set of allocated color cells from the colormap. The pixel values for the freed cells
are computed by combining the given pixels sequence and :plane-mask. The total num-
ber of cells freed is:

(* (length pixels) (expt 2 (logcount plane-mask)))

 Colors

9-105CLX Programmer’s Reference

The :plane-mask must not have any bits in common with any of the given pixels. The
pixel values for the freed cells are produced by using logior to combine each of the given
pixels with all subsets of the :plane-mask.

Note that freeing an individual pixel allocated by alloc-color-planes may not allow it to
be reused until all related pixels computed from the same plane mask are also freed.

A single error is generated if any computed pixel is invalid or if its color cell is not allo-
cated by the client. Even if an error is generated, all valid pixel values are freed.

colormap — A colormap.

pixels — A sequence of pixel values.

plane-mask — A pixel value with no bits in common with any of the pixels.

Finding Colors 9.3.4 A CLX program can ask the X server to return the colors stored in allocated color
cells. The server also maintains a dictionary of color names and their associated color
values. CLX provides a function to look up the values for common colors by names such
as “red”, “purple”, and so forth. The following paragraphs describe the CLX functions
for returning the color values associated with color cells or with color names.

lookup-color colormap name Function
Returns:
 screen-color, exact-color — Type color.

Returns the color associated by the X server with the given color name. The name must
contain only ISO Latin-1 characters; case is not significant. The first value returned is
the closest approximation to the requested color possible on the screen hardware. The
second value returned is the true color value for the requested color.

colormap — A colormap.

name — A stringable color name.

query-colors colormap pixels &key (:result-type ’list) Function
Returns:
 colors — Type sequence of color.

Returns a sequence of the colors contained in the allocated cells of the colormap speci-
fied by the given pixels. The values returned for unallocated cells are undefined.

colormap — A colormap.

pixels — A sequence of pixel values.

:result-type — A subtype of sequence that indicates the type of sequences returned.

Changing Colors 9.3.5 The following paragraphs describe the CLX functions to change the colors in
colormap cells.

store-color colormap pixel color &key (:red-p t) (:green-p t) (:blue-p t) Function

Changes the contents of the colormap cell indexed by the pixel. Components of the given
color are stored in the cell. The :red-p, :green-p, and :blue-p arguments indicate which
components of the given color are stored.

The color can be either a color object or a stringable containing a color name. If a color
name is given, a corresponding color value is looked up (see lookup-color) and used.
Color name strings must contain only ISO Latin-1 characters; case is not significant.

Colors

9-106 CLX Programmer’s Reference

colormap — A colormap.

pixel — A pixel.

color — A color object or a stringable containing a color name.

:red-p, :green-p, :blue-p — boolean values indicating which color components to
store.

store-colors colormap pixel-colors &key (:red-p t) (:green-p t) (:blue-p t) Function

Changes the contents of multiple colormap cells. pixel-colors is a list of the form ({pixel
color}*), indicating a set of pixel values and the colors to store in the corresponding
cells. The :red-p, :green-p, and :blue-p arguments indicate which components of the
given colors are stored.

Each color can be either a color object or a stringable containing a color name. If a color
name is given, a corresponding color value is looked up (see lookup-color) and used.
Color name strings must contain only ISO Latin-1 characters; case is not significant.

colormap — A colormap.

pixel-colors — A list of the form ({pixel color}*).

:red-p, :green-p, :blue-p — boolean values indicating which color components to
store.

 Colors

9-107CLX Programmer’s Reference

Colormap 9.3.6 The complete set of colormap attributes is discussed in the following
Attributes paragraphs.

colormap-display colormap Function
Returns:
 display — Type display.

Returns the display object associated with the specified colormap.

colormap — A colormap.

colormap-equal colormap-1 colormap-2 Function

Returns true if the two arguments refer to the same server resource and nil if they do not.

colormap-1, colormap-2 — A colormap.

colormap-id colormap Function
Returns:
 id — Type resource-id.

Returns the unique ID assigned to the specified colormap.

colormap — A colormap.

colormap-p colormap Function
Returns:
 map-p — Type boolean.

Returns non-nil if the argument is a colormap and nil otherwise.

colormap-plist colormap Function
Returns:
 colormap-p — Type boolean.

Returns and (with setf) sets the property list for the specified colormap. This function
provides a hook where extensions can add data.

colormap — A colormap.

Colors

9-108 CLX Programmer’s Reference

10-107CLX Programmer’s Reference

CURSORS

Introduction 10.1 A cursor is a visible shape that appears at the current position of the pointer de-
vice. The cursor shape moves with the pointer to provide continuous feedback to the user
about the current location of the pointer. Each window can have a cursor attribute that
defines the appearance of the pointer cursor when the pointer position lies within the
window. See window-cursor.

A cursor image is composed of a source bitmap, a mask bitmap, a hot spot, a foreground
color, and a background color. Either 1-bit pixmaps or font glyphs can be used to specify
source and mask bitmaps. The source bitmap identifies the foreground and background
pixels of the cursor image; the mask bitmap identifies which source pixels are actually
drawn. The mask bitmap thus allows a cursor to assume any shape. The hot spot defines
the position within the cursor image that is displayed at the pointer position.

In CLX, a cursor is represented by a cursor object. This section describes the CLX func-
tions to:

• Create and free cursor objects

• Change cursor colors

• Inquire the best cursor size

• Access cursor attributes

Creating 10.2 The following paragraphs describe the CLX functions used to create
Cursors and free cursor objects.

create-cursor &key :source :mask :x :y :foreground :background Function
Returns:
 cursor — Type cursor.

Creates and returns a cursor. :x and :y define the position of the hot spot relative to the
origin of the :source. :foreground and :background colors must be specified, even if
the server only has a :static-gray or :gray-scale screen. The :source, :x, and :y argu-
ments must also be specified.

The cursor image is drawn by drawing a pixel from the :source bitmap at every position
where the corresponding bit in the :mask bitmap is 1. If the corresponding :source bit is
1, a pixel is drawn in the :foreground color; otherwise, a pixel is drawn in the :back-
ground color. If the :mask is omitted, all :source pixels are drawn. If given, the :mask
must be the same size as the :source.

An X server may not be able to support every cursor size. A server is free to modify any
component of the cursor to satisfy hardware or software limitations.

The :source and :mask can be freed immediately after the cursor is created. Subsequent
drawing in the :source or :mask pixmap has an undefined effect on the cursor.

:source — The source pixmap. This argument is required.

Cursors

10-108 CLX Programmer’s Reference

:mask — The mask pixmap.

:x, :y — The hot spot position in the :source. This argument is required.

:foreground — A color object specifying the foreground color. This argument is re-
quired.

:background — A color object specifying the background color. This argument is re-
quired.

create-glyph-cursor &key :source-font :source-char :mask-font Function
(:mask-char 0) :foreground :background
Returns:
 cursor — Type cursor.

Creates and returns a cursor defined by font glyphs. The source bitmap is defined by the
:source-font and :source-char. The mask bitmap is defined by the :mask-font and
:mask-char. It is an error if the :source-char and :mask-char are not valid indexes for
the :source-font and :mask-font, respectively. The hot spot position is defined by the
“character origin” of the source glyph, that is, the position [– char-left-bearing, char-as-
cent] relative to the upper left corner of the source glyph bitmap.

Source and mask bits are compared after aligning the character origins of the source and
mask glyphs. The source and mask glyphs need not have the same size or character ori-
gin position. If the :mask-font is omitted, all source pixels are drawn.

An X server may not be able to support every cursor size. A server is free to modify any
component of the cursor to satisfy hardware or software limitations.

Either of the :source-font or :mask-font can be closed after the cursor is created.

:source-font — The source font. This is a required argument.

:source-char — An index specifying a glyph in the source font. This is a required argu-
ment.

:mask-font — The mask font.

:mask-char — An index specifying a glyph in the mask font.

:foreground — A color object specifying the foreground color. This is a required argu-
ment.

:background — A color object specifying the background color. This is a required ar-
gument.

free-cursor cursor Function

Destroys the cursor object. Cursor server resources are freed when no other references
remain.

cursor — A cursor object.

Cursor 10.3 The following paragraphs describe the CLX functions used to operate
Functions on cursor objects.

Cursors

10-109CLX Programmer’s Reference

query-best-cursor width height display Function
Returns:
 width, height — Type card16.

Returns the cursor size closest to the requested width and height that is best suited to the
display. The width and height returned define the largest cursor size supported by the X
server. Clients should always be prepared to limit cursor sizes to those supported by the
server.

display — A display object.

width, height — The requested cursor size.

recolor-cursor cursor foreground background Function

Changes the color of the specified cursor. If the cursor is displayed on a screen, the
change is visible immediately.

cursor — A cursor object.

foreground — A color object specifying the new foreground color.

background — A color object specifying the new background color.

Cursor 10.4 The complete set of cursor attributes is discussed in the following
Attributes paragraphs.

cursor-display cursor Function
Returns:
 display — Type display.

Returns the display object associated with the specified cursor.

cursor — A cursor object.

cursor-equal cursor-1 cursor-2 Function

Returns true if the two arguments refer to the same server resource and nil if they do not.

cursor-1, cursor-2 — cursor objects.

cursor-id cursor Function
Returns:
 id — Type resource-id.

Returns the unique resource ID that has been assigned to the specified cursor.

cursor — A cursor object.

cursor-p cursorFunction
Returns:
 cursor-p — Type boolean.

Returns true if the argument is a cursor object and nil otherwise.

cursor-plist cursor Function
Returns:
 plist — A property list.

Returns and (with setf) sets the property list for the specified cursor. This function pro-
vides a hook where extensions can add data.

cursor — A cursor object.

Cursors

10-110 CLX Programmer’s Reference

11-111CLX Programmer’s Reference

ATOMS, PROPERTIES,
 AND SELECTIONS

Atoms 11.1 In X, an atom is a unique ID used as the name for certain server resources — prop-
erties and selections.

In CLX, an atom is represented by a keyword symbol. For convenience, CLX functions
also allow atoms to be specified by strings and non-keyword symbols. xatom is a CLX
data type that permits either string or symbol values. A string is equivalent to the xatom
given by (intern string ’keyword). A symbol is equivalent to the xatom given by (in-
tern (symbol-name symbol) ’keyword). The symbol name string of an xatom must
consist only of ISO Latin characters. Note that the case of xatom strings is important; the
xatom “Atom” is not the same as the xatom “ATOM”.

Certain atoms are already predefined by every X server. Predefined atoms are designed
to represent common names that are likely to be useful for many client applications. Note
that these atoms are predefined only in the sense of having xatom and card29 values, not
in the sense of having required semantics. No interpretation is placed on the meaning or
use of an atom by the server. The xatom objects predefined by CLX are listed below.

:arc :italic_angle :string
:atom :max_space :subscript_x
:bitmap :min_space :subscript_y
:cap_height :norm_space :superscript_x
:cardinal :notice :superscript_y
:colormap :pixmap :underline_position
:copyright :point :underline_thickness
:cursor :point_size :visualid
:cut_buffer0 :primary :weight
:cut_buffer1 :quad_width :window
:cut_buffer2 :rectangle :wm_class
:cut_buffer3 :resolution :wm_client_machine
:cut_buffer4 :resource_manager :wm_command
:cut_buffer5 :rgb_best_map :wm_hints
:cut_buffer6 :rgb_blue_map :wm_icon_name
:cut_buffer7 :rgb_color_map :wm_icon_size
:drawable :rgb_default_map :wm_name
:end_space :rgb_gray_map :wm_normal_hints
:family_name :rgb_green_map :wm_size_hints
:font :rgb_red_map :wm_transient_for
:font_name :secondary :wm_zoom_hints
:full_name :strikeout_ascent :x_height
:integer :strikeout_descent

Atoms, Properties, and Selections

11-112 CLX Programmer’s Reference

When creating a new atom, the following conventions should be obeyed in order to mini-
mize the conflict between atom names:

• Symbol names beginning with an underscore should be used for atoms that are pri-
vate to a particular vendor or organization. An additional prefix should identify the
organization.

• Symbol names beginning with two underscores should be used for atoms that are
private to a single application or end user.

CLX provides functions to convert between an xatom and its corresponding ID integer.
The data type of an atom ID is card29. The xatom representation is usually sufficient for
most CLX programs. However, it is occasionally useful to be able to convert an atom ID
returned in events or properties into its corresponding xatom.

atom-name display atom-id Function
Returns:
 atom-name — Type keyword.

Returns the atom keyword for the atom-id on the given display server.

display — A display object.

atom-id — A card29.

find-atom display atom-name Function
Returns:
 atom-id — Type card29 or null .

Returns the atom ID for the given atom-name, if it exists. If no atom of that name exists
for the display server, nil is returned.

display — A display object.

atom-name — An xatom.

intern-atom display atom-name Function
Returns:
 atom-id — Type card29 or null .

Creates an atom with the given name and returns its atom ID. The atom can survive the
interning client; it exists until the last server connection has been closed and the server
resets itself.

display — A display object.

atom-name — An xatom.

Properties 11.2 For each window, an X server can record a set of properties. Properties are a gen-
eral mechanism for clients to associate arbitrary data with a window, and for clients to
communicate window data to each other via the server. No interpretation is placed on
property data by the server itself.

A property consists of a name, a type, a data format, and data. The name of a property is
given by an atom. The property type is another atom used to denote the intended inter-
pretation of the property data. The property formats specifies whether the property data
should be treated as a set of 8-, 16-, or 32-bit elements. The property format must be spe-
cified so that the X server can communicate property data with the correct byte order.

CLX provides functions to:

Atoms, Properties, and Selections

11-113CLX Programmer’s Reference

• Create or change a property

• Return property data

• List window properties

• Delete a property

change-property window property data type format &key (:mode :replace) Function
(:start 0) :end :transform

Creates a new window property or changes an existing property. A :property-notify
event is generated for the window.

If the :mode is :replace, the new data, type, and format replace any previous values. The
subsequence of previous data elements that are replaced is defined by the :start and
:end indexes.

If the :mode is :prepend or :append, no previous data is changed, but
the new data is added at the beginning or the end, respectively. For these modes, if the
property already exists, the new type and format must match the previous values.

The :transform , if given, is a function used to compute the actual property data stored.
The :transform , which must accept a single data element and return a single trans-
formed data element, is called for each data element. If the data is a string, the default
:transform function transforms each character into its ASCII code; otherwise, the de-
fault is to store the data unchanged.

window — A window.

property — A property name xatom.

data — A sequence of property data elements.

type — The property type xatom.

format — One of 8, 16, or 32.

:mode — One of :replace, :append, or :prepend.

:start, :end — Specify the subsequence of previous data replaced when :mode is :re-
place.

:transform — A function that transforms each data element into a data value to store.

delete-property window property Function

Deletes the window property. If the property already exists, a :property-notify event is
generated for the window.

window — A window.

property — A property name xatom.

Atoms, Properties, and Selections

11-114 CLX Programmer’s Reference

get-property window property &key :type (:start 0) :end :delete-p Function
(:result-type ’list) :transform
Returns:
 data — Type sequence.
 type — Type xatom.
 format — Type (member 8 16 32).
 bytes-after — Type card32.

Returns a subsequence of the data for the window property. The :start and :end indexes
specify the property data elements returned. The :transform function is called for ele-
ments of the specified subsequence to compute the data sequence returned. The proper-
ty type and format are also returned. The final return value gives the actual number of
data bytes (not elements) following the last data element returned.

If the property does not exist, the returned data and type are nil and the returned format
and bytes-after are zero.

If the given :type is non-nil but does not match the actual property type, then the data
returned is nil , the type and format returned give the actual property values, and the by-
tes-after returned gives the total number of bytes (not elements) in the property data.

If the given :type is nil or if it matches the actual property type, then:

• The data returned is the transformed subsequence of the property data.

• The type and format returned give the actual property values.

• The bytes-after returned gives the actual number of data bytes (not elements) fol-
lowing the last data element returned.

In this case, the :delete-p argument is also examined. If :delete-p is true and bytes-after
is zero, the property is deleted and a :property-notify event is generated for the window.

window — A window.

property — A property name xatom.

:type — The requested type xatom or nil .

:start , :end — Specify the subsequence of property data returned.

:transform — A function that transforms each data element into a data value to return.

:delete-p — If true, the existing property can be deleted.

:result-type — The type of data sequence to return. Default is ’list .

list-properties window &key (:result-type ’list) Function
Returns:
 properties — Type sequence of keyword.

Returns a sequence containing the names of all window properties.

window — A window.

:result-type — The type of sequence to return. Default is ’list .

rotate-properties window properties &optional (delta 1) Function

Rotates the values of the given window properties. The value of property i in the given
sequence is changed to the value of the property at index (mod (+ i delta) (length prop-
erties)). This function operates much like the rotatef macro in Common Lisp.

Atoms, Properties, and Selections

11-115CLX Programmer’s Reference

If (mod delta (length properties)) is non-zero, a :property-notify event is generated on
the window for each property, in the same order as they appear in the properties se-
quence.

window — A window.

properties — A sequence of xatom values.

delta — The index interval between source and destination elements of properties.

Selections 11.3 A selection is an atom used to identify data that can be shared among all client
programs connected to an X server. Unlike properties, the data represented by a selec-
tion is stored by some client program, not by the server.

The data named by a selection is associated with a client window, which is referred to as
the selection owner. The server always knows which window is the owner of a selection.
Selections can be created freely by clients using intern-atom to create an atom. CLX
provides functions to inquire or change the owner of a selection and to convert a selec-
tion.

Conversion is the key to the use of selections for inter-client communication. Suppose
Client A wants to paste the contents of the data named by selection S into his window
WA. Client A calls convert-selection on selection atom S, sending a conversion request
to the server. The server, in turn, sends a :selection-request event to the current owner of
S, which is window WB belonging to Client B. The :selection-request event contains
the requestor window (WA), the selection atom (S), an atom identifying a requested data
type, and the name of a property of WA into which the value of S will be stored.

Since WB is the owner of S, it must be associated with the data defined by Client B as the
value of S. When WB gets the :selection-request event, Client B is expected to convert
the value of S to the requested data type (if possible) and store the converted value in the
given requestor property. Client B is then expected to send a :selection-notify event to
the requestor window WA, informing the requestor that the converted value for S is
ready. Upon receiving the :selection-notify event, Client A can call get-property to re-
trieve the converted value and to paste it into WA.

NOTE: Clients using selections must always be prepared to handle :selection-request
events and/or :selection-notify events. There is no way for a client to ask not to receive
these types of events.

Type atoms used in selection conversion can represent arbitrary client-defined inter-
pretations of the selection data. For example, if the value of selection S is a text string,
Client A might request its typeface by requesting conversion to the :font type. A type
atom can also represent a request to the selection owner to perform some action as a
side-effect of conversion (for example, :delete). Some of the predefined atoms of an
X server are intended to be used as selection types (for example, :colormap, :bitmap ,
:string , and so forth) However, X does not impose any requirements on the interpreta-
tion of type atoms.

Atoms, Properties, and Selections

11-116 CLX Programmer’s Reference

When multiple clients negotiate for ownership of a selection, certain race conditions
might be possible. For example, two clients might each receive a user command to assert
ownership of the :primary selection, but the order in which the server processes these
client requests is unpredictable. As a result, the ownership request initiated most recent-
ly by the user might be incorrectly overridden by the other earlier ownership request. To
prevent such anomalies, the server records a last-changed timestamp for each change
of selection ownership.

Although inter-client communication via selections is rather complex, it offers impor-
tant benefits. Since selection communication is mediated by an X server, clients can
share data even though they are running on different hosts and using different network-
ing protocols. Data storage and conversion is distributed among clients so that the server
is not required to provide all possible data types or to store multiple forms of selection
data.

Certain predefined atoms are used as standard selections, as described in the X11 Inter-
client Communications Conventions Manual. Some of the standard selections covered
by these conventions are:

• :primary — The primary selection. The main vehicle for inter-client cut and paste
operations.

• :secondary — The secondary selection. In some environments, clients can use this
as an auxiliary to :primary .

• :clipboard — Analogous to akill ring. Represents the most recently deleted data
item.

convert-selection selection type requestor &optional property time Function

Requests that the value of the selection be converted to the specified type and stored in
the given property of the requestor window.

If the selection has an owner, the X server sends a :selection-request event to the owner
window. Otherwise, if no owner exists, the server generates on the requestor a :selec-
tion-notify event containing a nil property atom.

The given property specifies the requestor property that will receive the converted val-
ue. If the property is omitted, the selection owner will define a property to use. The time
furnishes a timestamp representing the time of the conversion request; by default, the
current server time is used.

NOTE: Standard conventions for inter-client communication require that both the re-
questor property and the time must be specified. If possible, the time should be the time
of a user event which initiated the conversion. Alternatively, a timestamp can be ob-
tained by calling change-property to append zero-length data to some property; the
timestamp in the resulting :property-notify event can then be used.

selection — The xatom for the selection name.

type — The xatom for the requested data type.

requestor — The window to receive the converted selection value.

property — The xatom for the requestor property to receive the converted value.

time — A timestamp.

Atoms, Properties, and Selections

11-117CLX Programmer’s Reference

selection-owner display selection &optional time Function
Returns:
 owner — Type window or null .

Returns and (with setf) changes the owner and the last-changed time for the selection. If
the owner is nil , no owner for the selection exists. When the owner window for a selec-
tion is destroyed, the selection owner is set to nil without affecting the last-changed time.

The time argument is used only when changing the selection owner. If the time is nil , the
current server time is used. If the time is earlier than the current last-changed time of the
selection or if the time is later
than the current server time, the owner is not changed. Therefore, a client should always
confirm successful change of ownership by immediately calling selection-owner. If the
change in ownership is successful, the last-changed time of the selection is set to the spe-
cified time.

If the change in ownership is successful and the new owner is different from the previous
owner, and if the previous owner is not nil , a :selection-clear event is generated for the
previous owner window.

NOTE: Standard conventions for inter-client communication require that a non-nil
time must be specified. If possible, the time should be the time
of a user event which initiated the change of ownership. Alternatively, a
timestamp can be obtained by calling change-property to append zero-length data to
some property; the timestamp in the resulting :property-notify event can then be used.

display — A display.

selection — The xatom for the selection name.

time — A timestamp.

Atoms, Properties, and Selections

11-118 CLX Programmer’s Reference

12-119CLX Programmer’s Reference

EVENTS AND INPUT

Introduction 12.1 A client application uses CLX functions to send requests to an X server over a
display connection returned by the open-display function. In return, the X server sends
back replies and events. Replies are synchronized with specific requests and return re-
quested server information. Events typically occur asynchronously. Device events are
generated by user input from both the keyboard and pointer devices. Other events are
side-effects of the requests sent by CLX functions. The types of events returned by an X
server are summarized below.

Device Events Events Returned

Keyboard :key-press
:key-release

Pointer :button-press
:button-release
:enter-notify
:leave-notify
:motion-notify

Side-Effect Events Events Returned

Client communication :client-message
:property-notify
:selection-clear
:selection-notify
:selection-request

Color map state :colormap-notify

Exposure :exposure
:graphics-exposure
:no-exposure

Input focus :focus-in
:focus-out

Keyboard and pointer state :keymap-notify
:mapping-notify

Structure control :circulate-request
:configure-request
:map-request
:resize-request

Window state :circulate-notify
:configure-notify
:create-notify
:destroy-notify
:gravity-notify
:map-notify
:reparent-notify
:unmap-notify
:visibility-notify

Events and Input

12-120 CLX Programmer’s Reference

Client programs can override the server’s normal distribution of events by grabbing the
pointer or the keyboard. Grabbing causes events from the pointer or keyboard device to
be reported to a single specified window, rather than to their ordinary destinations. It can
also cause the server to freeze the grabbed device, sending queued events only when ex-
plicitly requested by the grabbing client. Two kinds of grabs are possible:

• Active — Events are immediately grabbed.

• Passive — Events are grabbed later, as soon as a specified device event occurs.

Grabbing an input device is performed rarely and usually only by special clients, such as
window managers.

This section describes the CLX functions used to:

• Select events

• Process an event on the event queue

• Manage the event queue

• Send events to other applications

• Read and change the pointer position

• Manage the keyboard input focus

• Grab pointer and keyboard events

• Release queued events

This section also contains a detailed description of the content of each type of event.

Selecting Events 12.2 A client selects which types of events it receives from a specific window. The
window event-mask attribute, set by the client, determines which event types are se-
lected (see window-event-mask in paragraph 4.3, Window Attributes). Most types of
events are received by a client only if they are selected for some window.

In the X protocol, an event-mask is represented as a bit string. CLX also allows an event
mask to be defined by a list of event-mask-class keywords. The functions make-event-
keys and make-event-mask can be used to convert between these two forms of an
event-mask. In general, including an event-mask-class keyword in an event-mask
causes one or more related event types to be selected. The following table describes the
event types selected by each event-mask-class keyword.

Events and Input

12-121CLX Programmer’s Reference

Event Mask Keyword Event Types Selected

:button-1-motion :motion-notify when :button-1 is down
:button-2-motion :motion-notify when :button-2 is down
:button-3-motion :motion-notify when :button-3 is down
:button-4-motion :motion-notify when :button-4 is down
:button-5-motion :motion-notify when :button-5 is down
:button-motion :motion-notify when any pointer

button is down
:button-press :button-press
:button-release :button-release
:colormap-change :colormap-notify
:enter-window :enter-notify
:exposure :exposure
:focus-change :focus-in, :focus-out
:key-press :key-press
:key-release :key-release
:keymap-state :keymap-notify
:leave-window :leave-notify
:owner-grab-button Pointer events while button is grabbed
:pointer-motion :motion-notify
:pointer-motion-hint Single :motion-notify only
:property-change :property-notify
:resize-redirect :resize-request
:structure-notify :circulate-notify, :configure-notify,

 :destroy-notify, : gravity-notify,
 :map-notify, :reparent-notify,
 :unmap-notify

:substructure-redirect :circulate-request, :configure-request,
 :map-request

:visibility-change :visibility-notify

Some types of events do not have to be selected to be received and therefore are not rep-
resented in an event-mask. For example, the copy-plane and copy-area functions cause
:graphics-exposure and :no-exposure events to be reported, unless exposures are
turned :off in the graphics context (see copy-area and copy-plane in paragraph 6.2,
Area and Plane Operations, and gcontext-exposures in paragraph 5.4.6, Exposures).
Also, :selection-clear, :selection-request, :selection-notify and :client-message
events can be received at any time, but they are generally sent only to clients using selec-
tions (see paragraph 12.12.7, Client Communications Events). :mapping-notify is al-
ways sent to clients when the keyboard mapping is changed.

Any client can select events for any window. A window maintains a separate event-mask
for each interested client. In general, multiple clients can select for the same events on a
window. After the X server generates an event, it sends it to all clients which selected it.
However, the following restrictions apply to sharing window events among multiple cli-
ents. For a given window:

• Only one client at a time can include :substructure-redirect in its event-mask

• Only one client at a time can can include :button-press in its event-mask

• Only one client at a time can include :resize-redirect in its event-mask

Events and Input

12-122 CLX Programmer’s Reference

Processing 12.3 Events received by a CLX client are stored in an event queue until
Events they are read and processed. Events are processed by handler functions.

handler-function &rest event-slots &key :display :event-key :send-event-p Function
&allow-other-keys
Returns:
 handled-p — Type boolean.

The arguments to a handler function are keyword-value pairs that describe the contents
of an event. The actual event-slots passed depend on the event type, except that :display,
:event-key, and :send-event-p are given for all event types. The keyword symbols used
for each event type are event slot names defined by the declare-event macro and are de-
scribed in paragraph 12.12.8, Declaring Event Types.

If a handler returns non-nil , the event is considered processed and can be removed from
the event queue. Otherwise, if a handler function returns nil , the event can remain in the
event queue for later processing.

:display — A display for the connection that returned the event.

:event-key — An event-key keyword specifying the event type.

:send-event-p — If true, the event was sent from another application using the send-
event function.

process-event display &key :handler :timeout :peek-p :discard-p Function
(:force-output-p t)
Returns:
 handled-p — Type boolean.

Invokes :handler on each queued event until :handler returns non-nil . Then, the non-
nil :handler value is returned by process-event. If :handler returns nil for each event in
the event queue, process-event waits for another event to arrive. If timeout is non-nil
and no event arrives within the specified timeout interval (given in seconds), process-
event returns nil ; if timeout is nil , process-event will not return until :handler returns
non-nil . process-event may wait only once on network data, and therefore timeout pre-
maturely.

If :force-output-p is true, process-event first invokes display-force-output to send
any buffered requests. If :peek-p is true, a processed event is not removed from the
queue. If :discard-p is true, unprocessed events are removed from the queue; otherwise,
unprocessed events are left in place.

If :handler is a sequence, it is expected to contain handler functions for each event type.
The sequence index of the handler function for a particular event type is given by (posi-
tion event-key *event-key-vector*).

display — A display.

:handler — A handler function or a sequence of handler functions.

:timeout — Specifies the timeout delay in seconds.

:peek-p — If nil , events are removed from the event queue after processing.

:discard-p — If true, unprocessed events are discarded.

:force-output-p — If true, buffered output requests are sent.

Events and Input

12-123CLX Programmer’s Reference

event-case display &key :timeout :peek-p :discard-p (:force-output-p t) Macro
&body clauses
Returns:
 handled-p — Type boolean.

Executes the matching clause for each queued event until a clause returns non-nil . The
non-nil clause value is then returned. Each of the clauses is a list of the form (event-
match [event-slots] &rest forms), where:

event-match — Either an event-key, a list of event-keys, otherwise, or t. It is an error for
the same key to appear in more than one clause.

event-slots — If given, a list of (non-keyword) event slot symbols defined for the speci-
fied event type(s). See paragraph 12.12.8, Declaring Event Types.

forms — A list of forms that process the specified event type(s). The value of the last
form is the value returned by the clause.

A clause matches an event if the event-key is equal to or a member of the event-match, or
if the event-match is t or otherwise. If no t or otherwise clause appears, it is equivalent to
having a final clause that returns nil . If event-slots is given, these symbols are bound to
the value of the corresponding event slot in the clause forms. Each element of event-slots
can also be a list of the form (event-slot-keyword variable), in which case the variable
symbol is bound to the value of the event slot specified by the event-slot-keyword.

If every clause returns nil for each event in the event queue, event-case waits for another
event to arrive. If :timeout is non-nil and no event arrives within the specified timeout
interval (given in seconds), event-case returns nil ; if :timeout is nil , event-case will not
return until a clause returns non-nil . event-case may wait only once on network data and
therefore timeout prematurely.

If :force-output-p is true, event-case first invokes display-force-output to send any
buffered requests. If :peek-p is true, a processed event is not removed from the queue. If
:discard-p is true, unprocessed events are removed from the queue; otherwise, unpro-
cessed events are left in place.

display — A display.

:handler — A handler function or a sequence of handler functions.

:timeout — Specifies the timeout delay, in seconds.

:peek-p — If nil , events are removed from the event queue after processing.

:discard-p — If true, unprocessed events are discarded.

:force-output-p — If true, buffered output requests are sent.

clauses — Code to process specified event types.

event-cond display &key :timeout :peek-p :discard-p (:force-output-p t) Macro
&body clauses
Returns:
 handled-p — Type boolean.

Similar to event-case except that each of the clauses is a list of the form (event-match
[event-slots] test-form &rest forms). Executes the test-form of the clause that matches
each queued event until a test-form returns non-nil . The body forms of the clause are then
executed. The values returned by the last clause body form are then returned by event-
cond.

Events and Input

12-124 CLX Programmer’s Reference

When a test-form returns true and :peek-p is nil , or when a test-form returns nil and :dis-
card-p is true, the matching event is removed from the event queue before the body
forms are executed.

display — A display.

:handler — A handler function or a sequence of handler functions.

:timeout — Specifies the timeout delay in seconds.

:peek-p — If nil , events are removed from the event queue after processing.

:discard-p — If true, unprocessed events are discarded.

:force-output-p — If true, buffered output requests are sent.

clauses — Code to process specified event types.

Managing the 12.4 The following paragraphs describe CLX functions and macros used to:
Event Queue

• Put a new event on the event queue

• Discard the current event

• Return the current length of the event queue

• Gain exclusive access to the event queue for a client process

queue-event display event-key &rest event-slots &key :append-p Function
&allow-other-keys

Places an event of the type given by event-key into the event queue. When :append-p is
true, the event is placed at the tail of the queue; otherwise, the event is placed at the head
of the queue. The actual event-slots passed depend on the event type. The keyword sym-
bols used for each event type are event slot names defined by the declare-event macro
and are described in paragraph 12.12.8, Declaring Event Types.

display — A display.

event-key — Specifies the type of event placed in the queue.

event-slots — Keyword-value pairs that describe the contents of an event.

:append-p — If true, the event is placed at the tail of the queue; otherwise, the event is
placed at the head of the queue.

discard-current-event display Function
Returns:
 discarded-p — Type boolean.

Discards the current event for the display. Returns nil when the event queue is empty;
otherwise, returns t. This function provides extra flexibility for discarding events, but it
should be used carefully; use event-cond instead, if possible. Typically, discard-cur-
rent-event is called inside a handler function or a clause of an event-case form and is
followed by another call to process-event, event-case, or event-cond.

display — A display.

Events and Input

12-125CLX Programmer’s Reference

event-listen display &optional (timeout 0) Function
Returns:
 event-count — Type (or null integer).

Returns the number of events queued locally. If the event queue is empty, event-listen
waits for an event to arrive. If timeout is non-nil and no event arrives within the specified
timeout interval (given in seconds), event-listen returns nil ; if timeout is nil , event-lis-
ten will not return until an event arrives.

display — A display.

timeout — The number of seconds to wait for events.

with-event-queue display &body body Macro

Executes the body in a critical region in which the executing client process has exclusive
access to the event queue.

display — A display.

body — Forms to execute.

Sending Events 12.5 A client can send an event to a window. Clients selecting this window event will
receive it just like any other event sent by the X server.

send-event window event-key event-mask &rest event-slots &key Function
:propagate-p :display &allow-other-keys

Sends an event specified by the event-key and event-slots to the given destination win-
dow. Any active grabs are ignored. The event-slots passed depend on the event type. The
keyword symbols used for each event type are event slot names defined by the declare-
event macro and are described in paragraph 12.12.8, Declaring Event Types.

If the window is :pointer-window, the destination window is replaced with the window
containing the pointer. If the window is :input-focus, the destination window is replaced
with the descendant of the focus window that contains the pointer or (if no such descen-
dant exists) the focus window. The :display keyword is only required if the window is
:pointer-window or :input-focus.

The event-key must be one of the core events, or one of the events defined by an exten-
sion, so the server can send the event with the correct byte-order. The contents of the
event are otherwise unaltered and unchecked by the server, except that the send-event-p
event slot is set to true.

If the event-mask is nil , the event is sent to the client that created the destination window
with an event-mask of 0; if that client no longer exists, no event is sent. Otherwise, the
event is sent to every client selecting any of the event types specified by event-mask on
the destination window.

If :propagate-p is true and no clients have selected any of the event types in event-mask
on the destination window, the destination is replaced with the closest ancestor of win-
dow for which some client has selected a type in event-mask and no intervening window
has that type in its do-not-propagate mask. If no such window exists, or if the window is
an ancestor of the focus window and :input-focus was originally specified as the des-
tination, the event is not sent to any clients. Otherwise, the event is reported to every cli-
ent selecting on the final destination any of the types specified in event-mask.

window — The destination window for the event.

event-key — An event-key defining the type of event to send.

Events and Input

12-126 CLX Programmer’s Reference

event-mask — Specifies the event types that receiving clients must select.

event-slots — Keyword-value pairs that describe the contents of an event.

:propagate-p — If true, the event can be propagated to ancestors of the destination win-
dow.

:display — A display.

Pointer Position 12.6 The CLX functions affecting pointer position are discussed in the following para-
graphs.

query-pointer window Function
Returns:

x — Type int16.
y — Type int16.
same-screen-p — Type boolean.
child — Type window or null .
state-mask — Type card16.
root-x — Type int16.
root-y — Type int16.
root — Type window.

Returns the current pointer coordinates relative to the given window. If query-pointer
returns nil for same-screen-p, the pointer is not on the same screen as the window. In this
case, query-pointer returns a value of nil for child and a value of zero for x and y. If
query-pointer returns true for same-screen-p, the returned x and y are relative to the ori-
gin of window. The child is the child of the window containing the pointer, if any. The
state-mask returned gives the current state of the modifier keys and pointer buttons. The
returned root is the root window currently containing the pointer. The returned root-x
and root-y specify the pointer coordinates relative to root.

window — A window specifying the coordinate system for the returned position.

global-pointer-position display Function
Returns:

root-x — Type int16.
root-y — Type int16.
root — Type window.

Returns the root window currently containing the display pointer and the current posi-
tion of the pointer relative to the root.

display — A display.

pointer-position window Function
Returns:

x — Type int16.
y — Type int16.
same-screen-p — Type boolean.
child — Type window or null .

Returns the current pointer coordinates relative to the given window. If pointer-position
returns nil for same-screen-p, the pointer is not on the same screen as the window. In this
case, pointer-position returns a value of nil for child and a value of zero for x and y. If
pointer-position returns true for same-screen-p, the returned x and y are relative to the
origin of window.

window — A window specifying the coordinate system for the returned position.

Events and Input

12-127CLX Programmer’s Reference

motion-events window &key :start :stop (:result-type ’list) Function
Returns:
 motion-events — Type (repeat-seq (int16 x) (int16 y) (timestamp

 time)).

Many X server implementations maintain a more precise history of pointer motion be-
tween event notifications. The pointer position at each pointer hardware interrupt can be
stored into a buffer for later retrieval.This is called the motion history buffer. A paint pro-
gram, for example, may want to have a precise history of where the pointer traveled,
even though for most other applications this amount of detail is grossly excessive.

The motion-events function returns all events in the motion history buffer that fall be-
tween the specified :start and :stop timestamps (inclusive) and have coordinates that lie
within the specified window (including borders) at its present placement. If the :start
time is later than the :stop time or if the :start time is in the future, no events are returned.

window — The window containing the returned motion events.

:start, :stop — timestamp values for the time interval for returned motion events.

:result-type — The form of the returned motion events.

warp-pointer destination destination-x destination-y Function

Moves the pointer to the given coordinates relative to the destination window. warp-
pointer should be rarely be used since the user should normally be in control of the
pointer position. warp-pointer generates events just as if the user had instantaneously
moved the pointer from one position to another.

warp-pointer cannot move the pointer outside the confine-to window of an active
pointer grab; an attempt to do so only moves the pointer as far as the closest edge of the
confine-to window.

destination — The window into which the pointer is moved.

destination-x, destination-y — The new position of the pointer relative to the destina-
tion.

warp-pointer-relative display x-offset y-offset Function

Moves the pointer by the given offsets. This function should rarely be used since the user
should normally be in control of the pointer position. warp-pointer-relative generates
events just as if the user had instantaneously moved the pointer from one position to
another.

warp-pointer-relative cannot move the pointer outside the confine-to window of an ac-
tive pointer grab; an attempt to do so only moves the pointer as far as the closest edge of
the confine-to window.

display — A display.

x-offset, y-offset — The offsets used to adjust the pointer position.

warp-pointer-if-inside destination destination-x destination-y Function
source source-x source-y &optional (source-width 0)
(source-height 0)

Moves the pointer to the given position relative to the destination window. However, the
move can only take place if the pointer is currently contained in a visible portion of the
specified rectangle of the source window. If source-height is zero, it is replaced with the
current height of source window minus source-y. If source-width is zero, it is replaced
with the current width of source window minus source-x.

Events and Input

12-128 CLX Programmer’s Reference

warp-pointer-if-inside generates events just as if the user had instantaneously moved
the pointer from one position to another. warp-pointer-if-inside cannot move the point-
er outside the confine-to window of an active pointer grab; an attempt to do so only
moves the pointer as far as the closest edge of the confine-to window.

destination — The window into which the pointer is moved.

destination-x, destination-y — The new position of the pointer relative to the destina-
tion.

source — The window that must currently contain the pointer.

source-x, source-y, source-width, source-height —The source rectangle that must cur-
rently contain the pointer.

warp-pointer-relative-if-inside x-offset y-offset source source-x source-y Function
&optional (source-width 0) (source-height 0)

Moves the pointer by the given offsets. However, the move can only take place if the
pointer is currently contained in a visible portion of the specified rectangle of the source
window. If source-height is zero, it is replaced with the current height of source-window
minus source-y. If source-width is zero, it is replaced with the current width of source-
window minus source-x.

warp-pointer-relative-if-inside generates events just as if the user had instantaneously
moved the pointer from one position to another. warp-pointer-relative-if-inside cannot
move the pointer outside the confine-to window of an active pointer grab; an attempt to
do so only moves the pointer as far as the closest edge of the confine-to window.

x-offset, y-offset — The offsets used to adjust the pointer position.

source — The window that must currently contain the pointer.

source-x, source-y, source-width, source-height — The source rectangle that must cur-
rently contain the pointer.

Managing Input 12.7 CLX provides the set-focus-input and focus-input functions to set
Focus and get the keyboard input focus window.

set-input-focus display focus revert-to &optional time Function

Changes the keyboard input focus and the last-focus-change time. The function has no
effect if the specified time is earlier than the current last-focus-change time or is later
than the current server time; otherwise, the last-focus-change time is set to the specified
time. The set-input-focus function causes the X server to generate :focus-in and :focus-
out events.

If :none is specified as the focus, all keyboard events are discarded until a new focus
window is set. In this case, the revert-to argument is ignored.

If a window is specified as the focus argument, it becomes the keyboard’s focus window.
If a generated keyboard event would normally be reported to this window or one of its
inferiors, the event is reported normally; otherwise, the event is reported with respect to
the focus window.

If :pointer-root is specified as the focus argument, the input focus window is set to the
root window of the screen containing the pointer when each keyboard event occurs. In
this case, the revert-to argument is ignored.

Events and Input

12-129CLX Programmer’s Reference

The specified focus window must be viewable at the time of the request. If the focus win-
dow later becomes not viewable, the new focus window depends on the revert-to argu-
ment. If revert-to is specified as :parent, the focus reverts to the parent (or the closest
viewable ancestor) and the new revert-to value is take to be :none. If revert-to is :point-
er-root or :none, the focus reverts to that value. When the focus reverts, :focus-in and
:focus-out events are generated, but the last-focus-change time is not affected.

display — A display.

focus — The new input focus window.

revert-to — The focus window when focus is no longer viewable.

time — A timestamp.

input-focus display Function
Returns:
 focus — Type (or window (member :none :pointer-root)).
 revert-to — Type (or window (member :none :pointer-root :parent)).

Returns the focus window, :pointer-root , or :none, depending on the current state of the
focus window. revert-to returns the current focus revert-to state.

display — A display.

Events and Input

12-130 CLX Programmer’s Reference

Grabbing 12.8 CLX provides the grab-pointer and ungrab-pointer functions for
the Pointer grabbing and releasing pointer control.

grab-pointer window event-mask &key :owner-p :sync-pointer-p Function
:sync-keyboard-p :confine-to :cursor :time
Returns:
 grab-status — One of :already-grabbed, :frozen, :invalid-time ,
 :not-viewable, or :success.

Actively grabs control of the pointer. Further pointer events are only reported to the
grabbing client. The request overrides any active pointer grab by this client.

If :owner-p is nil , all generated pointer events are reported with respect to window, and
are only reported if selected by event-mask. If :owner-p is true, and if a generated pointer
event would normally be reported to this client, it is reported normally; otherwise the
event is reported with respect to the window, and is only reported if selected by event-
mask. For either value of :owner-p, unreported events are simply discarded.

If :sync-pointer-p is nil , pointer event processing continues normally (asynchronous-
ly); if the pointer is currently frozen by this client, then processing of pointer events is
resumed. If :sync-pointer-p is true (indicating a synchronous action), the pointer (as
seen via the protocol) appears to freeze, and no further pointer events are generated by
the server until the grabbing client issues a releasing allow-events request. Actual point-
er changes are not lost while the pointer is frozen; they are simply queued for later proc-
essing.

If :sync-keyboard-p is nil , keyboard event processing is unaffected by activation of the
grab. If :sync-keyboard-p is true, the keyboard (as seen via the protocol) appears to
freeze, and no further keyboard events are generated by the server until the grabbing cli-
ent issues a releasing allow-events request. Actual keyboard changes are not lost while
the keyboard is frozen; they are simply queued for later processing.

If :cursor is specified, it is displayed regardless of what window the pointer is in. Other-
wise, the normal cursor for the window is displayed.

If a :confine-to window is specified, the pointer is restricted to stay within that window.
The :confine-to window does not need to have any relationship to the window. If the
pointer is not initially in the :confine-to window, it is warped automatically to the closest
edge (with :enter/:leave-events generated normally) just before the grab activates. If
the :confine-to window is subsequently reconfigured, the pointer is warped automati-
cally as necessary to keep it contained in the window.

grab-pointer generates :enter-notify and :leave-notify events. grab-pointer can fail
with a status of:

• :already-grabbed if the pointer is actively grabbed by some other client

• :frozen if the pointer is frozen by an active grab of another client

• :not-viewable if the window or the :confine-to window is not viewable, or if the
:confine-to window lies completely outside the boundaries of the root window.

• :invalid-time if the specified time is earlier than the last-pointer-grab time or later
than the current server time. Otherwise, the last-pointer-grab time is set to the speci-
fied time, with current-time replaced by the current server time, and a value of :suc-
cess is returned by grab-pointer.

Events and Input

12-131CLX Programmer’s Reference

window — The window grabbing the pointer.

event-mask — A pointer-event-mask.

:owner-p — If true, all client windows receive pointer events normally.

:sync-pointer-p — Indicates whether the pointer is in synchronous or asynchronous
mode.

:sync-keyboard-p — Indicates whether the keyboard is in synchronous or asynchro-
nous mode.

:confine-to — A window to which the pointer is confined.

:cursor — A cursor.

:time — A timestamp. A nil value means the current server time is used.

ungrab-pointer display &key :time Function

Releases the pointer if this client has it actively grabbed (from either grab-pointer,
grab-button, or from a normal button press), and releases any queued events. The re-
quest has no effect if the specified :time is earlier than the last-pointer-grab time or is
later than the current server time. An ungrabpointer is performed automatically if the
event window or :confine-to window for an active pointer grab becomes not viewable.

This request generates :enter-notify and :leave-notify events.

display — A display.

:time — A timestamp.

change-active-pointer-grab display event-mask &optional cursor time Function

Changes the specified dynamic parameters if the pointer is actively grabbed by the client
and the specified time is no earlier than the last-pointer-grab time and no later than the
current server time. The interpretation of event-mask and cursor are as in grab-pointer.
change-active-pointer-grab has no effect on the passive parameters of a grab-button.

display — A display.

event-mask — A pointer-event-mask.

cursor — A cursor or nil .

time — A timestamp.

Events and Input

12-132 CLX Programmer’s Reference

Grabbing 12.9 CLX provides the grab-button and ungrab-button functions for
a Button passively grabbing and releasing pointer control.

grab-button window button event-mask &key (:modifiers 0) :owner-p Function
:sync-pointer-p :sync-keyboard-p :confine-to :cursor

This request establishes a passive grab. If the specified button is pressed when the speci-
fied modifier keys are down (and no other buttons or modifier keys are down), and:

• window contains the pointer

• The :confine-to window (if any) is viewable

• These constraints are not satisfied for any ancestor of window

then:

• The pointer is actively grabbed as described with grab-pointer

• The last-pointer-grab time is set to the time that the button was pressed (as trans-
mitted in the :button-press event)

• The :button-press event is reported

The interpretation of the remaining arguments is the same as with grab-pointer. The
active grab is terminated automatically when all buttons are released (independent of the
state of modifier keys).

A zero modifier mask is equivalent to issuing the request for all possible modifier-key
combinations (including the combination of no modifiers). It is not required that all spe-
cified modifiers have currently assigned keycodes. A button of :any is equivalent to is-
suing the request for all possible buttons. Otherwise, it is not required that the specified
button currently be assigned to a physical button.

window — A window.

button — The button (type card8) pressed or :any.

event-mask — A pointer-event-mask.

:modifiers — A modifier-mask.

:owner-p — If true, all client windows receive pointer events normally.

:sync-pointer-p — Indicates whether the pointer is handled in a synchronous or asyn-
chronous fashion.

:sync-keyboard-p — Indicates whether the keyboard is in synchronous or asynchro-
nous mode.

:confine-to — A window to which the pointer is confined.

:cursor — A cursor.

Events and Input

12-133CLX Programmer’s Reference

ungrab-button window button &key (:modifiers 0) Function

Releases the passive button/key combination on the specified window if it was grabbed
by this client. A zero modifier mask is equivalent to issuing the request for all possible
modifier combinations including the combination of no modifiers. A button of :any is
equivalent to issuing the request for all possible buttons. This has no effect on an active
grab.

window — A window.

button — The button (type card8) that is released or :any.

:modifiers — A modifier-mask.

Grabbing 12.10 CLX provides the grab-keyboard and ungrab-keyboard functions
the Keyboard for actively grabbing and releasing control of the keyboard.

grab-keyboard window &key :owner-p :sync-pointer-p :sync-keyboard-p Function
:time
Returns:
 grab-status — One of :already-grabbed, :frozen, :invalid-time ,
 :not-viewable, or :success.

Actively grabs control of the keyboard. Further key events are reported only to the grab-
bing client. The request overrides any active keyboard grab by this client. grab-key-
board generates :focus-in and :focus-out events.

If :owner-p is nil , all generated key events are reported with respect to window. If :own-
er-p is true, then a generated key event that would normally be reported to this client is
reported normally; otherwise the event is reported with respect to the window. Both
:key-press and :key-release events are always reported, independent of any event selec-
tion made by the client.

If :sync-keyboard-p is nil , keyboard event processing continues normally (asynchro-
nously); if the keyboard is currently frozen by this client, then processing of keyboard
events is resumed. If :sync-keyboard-p is true, the keyboard (as seen via the protocol)
appears to freeze, and no further keyboard events are generated by the server until the
grabbing client issues a releasing allow-events request. Actual keyboard changes are not
lost while the keyboard is frozen; they are simply queued for later processing.

If :sync-pointer-p is nil , pointer event processing is unaffected by activation of the grab.
If :sync-pointer-p is true, the pointer (as seen via the protocol) appears to freeze, and no
further pointer events are generated by the server until the grabbing client issues a releas-
ing allow-events request. Actual pointer changes are not lost while the pointer is frozen;
they are simply queued for later processing.

The grab can fail with a status of:

• :already-grabbed if the keyboard is actively grabbed by some other client

• :frozen if the keyboard is frozen by an active grab from another client

• :not-viewable if window is not viewable

• :invalid-time if the specified time is earlier than the last-keyboard-grab time or lat-
er than the current server time. Otherwise, grab-keyboard returns a status of :suc-
cess and last-keyboard-grab time is set to the specified time, with current-time
replaced by current server time.

Events and Input

12-134 CLX Programmer’s Reference

window — A window.

:owner-p — If true, all client windows receive keyboard input normally.

:sync-pointer-p — Indicates whether the pointer is in synchronous or asynchronous
mode.

:sync-keyboard-p — Indicates whether the keyboard is in synchronous or asynchro-
nous mode.

:time — A timestamp.

ungrab-keyboard display &key :time Function

Releases the keyboard if this client has it actively grabbed (from either grab-keyboard
or grab-key), and releases any queued events. The request has no effect if the specified
time is earlier than the last-keyboard-grab time or is later than the current server time. An
ungrab-keyboard is performed automatically if the event window for an active key-
board grab becomes not viewable.

display — A display.

:time — A timestamp.

Grabbing a Key 12.11 The following paragraphs describe the functions used for passively grabbing
and releasing the keyboard.

grab-key window key &key (:modifiers 0) :owner-p :sync-pointer-p Function
:sync-keyboard-p :time

This request establishes a passive grab on the keyboard. If the specified key (which can
also be a modifier key) is pressed (whether or not any specified modifier keys are down),
and either of the following is true:

• window is an ancestor of (or is) the focus window

• window is a descendant of the focus window and contains the pointer

• These constraints are not satisfied for any ancestor of window, then the following
occurs:

• The keyboard is actively grabbed as described in grab-keyboard

• The last-keyboard-grab time is set to the time that the key was pressed (as trans-
mitted in the :key-press event)

• The :key-press event is reported

The interpretation of the remaining arguments is as for grab-keyboard. The active grab
is terminated automatically when the specified key has been released, independent of the
state of the modifier keys.

A zero modifier mask is equivalent to issuing the request for all possible modifier com-
binations (including the combination of no modifiers). It is not required that all specified
modifiers have currently assigned keycodes. A key of :any is equivalent to issuing the
request for all possible keycodes. Otherwise, the key must be in the range specified by
display-min-keycode and display-max-keycode in the connection setup.

Events and Input

12-135CLX Programmer’s Reference

window — A window.

key — The key (type card8) to be grabbed or :any.

:modifiers — A modifier-mask.

:owner-p — If true, all client windows receive keyboard input normally.

:sync-pointer-p — Indicates whether the pointer is in synchronous or asynchronous
mode.

:sync-keyboard-p — Indicates whether the keyboard is in synchronous or asynchro-
nous mode.

:time — A timestamp.

ungrab-key window key &key (:modifiers 0) Function

Releases the key combination on the specified window if it was grabbed by this client. A
zero modifier mask of :any is equivalent to issuing the request for all possible modifier
combinations (including the combination of no modifiers). A key of :any is equivalent to
issuing the request for all possible keycodes. ungrab-key has no effect on an active grab.

window — A window.

key — The key (type card8) to be released or :any.

:modifiers — A modifier-mask.

Event Types 12.12 The following paragraphs contain detailed descriptions of the contents of each
event type. In CLX, events are not actually represented by structures, but rather by lists
of keyword values passed to handler functions or by values bound to symbols within the
clauses of event-case and event-cond forms. Nevertheless, it is convenient to describe
event contents in terms of slots and to identify the components of events with slot name
symbols. In fact, CLX uses the declare-event macro to define event slot symbols and to
map these symbols to specific event data items returned by the X server (see paragraph
12.12.8, Declaring Event Types).

The following paragraphs describe each event type, listing its event-key keyword sym-
bol and its slot name symbols. An event keyword symbol identifies a specific event type.
An event keyword symbol can be given as an argument to send-event or to an event han-
dler function; it can also appear in the event-match form of an event-case clause. An
event slot name symbol identifies a specific event data item. Event slot names appear as
keywords with associated values among the arguments passed to send-event or to an
event handler function; as non-keyword symbols, they can also be in the event-slots form
of an event-case clause.

In certain cases, more than one name symbol is defined for the same event slot. For ex-
ample, in :key-press events, the symbols window and event-window both refer to the
same event data item.

Keyboard and 12.12.1 The keyboard and pointer events are: :key-press, :key-release,
 Pointer Events :button-press, :button-release, :motion-notify , :enter-notify, and :leave-notify.

:key-press, :key-release, :button-press, :button-release Event Type

Selected by: — :key-press, :key-release, :button-press, or :button-release.

Events and Input

12-136 CLX Programmer’s Reference

:key-press, and :key-release events are generated when a key or pointer button changes
state. Note that :key-press and :key-release are generated for all keys, even those
mapped to modifiers. All of these event types have the same slots. The window contain-
ing the pointer at the time of the event is referred to as the source window. The event
window is the window to which the event is actually reported. The event window is
found by starting with the source window and looking up the hierarchy for the first win-
dow on which any client has selected interest in the event (provided no intervening win-
dow prohibits event generation by including the event type in its
do-not-propagate-mask). The actual window used for reporting can be modified by ac-
tive grabs and, in the case of keyboard events, can be modified by the focus window.

A :button-press event has the effect of a temporary grab-button. When a pointer but-
ton is pressed and no active pointer grab is in progress, the ancestors of the source win-
dow are searched from the root down, looking for a passive grab to activate. If no
matching passive grab on the button exists, then an active grab is started automatically
for the client receiving the :button-press event, and the last-pointer-grab time is set to
the current server time. The effect is essentially equivalent to calling grab-button with
the following arguments:

Argument Description

window The event window.
button The button that was pressed.
event-mask The client’s selected pointer events on the event

 window.
:modifiers 0
:owner-p t if the client has :owner-grab-button selected

 on the event window; otherwise nil .
:sync-pointer-p nil
:sync-keyboard-p nil
:confine-to nil
:cursor nil

The :button-press grab is terminated automatically when all buttons are released. The
functions ungrab-pointer and change-active-pointer-grab can both be used to modify
the :button-press grab.

window, event-window — Type window.

The window receiving the event.

code — Type card8.

The code argument varies with the event type. For :key-press and :key-re-
lease, code is the keycode (see paragraph 14.4, Keyboard Encodings). For
:button-press and :button-release, code is the pointer button number.

Events and Input

12-137CLX Programmer’s Reference

x — Type int16.

If event-window is on the same screen as root, then x and y are the pointer coor-
dinates relative to the event-window; otherwise x and y are zero.

y — Type int16.

If event-window is on the same screen as root, then x and y are the pointer coor-
dinates relative to the event-window; otherwise x and y are zero.

state — Type card16.

A mask that gives the state of the buttons and modifier keys just before the
event.

time — Type card32.

A timestamp for the moment when the event occurred.

root — Type window.

The root window of the source window.

root-x — Type int16.

The x coordinate of the pointer position relative to root at the time of the event.

root-y — Type int16.

The y coordinate of the pointer position relative to root at the time of the event.

child — Type (or null window).

If the source window is an inferior of the event-window, child is set to the child
of event-window that is an ancestor of (or is) the source window; otherwise, it is
set to nil .

same-screen-p — Type boolean.

True if event-window and root are on the same screen.

:motion-notify Event Type

Selected by: — :button-1-motion, :button-2-motion, :button-3-motion,
:button-4-motion, :button-5-motion, :button-motion , or :pointer-motion.

The :motion-notify event is generated when the pointer moves. A :motion-notify event
has the same slots as :button-press, :button-release, :key-press, and :key-release
events, with the exception that the code slot is replaced by the hint-p slot. As with these
other events, the event window for :motion-notify is found by starting with the source
window and looking up the hierarchy for the first window on which any client has se-
lected interest in the event (provided no intervening window prohibits event generation
by including :motion-notify in its do-not-propagate-mask).The actual window used for
reporting can be modified by active grabs.

Events and Input

12-138 CLX Programmer’s Reference

:motion-notify events are generated only when the motion begins and ends in the win-
dow. The granularity of motion events is not guaranteed, but a client selecting for motion
events is guaranteed to get at least one event when the pointer moves and comes to rest.
Selecting :pointer-motion generates :motion-notify events regardless of the state of
the pointer buttons. By selecting some subset of :button[1-5]-motion instead, :motion-
notify events are only received when one or more of the specified buttons are pressed.
By selecting :button-motion , :motion-notify events are only received when at least
one button is pressed. If :pointer-motion-hint is also selected, the server is free to send
only one :motion-notify , until either the key or button state changes, the pointer leaves
the event window, or the client calls query-pointer or motion-events.

hint-p — Type boolean.

True if the event is a hint generated by selecting :pointer-motion-hint .

:enter-notify, :leave-notify Event Type

Selected by: — :enter-window or :leave-window.

If pointer motion or a window hierarchy change causes the pointer to be in a different
window than before, :enter-notify and :leave-notify events are generated instead of a
:motion-notify event. All :enter-notify and :leave-notify events caused by a hierarchy
change are generated after any hierarchy event (:unmap-notify, :map-notify, :config-
ure-notify, :gravity-notify , or :circulate-notify) caused by that change, but the order-
ing of :enter-notify and :leave-notify events with respect to :focus-out,
:visibility-notify , and :exposure events is not constrained by the X protocol. An :enter-
notify or :leave-notify event can also be generated when a client application calls
change-active-pointer-grab, grab-pointer, or ungrab-pointer.

window, event-window — Type window.

The window receiving the event.

x — Type int16.

The final pointer position. If event-window is on the same screen as root, then x
and y are the pointer coordinates relative to the event-window; otherwise x and y
are zero.

y — Type int16.

The final pointer position. If event-window is on the same screen as root, then x
and y are the pointer coordinates relative to the event-window; otherwise x and y
are zero.

mode — Type (member :normal :grab :ungrab).

Events caused when the pointer is actively grabbed have mode :grab. Events
caused when an active pointer grab deactivates have mode :ungrab. In all other
cases, mode is :normal .

Events and Input

12-139CLX Programmer’s Reference

kind — Type (member :ancestor :virtual :inferior :nonlinear
:nonlinear-virtual).

When the pointer moves from window A to window B, and A is an inferior of B:

• :leave-notify with kind :ancestor is generated on A

• :leave-notify with kind :virtual is generated on each window between A
and B exclusive (in that order)

• :enter-notify with kind :inferior is generated on B

When the pointer moves from window A to window B, and B is an inferior of A:

• :leave-notify with kind :inferior is generated on A

• :enter-notify with kind :virtual is generated on each window between A
and B exclusive (in that order)

• :enter-notify with kind :ancestor is generated on B

When the pointer moves from window A to window B, with window C being
their least common ancestor:

• :leave-notify with kind :nonlinear is generated on A

• :leave-notify with kind :nonlinear-virtual is generated on each window
between A and C exclusive (in that order)

• :enter-notify with kind :nonlinear-virtual is generated on each window
between C and B exclusive (in that order)

• :enter-notify with kind :nonlinear is generated on B

When the pointer moves from window A to window B, on different screens:

• :leave-notify with kind :nonlinear is generated on A

• If A is not a root window, :leave-notify with kind :nonlinear-virtual is
generated on each window above A up to and including its root (in order)

• If B is not a root window, :enter-notify with kind :nonlinear-virtual is
generated on each window from B’s root down to but not including B (in
order)

• :enter-notify with kind :nonlinear is generated on B

When a pointer grab activates (but after any initial warp into a confine-to win-
dow, and before generating any actual :button-press event that activates the
grab), with G the grab-window for the grab and P the window the pointer is in,
then :enter-notify and :leave-notify events with mode :grab are generated (as
for :normal above) as if the pointer were to suddenly warp from its current
position in P to some position in G. However, the pointer does not warp, and the
pointer position is used as both the initial and final positions for the events.

Events and Input

12-140 CLX Programmer’s Reference

When a pointer grab deactivates (but after generating any actual :button-re-
lease event that deactivates the grab), with G the grab-window for the grab and
P the window the pointer is in, then :enter-notify and :leave-notify events
with mode :ungrab are generated (as for :normal above) as if the pointer were
to suddenly warp from from some position in G to its current position in P.
However, the pointer does not warp, and the current pointer position is used as
both the initial and final positions for the events.

focus-p — Type boolean.

If event-window is the focus window or an inferior of the focus window, then
focus-p is t; otherwise, focus-p is nil .

state — Type card16.

A mask that gives the state of the buttons and modifier keys just before the
event.

time — Type card32.

A timestamp for the moment when the event occurred.

root — Type window.

The root window containing the final pointer position.

root-x — Type int16.

The x coordinate of the pointer position relative to root at the time of the event.

root-y — Type int16.

The y coordinate of the pointer position relative to root at the time of the event.

child — Type (or null window).

In a :leave-notify event, if a child of the event-window contains the initial posi-
tion of the pointer, the child slot is set to that child; otherwise, the child slot is
nil . For an :enter-notify event, if a child of the event-window contains the final
pointer position, the child slot is set to that child; otherwise, the child slot is nil .

same-screen-p — Type boolean.

True if event-window and root are on the same screen.

Input Focus 12.12.2 The input focus events are :focus-in and :focus-out.
 Events

:focus-in, :focus-out Event Type

Selected by: — :focus-change.

:focus-in and :focus-out events are generated when the input focus changes. All :focus-
out events caused by a window :unmap are generated after any :unmap-notify event,
but the ordering of :focus-out with respect to generated :enter-notify, :leave-notify,
:visibility-notify , and :expose events is not constrained.

window, event-window — Type window.

For :focus-in, the new input focus window. For :focus-out, the previous input
focus window.

Events and Input

12-141CLX Programmer’s Reference

mode — Type (member :normal :while-grabbed :grab :ungrab).

Events generated by set-input-focus when the keyboard is not grabbed have
mode :normal . Events generated by set-input-focus when the keyboard is
grabbed have mode :while-grabbed. Events generated when a keyboard grab
activates have mode :grab, and events generated when a keyboard grab deacti-
vates have mode :ungrab.

kind — Type (member :ancestor :virtual :inferior :nonlinear
:nonlinear-virtual :pointer :pointer-root :none).

When the focus moves from window A to window B, and A is an inferior of B,
with the pointer in window P:

• :focus-out with kind :ancestor is generated on A

• :focus-out with kind :virtual is generated on each window between A and
B exclusive (in that order)

• :focus-in with kind :inferior is generated on B

• If P is an inferior of B, but P is not A or an inferior of A or an ancestor of A,
:focus-in with kind :pointer is generated on each window below B down
to and including P (in order)

When the focus moves from window A to window B, and B is an inferior of A,
with the pointer in window P:

• If P is an inferior of A, but P is not A or an inferior of B or an ancestor of B,
:focus-out with kind :pointer is generated on each window from P up to
but not including A (in order)

• :focus-out with kind :inferior is generated on A

• :focus-in with kind :virtual is generated on each window between A and
B exclusive (in that order)

• :focus-in with kind :ancestor is generated on B

Events and Input

12-142 CLX Programmer’s Reference

When the focus moves from window A to window B, with window C being
their least common ancestor, and with the pointer in window P:

• If P is an inferior of A, :focus-out with kind :pointer is generated on each
window from P up to but not including A (in order)

• :focus-out with kind :nonlinear is generated on A

• :focus-out with kind :nonlinear-virtual is generated on each window be-
tween A and C exclusive (in that order)

• :focus-in with kind :nonlinear-virtual is generated on each window be-
tween C and B exclusive (in that order)

• :focus-in with kind :nonlinear is generated on B

• If P is an inferior of B, :focus-in with kind :pointer is generated on each
window below B down to and including P (in order)

When the focus moves from window A to window B, on different screens, with
the pointer in window P:

• If P is an inferior of A, :focus-out with kind :pointer is generated on each
window from P up to but not including A (in order)

• :focus-out with kind :nonlinear is generated on A

• If A is not a root window, :focus-out with kind :nonlinear-virtual is gen-
erated on each window above A up to and including its root (in order)

• If B is not a root window, :focus-in with kind :nonlinear-virtual is gener-
ated on each window from B’s root down to but not including B (in order)

• :focus-in with kind :nonlinear is generated on B

• If P is an inferior of B, :focus-in with kind :pointer is generated on each
window below B down to and including P (in order)

When the focus moves from window A to :pointer-root (or :none), with the
pointer in window P:

• If P is an inferior of A, :focus-out with kind :pointer is generated on each
window from P up to but not including A (in order)

• :focus-out with kind :nonlinear is generated on A

• If A is not a root window, :focus-out with kind :nonlinear-virtual is gen-
erated on each window above A up to and including its root (in order)

• :focus-in with kind :pointer-root (or :none) is generated on all root win-
dows

• If the new focus is :pointer-root , :focus-in with kind :pointer is gener-
ated on each window from P’s root down to and including P (in order)

When the focus moves from :pointer-root (or :none) to window A, with the
pointer in window P:

Events and Input

12-143CLX Programmer’s Reference

• If the old focus is :pointer-root , :focus-out with kind :pointer is gener-
ated on each window from P up to and including P’s root (in order)

• :focus-out with kind :pointer-root (or :none) is generated on all root win-
dows

• If A is not a root window, :focus-in with kind :nonlinear-virtual is gener-
ated on each window from A’s root down to but not including A (in order)

• :focus-in with kind :nonlinear is generated on A

• If P is an inferior of A, :focus-in with kind :pointer is generated on each
window below A down to and including P (in order)

When the focus moves from :pointer-root to :none (or vice versa), with the
pointer in window P:

• If the old focus is :pointer-root , :focus-out with kind :pointer is gener-
ated on each window from P up to and including P’s root (in order)

• :focus-out with kind :pointer-root (or :none) is generated on all root win-
dows

• :focus-in with kind :none (or :pointer-root) is generated on all root win-
dows

• If the new focus is :pointer-root , :focus-in with kind :pointer is gener-
ated on each window from P’s root down to and including P (in order)

When a keyboard grab activates (but before generating any actual :key-press
event that activates the grab), with G the grab-window for the grab and F the
current focus, then :focus-in and :focus-out events with mode :grab are gener-
ated (as for :normal above) as if the focus were to change from F to G.

When a keyboard grab deactivates (but after generating any actual :key-re-
lease event that deactivates the grab), with G the grab-window for the grab and
F the current focus, then :focus-in and :focus-out events with mode :ungrab
are generated (as for :normal above) as if the focus were to change from G to F.

Events and Input

12-144 CLX Programmer’s Reference

Keyboard and 12.12.3 The keyboard and pointer state events are :keymap-notify and
Pointer State :mapping-notify.

Events

:keymap-notify Event Type

Selected by: — :keymap-state.

The :keymap-notify event returns the current state of the keyboard. :keymap-notify is
generated immediately after every :enter-notify and :focus-in.

window, event-window — Type window.

The window receiving an :enter-notify or :focus-in event.

keymap — Type (bit-vector 256).

A bit-vector containing the logical state of the keyboard. Each bit set to 1 indi-
cates that the corresponding key is currently pressed. The vector is represented
as 32 bytes. For n from 0 to 7, byte n (from 0) contains the bits for keys 8n to
8n+7, with the least significant bit in the byte representing key 8n.

:mapping-notify Event Type

The X server reports :mapping-notify events to all clients. There is no mechanism to
express disinterest in this event. The X server generates this event type whenever a client
application calls one of the following:

• set-modifier-mapping to indicate which keycodes to use as modifiers (the status
reply must be :mapping-success)

• change-keyboard-mapping to change the keyboard mapping

• set-pointer-mapping to set the pointer mapping (the status reply must be :map-
ping-success)

request — Type (member :modifier :keyboard :pointer).

Indicates the kind of change that occurred—:modifier for a successful set-
modifier-mapping, :keyboard for a successful change-keyboard-mapping,
and :pointer for a successful set-pointer-mapping.

start — Type card8.

If request is :keyboard, then start and count indicate the range of altered key-
codes.

count — Type card8.

If request is :keyboard, then start and count indicate the range of altered key-
codes.

Events and Input

12-145CLX Programmer’s Reference

Exposure Events 12.12.4 The X server cannot guarantee that a window’s content is preserved when the
window is obscured or reconfigured. X requires client applications to be capable of re-
storing the contents of a previously-invisible window region whenever it is exposed.
Therefore, the X server sends events describing the exposed window and its exposed re-
gion. For a simple window, a client can choose to redraw the entire content whenever any
region is exposed. For a complex window, a client can redraw only the exposed region.

:exposure Event Type

Selected by: — :exposure.

An :exposure event is sent when redisplay is needed for a window region whose content
has been lost. Redisplay is needed when one of the following occurs:

• A region is exposed for a window and the X server has no backing store for the re-
gion

• A region of a viewable window is obscured and the X server begins to honor the
window’s backing-store attribute of :always or :when-mapped

• The X server begins to honor an unviewable window’s backing-store attribute of
:always or :when-mapped.

The regions needing redisplay are decomposed into an arbitrary set of rectangles, and an
:exposure event is generated for each rectangle. For a given action causing :exposure
events, the set of events for a given window are guaranteed to be reported contiguously.

:exposure events are never generated for :input-only windows.

All :exposure events caused by a hierarchy change are generated after any hierarchy
event (:unmap-notify, :map-notify, :configure-notify,:gravity-notify , or :circulate-
notify) caused by that change. All :exposure events on a given window are generated
after any :visibility-notify event on that window, but it is not required that all :exposure
events on all windows be generated after all visibility events on all windows. The order-
ing of :exposure events with respect to :focus-out, :enter-notify, and :leave-notify
events is not constrained.

window, event-window — Type window.

The window needing redisplay.

x — Type card16.

The position of the left edge of the region to redisplay, relative to the event-win-
dow.

y — Type card16.

The position of the top edge of the region to redisplay, relative to the event-win-
dow.

width — Type card16.

The width of the region to redisplay.

Events and Input

12-146 CLX Programmer’s Reference

height — Type card16.

The height of the region to redisplay.

count — Type card16.

If count is zero, then no more :exposure events for this window follow. If count
is nonzero, then at least that many more :exposure events for this window fol-
low (and possibly more).

:graphics-exposure Event Type

A :graphics-exposure event is generated by a call to copy-area or copy-plane when the
exposures attribute of the graphics context is :on. A :graphics-exposure event reports a
destination region whose content cannot be computed because the content of the corre-
sponding source region has been lost. For example, the missing source region may be
obscured or may lie outside the current source drawable size. For a given action causing
:graphics-exposure events, the set of events for a given destination are guaranteed to be
reported contiguously.

drawable, event-window — Type drawable.

The destination drawable for the copy-area or copy-plane function.

x — Type card16.

The position of the left edge of the destination region, relative to the drawable.

y — Type card16.

The position of the top edge of the destination region, relative to the drawable.

width — Type card16.

The width of the destination region.

height — Type card16.

The height of the destination region.

count — Type card16.

If count is zero then no more :graphics-exposure events for the drawable fol-
low. If count is nonzero then at least that many more :graphics-exposure
events for the drawable follow (and possibly more).

major — Type card8.

The major opcode for the graphics request generating the event
(62 for copy-area, 63 for copy-plane).

minor — Type card16.

The minor opcode for the graphics request generating the event
(0 for both copy-area and copy-plane).

:no-exposure Event Type

A :no-exposure event is generated by a call to copy-area or copy-plane when the expo-
sures attribute of the graphics context is :on. If no :graphics-exposure events are gener-
ated, then a single :no-exposure event is sent.

drawable, event-window — Type drawable.

Events and Input

12-147CLX Programmer’s Reference

The destination drawable for the copy-area or copy-plane function.

major — Type card8.

The major opcode for the graphics request generating the event
(62 for copy-area, 63 for copy-plane).

minor — Type card16.

The minor opcode for the graphics request generating the event
(0 for both copy-area and copy-plane).

Window State 12.12.5 The following paragraphs describe the events that can be received
Events when a window becomes:

• Created

• Destroyed

• Invisible

• Mapped

• Moved

• Reparented

• Resized

• Restacked

• Unmapped

• Visible

:circulate-notify Event Type

Selected by: — :structure-notify on a window or :substructure-notify
on its parent.

A :circulate-notify event is generated whenever a window is actually restacked as a re-
sult of a client application calling circulate-window-up or circulate-window-down.

event-window — Type window.

The window receiving the event.

window — Type window.

The window that was restacked.

place — Type (member :top :bottom).

If place is :top, the window is now on top of all siblings. Otherwise, it is below
all siblings.

Events and Input

12-148 CLX Programmer’s Reference

:configure-notify Event Type

Selected by: — :structure-notify on a window or :substructure-notify
on its parent.

The :configure-notify event is generated when the position or size of a window actually
changes as a result of a client application setting its x, y, width, height, or border-width
attributes.

event-window — Type window.

The window receiving the event.

window — Type window.

The window that was moved or resized.

x — Type int16.

x and y specify the new upper-left corner position of the window relative to its
parent.

y — Type int16.

x and y specify the new upper-left corner position of the window relative to its
parent.

width — Type card16.

width and height specify the new size of the window interior.

height — Type card16.

width and height specify the new size of the window interior.

border-width — Type card16.

The new window border width.

above-sibling — Type (or null window).

The sibling immediately below the window. If above-sibling is nil , then the
window is below all of its siblings.

override-redirect-p — Type boolean.

override-redirect-p is true if the override-redirect attribute of the window is
:on; otherwise, it is nil . See window-override-redirect in paragraph 4.3, Win-
dow Attributes.

The X server can report :create-notify events to clients wanting information about cre-
ation of windows. The X server generates this event whenever a client application
creates a window by calling create-window.

To receive this event type in a client application, you setf the :substructure-notify as the
event-mask in the parent window’s event-mask slot.

Events and Input

12-149CLX Programmer’s Reference

:create-notify Event Type

Selected by: :substructure-notify.

The :create-notify event is generated when a window is created and is sent to the parent
window.

parent, event-window — Type window.

The parent window receiving the event.

window — Type window.

The new window created.

x — Type int16.

x and y specify the initial upper-left corner position of the window relative to the
parent.

y — Type int16.

x and y specify the initial upper-left corner position of the window relative to the
parent.

width — Type card16.

width and height specify the initial size of the window interior.

height — Type card16.

width and height specify the initial size of the window interior.

border-width — Type card16.

The initial window border width.

override-redirect-p — Type boolean.

override-redirect-p is true if the override-redirect attribute of the window is
:on; otherwise, it is nil . See window-override-redirect in paragraph 4.3, Win-
dow Attributes.

:destroy-notify Event Type

Selected by — :structure-notify on a window or :substructure-notify

on its parent.

The :destroy-notify event is generated when a window is destroyed. The ordering of the
:destroy-notify events is such that for any given window, :destroy-notify is generated
on all inferiors of a window before :destroy-notify is generated on the window. The or-
dering among siblings and across subhierarchies is not otherwise constrained.

event-window — Type window.

The window receiving the event.

window — Type window.

The window that was destroyed.

Events and Input

12-150 CLX Programmer’s Reference

:gravity-notify Event Type

Selected by: — :structure-notify on a window or :substructure-notify
on its parent.

The X server can report :gravity-notify events to clients wanting information about
when a window is moved because of a change in the size of its parent. The X server gener-
ates this event whenever a client application actually moves a child window as a result of
resizing its parent by calling with-state with the appropriate arguments set.

event-window — Type window.

The window receiving the event.

window — Type window.

The window that was moved.

x — Type int16.

x and y specify the new upper-left corner position of the window relative to its
parent.

y — Type int16.

x and y specify the new upper-left corner position of the window relative to its
parent.

:map-notify Event Type

Selected by: — :structure-notify on a window or :substructure-notify
on its parent.

The X server can report :map-notify events to clients wanting information about which
windows are mapped. The X server generates this event type whenever a client applica-
tion changes the window’s state from unmapped to mapped by calling map-window or
map-subwindow.

To receive this event type, you setf :structure-notify as the event-mask on the window’s
event-mask slot. You can also receive this event type by setfing the :substructure-
notify event-mask on the parent window.

event-window — Type window.

The window receiving the event.

window — Type window.

The window that was mapped.

override-redirect-p — Type boolean.

override-redirect-p is true if the override-redirect attribute of the window is
:on; otherwise, it is nil . See window-override-redirect in paragraph 4.3, Win-
dow Attributes.

Events and Input

12-151CLX Programmer’s Reference

:reparent-notify Event Type

Selected by: — :structure-notify on a window or :substructure-notify
 on its old or new parent.

The :reparent-notify event is generated when a window is reparented.

event-window — Type window.

The window receiving the event.

window — Type window.

The window that was reparented.

parent — Type window.

The new parent of the window.

x — Type int16.

x and y specify the upper-left corner position of the window relative to its new
parent.

y — Type int16.

x and y specify the upper-left corner position of the window relative to its new
parent.

override-redirect-p — Type boolean.

override-redirect-p is true if the override-redirect attribute of the window is
:on; otherwise, it is nil . See window-override-redirect in paragraph 4.3, Win-
dow Attributes.

:unmap-notify Event Type

Selected by: — :structure-notify on a window or :substructure-notify

on its parent.

The :unmap-notify event is generated when a mapped window is unmapped.

event-window — Type window.

The window receiving the event.

window — Type window.

The window that was unmapped.

configure-p — Type boolean.

configure-p is true if the window has a win-gravity attribute of :unmap, and the
event was generated because window’s parent was resized.

Events and Input

12-152 CLX Programmer’s Reference

:visibility-notify Event Type

Selected by: — :visibility-change.

The :visibility-notify event is sent when the visibility of a window changes. :visibility-
notify events are never generated on :input-only windows. For the purposes of this
event, the visibility of the window is not affected by its subwindows.

All :visibility-notify events caused by a hierarchy change are generated after any hierar-
chy event caused by that change (for example, :unmap-notify, :map-notify, :config-
ure-notify, :gravity-notify , or :circulate-notify). Any :visibility-notify event on a
given window is generated before any :exposure events on that window, but it is not re-
quired that all :visibility-notify events on all windows be generated before all :expo-
sure events on all windows. The ordering of :visibility-notify events with respect to
:focus-out, :enter-notify, and :leave-notify events is not constrained.

window, event-window — Type window.

The window that changed in visibility.

state — Type (member :unobscured :partially-obscured
 :fully-obscured).

When the window was either unviewable or it was viewable and at least partial-
ly obscured, and the window changed to viewable and completely unobscured,
then state is :unobscured.

When the window was either unviewable or it was viewable and completely ob-
scured, and the window changed to viewable and partially obscured, then state
is :partially-obscured.

When the window was either unviewable or it was at least partially visible, and
the window changed to viewable and completely obscured, then state is :fully-
obscured.

Structure 12.12.6 The following paragraphs describe events used to redirect client
Control Events requests that reconfigure, restack, or map a window. Structure control events are typical-

ly used only by window managers and not by ordinary client applications. Structure con-
trol events report redirected requests, allowing a window manager to modify the
requests before they are actually performed. However, if the override-redirect attribute
of a window is :on, then no requests are redirected and no structure control events are
generated.

:circulate-request Event Type

The :circulate-request event is generated when a client application calls circulate-win-
dow-up or circulate-window-down with a window that has the override-redirect attrib-
ute :off . The window argument specifies the window to be restacked, and place specifies
what the new position in the stacking order should be (either :top or :bottom).

Selected by: — :substructure-redirect on parent.

parent, event-window — Type window.

The window receiving the event. The receiving client must have selected :sub-
structure-redirect on this window.

window — Type window.

The window to be restacked.

Events and Input

12-153CLX Programmer’s Reference

place — Type (member :top :bottom).

The new stacking priority requested for window.

:colormap-notify Event Type

Selected by: — :colormap-change.

The :colormap-notify event is generated with new-p t when the colormap associated
with a window is changed, installed, or uninstalled.

window, event-window — Type window.

The window receiving the event.

colormap — Type (or null colormap).

The colormap attribute of the window.

new-p — Type boolean.

If new-p is true, then the window’s colormap attribute has changed to the given
colormap. Otherwise, the window’s colormap attribute has not, but the color-
map has been installed or uninstalled.

installed-p — Type boolean.

If installed-p is true, then the colormap is currently installed.

:configure-request Event Type

Selected by: — :substructure-redirect on parent.

The :configure-request event is generated when a client program sets the x, y, width,
height, border-width or stacking priority attributes of a window that has the override-re-
direct attribute :off .

parent, event-window — Type window.

The window receiving the event. The receiving client must have selected :sub-
structure-redirect on this window.

window — Type window.

The window to be reconfigured.

x — Type int16.

x and y specify the requested upper-left corner position of the window relative
to the parent. If either x or y is not specified in the value-mask, then it is set to the
current window position.

y — Type int16.

x and y specify the requested upper-left corner position of the window relative
to the parent. If either x or y is not specified in the value-mask, then it is set to the
current window position.

Events and Input

12-154 CLX Programmer’s Reference

width, height — Type card16.

width and height specify the requested size of the window interior. If either
width or height is not specified in the value-mask, then it is set to the current
window size.

border-width — Type card16

The requested window border width. If border-width is not specified in the val-
ue-mask, then it is set to the current window border-width.

stack-mode — Type (member :above :below :top-if :bottom-if
:opposite).

stack-mode and above-sibling specify the requested stacking priority of the
window. If stack-mode is not specified in the value-mask, then it is set to
:above.

above-sibling — Type (or null window).

stack-mode and above-sibling specify the requested stacking priority of the
window. If above-sibling is not specified in the value-mask, then it is set to nil .

value-mask — Type mask16.

Specifies the changed window attributes contained in the redirected client re-
quest. Each 1 bit specifies that the corresponding attribute was changed.

:map-request Event Type

Selected by: — :substructure-redirect on parent.

The :map-request event is generated when a client application maps a window that has
the override-redirect attribute :off .

parent, event-window — Type window.

The window receiving the event. The receiving client must have selected :sub-
structure-redirect on this window.

window — Type window.

The window to be mapped.

:resize-requestEvent Type

Selected by: — :resize-redirect.

The :resize-request event is generated when a client program sets the width or height
attributes of a window that has the override-redirect attribute :off .

window, event-window — Type window.

The window to be resized.

width, height — Type card16.

width and height specify the requested size of the window interior. If either
width or height was unchanged in the client request, then it is set to the current
window size.

Events and Input

12-155CLX Programmer’s Reference

Client 12.12.7 The client communications events discussed in the following
Communications paragraphs are: :client-message, :property-notify , :selection-clear,

Events :selection-request, and :selection-notify.

:client-message Event Type

The :client-message event is generated exclusively by client calls to send-event. The X
server places no interpretation on the type or content of data sent in a :client-message. A
client can neither select :client-message events nor avoid receiving them.

window, event-window — Type window.

The window receiving the event.

type — Type keyword.

An xatom keyword that specifies the type of client message. Interpretation of
the type is determined solely by agreement between the sending and receiving
clients.

format — Type (member 8 16 32).

An integer that specifies whether data should be viewed as a sequence of 8-bit,
16-bit, or 32-bit quantities.

data — Type (sequence integer).

The data content of the client message. data always consists of 160 bytes —
depending on format, either 20 8-bit values, 10 16-bit values or 5 32-bit values.
The amount of this data actually used by a particular client message depends on
the type.

:property-notify Event Type

Selected by: — :property-change.

The :property-notify event is generated when a window property is changed or deleted.

window, event-window — Type window.

The window receiving the event.

atom — Type keyword.

The property that was changed or deleted.

state — Type (member :new-value :deleted).

state is :new-value if the property was changed using change-property or ro-
tate-properties, even if zero-length data was added or if all or part of the prop-
erty was replaced with identical data. state is :deleted if the property was
deleted using delete-property or get-property.

time — Type timestamp.

The server time when the property was changed or deleted.

:selection-clearEvent Type

The :selection-clear event is reported to the previous owner of a selection when the
owner of the selection is changed. The selection owner is changed by a client using setf.
A client can neither select :selection-clear events nor avoid receiving them.

Events and Input

12-156 CLX Programmer’s Reference

window, event-window — Type window.

The window losing ownership of the selection.

selection — Type keyword.

The name of the selection.

time — Type timestamp.

The last-change time recorded for the selection.

:selection-notify Event Type

The :selection-notify event is sent to a client calling convert-selection. :selection-
notify reports the result of the client request to return the current value of a selection into
a particular form. :selection-notify is sent using send-event by the owner of the selec-
tion or (if no owner exists) by the X server. A client can neither select :selection-notify
events nor avoid receiving them.

NOTE: Standard conventions for inter-client communication require the following
additional steps in processing a :selection-notify event:

1. The client receiving this event should call get-property to return the con-
verted selection value.

2. After receiving the selection value, the property should then be deleted (either by
using the :delete-p argument to get-property or by calling delete-property).

window, event-window — Type window.

The requestor window given in the call to convert-selection.

selection — Type keyword.

The selection to be converted.

target — Type keyword.

An xatom specifying the type of the converted selection value. This is the same
target type given in the call to convert-selection.

property — Type (or null keyword) .

The window property containing the converted selection. If the property is nil ,
then either the selection has no owner or the owner could not perform the con-
version to the target type.

time — Type timestamp.

The timestamp from the client call to convert-selection.

:selection-request Event Type

The :selection-request event is reported to the owner of a selection when a client calls
convert-selection. This event requests the selection owner to convert the current value
of a selection into a specified form and to return it to the requestor. A client can neither
select :selection-request events nor avoid receiving them.

The selection owner should respond to a :selection-request event by performing the fol-
lowing steps:

Events and Input

12-157CLX Programmer’s Reference

1. Convert the current selection value to the target type.

2. Store the converted selection value in the property. If property is nil , then the owner
should choose the property.

3. Call send-event to send a :selection-notify event to the requestor containing the
property with the converted value. If the selection could not be converted to the tar-
get type, then a nil property should be sent. The :selection, :target, and :time argu-
ments to send-event should be the same as those received in the :selection-request
event. The event-mask argument to send-event should be nil ; that is, the :selection-
notify event should be sent to client that created the requestor.

NOTE: Standard conventions for inter-client communication require the following
additional steps in processing a :selection-request event:

1. The property used to store the selection value must belong to the requestor.

2. If the property is nil , the target type atom should be used as the property name.

3. If the window did not actually own the selection at the given time, the request
should be refused, just as if it could not be converted to the target type.

window, event-window — Type window.

The selection owner receiving the event.

requestor — Type window.

The window requesting the converted selection.

selection — Type keyword.

The selection to be converted.

target — Type keyword.

An xatom specifying the type of the converted selection value.

property — Type (or null keyword) .

A requestor window property.

time — Type timestamp.

The timestamp sent in the client convert-selection request.

Declaring 12.12.8 CLX uses the declare-event macro to define the event slot symbols
Event Types that access the contents of X events. Most client applications do not need to use declare-

event because the declarations for all core X events are already defined by CLX. Pro-
grammers using extensions to the X protocol can use declare-event to allow CLX to
handle new event types returned by an extended X server.

declare-event event-codes &rest slot-declarations Macro

Defines a mapping between event slot symbols and the data items in event messages re-
ceived from an X server.

Events and Input

12-158 CLX Programmer’s Reference

The event-codes argument gives the event type keyword for the event described. If sev-
eral event types share the same slots, then event-codes can be a list of event type key-
words. slot-declarations is a list containing an element for each event data item. The
order of slot-declarations corresponds to the order of event data items defined by the X
protocol.

Each element of slot-declarations is a list of the form (type slot-name*), where type is a
Common Lisp type specifier and slot-name is a slot name symbol. The effect of such a
list is to declare that the next data items in the event have the given data type and are asso-
ciated with the given slot-name symbols. slot-name can also be a list of slot name sym-
bols; in this case, each symbol in the list is an alias that refers to the same event data item.

event-codes — An event type keyword or a list of event type keywords.

slot-declarations — A list of clauses defining event slot symbols.

Releasing 12.13 A client grabbing the keyboard or pointer can freeze the reporting of
Queued Events events on that device. When an input device is thus frozen, the server queues events until

explicitly requested to release them by the grabbing client. CLX programs can use the
allow-events function to release queued events from a frozen input device.

allow-events display mode &optional time Function

Releases some queued events if the client has caused a device to freeze. The request has
no effect if the time is earlier than the last-grab time of the most recent active grab for the
client, or if the time is later than the current server time. If time is nil , the current server
time is used. The effect of this function depends on the specified mode.

• :async-pointer — If the pointer is frozen by the client, pointer event processing
continues normally. If the pointer is frozen twice by the client on behalf of two sepa-
rate grabs, :async-pointer releases events for both grabs. :async-pointer has no ef-
fect if the pointer is not frozen by the client, but the pointer need not be grabbed by
the client.

• :sync-pointer — If the pointer is frozen and actively grabbed by the client, pointer
event processing continues normally until the next :button-press or :button-re-
lease event is reported to the client, at which time the pointer again appears to
freeze. However, if the reported event causes the pointer grab to be released, the
pointer does not freeze. :sync-pointer has no effect if the pointer is not frozen by the
client, or if the pointer is not grabbed by the client.

• :replay-pointer — If the pointer is actively grabbed by the client and is frozen as
the result of an event having been sent to the client (either from the activation of a
grab-button, or from a previous allow-events with mode :sync-pointer, but not
from a grab-pointer), the pointer grab is released and that event is completely re-
processed, but this time ignoring any passive grabs at or above (towards the root) the
grab-window of the grab just released. The request has no effect if the pointer is not
grabbed by the client, or if the pointer is not frozen as the result of an event.

• :async-keyboard — If the keyboard is frozen by the client, keyboard event proc-
essing continues normally. If the keyboard is frozen twice by the client on behalf of
two separate grabs, :async-keyboard releases events for both grabs. :async-key-
board has no effect if the keyboard is not frozen by the client, but the keyboard need
not be grabbed by the client.

Events and Input

12-159CLX Programmer’s Reference

• :sync-keyboard — If the keyboard is frozen and actively grabbed by the client,
keyboard event processing continues normally until the next :key-press or :key-re-
lease event is reported to the client, at which time the keyboard again appears to
freeze. However if the reported event causes the keyboard grab to be released, the
keyboard does not freeze. :sync-keyboard has no effect if the keyboard is not fro-
zen by the client, or if the keyboard is not grabbed by the client.

• :replay-keyboard — If the keyboard is actively grabbed by the client and is frozen
as the result of an event having been sent to the client (either from the activation of a
grab-key, or from a previous allow-events with mode :sync-keyboard, but not
from a grab-keyboard), the keyboard grab is released and that event is completely
reprocessed, but this time ignoring any passive grabs at or above (towards the root)
the grab-window of the grab just released. The request has no effect if the keyboard
is not grabbed by the client, or if the keyboard is not frozen as the result of an event.

• :sync-both — If both pointer and keyboard are frozen by the client, event process-
ing (for both devices) continues normally until the next :button-press, :button-re-
lease, :key-press, or :key-release event is reported to the client for a grabbed
device (button event for the pointer, key event for the keyboard). At this time, the
devices again appear to freeze. If the reported event causes the grab to be released,
the devices do not freeze. However, if the other device is still grabbed, then a subse-
quent event for it will still cause both devices to freeze. :sync-both has no effect
unless both pointer and keyboard are frozen by the client. If the pointer of keyboard
is frozen twice by the client on behalf of two separate grabs, :sync-both thaws for
both, but a subsequent freeze for :sync-both will only freeze each device once.

• :async-both — If the pointer and the keyboard are frozen by the client, event proc-
essing for both devices continues normally. If a device is frozen twice by the client
on behalf of two separate grabs, :async-both thaws for both. :async-both has no
effect unless both pointer and keyboard are frozen by the client.

:async-pointer, :sync-pointer, and :replay-pointer have no effect on processing of
keyboard events. :async-keyboard, :sync-keyboard, and :replay-keyboard have no
effect on processing of pointer events.

It is possible for both a pointer grab and a keyboard grab to be active simultaneously by
the same or different clients. When a device is frozen on behalf of either grab, no event
processing is performed for the device. It is possible for a single device to be frozen due
to both grabs. In this case, the freeze must be released on behalf of both grabs before
events can again be processed.

display — A display.

mode — One of: :async-pointer, :sync-pointer, :reply-pointer , :async-keyboard,
:sync-keyboard, :replay-keyboard, :async-both, :sync-both.

time — A timestamp.

Events and Input

12-160 CLX Programmer’s Reference

13-161CLX Programmer’s Reference

RESOURCES

Introduction 13.1 Users need a way to specify preferences for various user interface values (for ex-
ample, colors, fonts, title strings, and so forth). Applications need a consistent method
for determining the default interface values that are specific to them. It is also useful if
application interface values can be modified by users without changes to the program
code. For example, this capability can make it easy to change the color scheme of a user
interface. In CLX, such interface values are referred to as resources. CLX defines func-
tions for storing and retrieving interface resources from a resource database. A user can
store various user interface values as resources in a resource database; a CLX applica-
tion can then read these resource values and modify its user interface accordingly.

NOTE: The general term resource refers to any application user interface value stored
in a resource database. The term server resource is used more specifically to refer to the
types of objects allocated by an X server and referenced by clients (for example, win-
dows, fonts, graphics contexts, and so forth).

Resource 13.2 Conceptually, a resource database is a set of resource name-value
Bindings pairs (or resource bindings). The name in a resource binding is a list that is the concate-

nation of a path list and an attribute name.

A path list is a list of symbols (or strings) that corresponds to a path through a tree-struc-
tured hierarchy. For example, the path:

’(top middle bottom)

corresponds to a three-level hierarchy in which middle is the child of top , and bottom is
the child of middle .

Typically, the path of a resource name corresponds to a path in a hierarchy of windows,
and each symbol/string names a window in the hierarchy. However, the first element of
the path can also represent the overall name of the entire program, and subsequent path
elements can refer to an application-specific hierarchy of resource names not strictly re-
lated to windows. In addition, a resource name can contain a partially-specified path list.
The asterisk symbol (*) is a wildcard that can correspond to any sequence of levels in the
hierarchy (including the null sequence). For example, the path:

’(top * bottom)

corresponds to a hierarchy of two or more levels in which top is at the top level and bot-

tom is at the bottom level. An element of a path list can be the name of an individual win-
dow or the name of a class of windows.

Resources

13-162 CLX Programmer’s Reference

The final element of a resource name list is an attribute name. This symbol (or string)
identifies a specific attribute of the object(s) named by the preceding path list. The attrib-
ute name can also be the symbol * or the string “*”, in which case the resource name
refers to all attributes of the path object(s). However, this form of resource name is rarely
useful.

Some examples of resource bindings are shown below. In these examples, assume that
mail is the resource name of a mail reading application. mail uses a window of the class
button whose name is reply .

Resource Name Resource Value

(mail screen-1 reply background) ’green

(mail * background) ’red

(* button background) ’blue

These resource bindings specify the following:

• The background attribute resource of mail application’s reply button has the value
of green on screen-1 .

• The background attribute for the rest of the mail application is always red on all
screens.

• In general, the background attribute for all button windows is blue .

Basic Resource 13.3 A resource-database structure is a CLX object that represents a set
Database of resource bindings. The following paragraphs describe the CLX functions
Functions used to:

• Create a resource database

• Add a resource binding

• Remove a resource binding

• Merge two resource databases

• Map a function over the contents of a resource database

make-resource-database Function
Returns:
 resource-database — Type resource-database.

Returns an empty resource database.

add-resource database name-list value Function

Adds the resource binding specified by name-list and value to the given database. Only
one value can be associated with the name-list in the database. This function replaces
any value previously associated with the name-list.

database — The resource-database for the new resource binding.

name-list — A list containing strings or symbols specifying the name for the resource
binding.

value — The value associated with the name-list in the resource binding. This can be an
object of any type.

Resources

13-163CLX Programmer’s Reference

delete-resource database name-list Function

Removes the resource binding specified by name-list from the given database.

database — The resource-database containing the resource binding.

name-list — A list containing strings or symbols specifying the name for the deleted re-
source binding.

map-resource database function &rest args Function

Calls the function for each resource binding in the database. For each resource binding
consisting of a name-list and a value, the form
(apply function name-list value args) is executed.

database — A resource-database.

function — A function object or function symbol.

args — A list of arguments to the function.

merge-resources from-database to-database Function
Returns:
 to-database —Type resource-database.

Merges the contents of the from-database with the to-database. map-resource invokes
add-resource in order to add each resource binding in the from-database to the to-data-
base. The updated to-database is returned.

from-database — The resource-database from which resource bindings are read.

to-database — The resource-database to which resource bindings are added.

Accessing 13.4 The power and flexibility of resource management is the result of the
Resource way resource values in a resource database are accessed. A resource binding
Values binding stored in the database generally contains only a partial resource name consisting

of a mixture of name and class identifiers and wildcard elements (that is, *). To look up a
resource value, an application program starts with two resource name lists of the same
length containing no wildcard elements — a complete resource name and a complete re-
source class. The lookup algorithm returns the value for the resource binding whose re-
source name is the closest match to the complete name and class given. The definition of
closest match takes into account the top-down, parent-child hierarchy of resource names
and also the distinction between individual names and class names.

Complete Names 13.4.1 A resource binding contains a resource name list that can contain
and Classes names, class names, or a mixture of both. A class name is a symbol or string that repre-

sents a group of related objects. The set of names used as class names are not specified by
CLX. Instead, class names are defined by agreement between those who use class names
when creating resource bindings (that is, users) and those who use class names when ac-
cessing resource values (that is, application programmers).

In order to access a value in a resource database, an application uses a key consisting of
two items: a complete resource name and a complete resource class. A complete re-
source name is a resource name list containing no wildcard elements. A complete re-
source class is a list of exactly the same form. The distinction between a complete
resource name and a complete resource class lies in how they are used to access resource
bindings. The elements of a complete resource name are interpreted as names of individ-
ual objects; the elements of a complete resource class are interpreted as names of object
classes. The complete resource name and class lists used in a resource database access
must have the same length.

Resources

13-164 CLX Programmer’s Reference

Like any resource name list, a complete resource name consists of a path list and an at-
tribute name. The first path list element is typically a symbol (or string) identifying the
application as a whole. The second element can be a screen root identifier. Subsequent
elements can be identifiers for each ancestor window of an application window. Thus, a
path list typically identifies a specific window by tracing a path to it through the applica-
tion window hierarchy. The final element of a complete resource name (its attribute
name) is typically the name of a specific attribute of the window given by the path list
(for example, ’background). An attribute name can refer to a feature associated with the
window by the application but not by the X server (for example, a font identifier). Simi-
larly, a complete resource class typically represents a path to a window in the application
window hierarchy and a specific window attribute. However, a complete resource class
contains the class name for each window and for the window attribute.

For instance, in the previous example, the mail application can attempt to look up the
value of the background resource for the reply button window by using the following
complete resource name:

(mail screen-1 reply background)

and the following complete resource class:

(application root button fill)

This complete resource name contains a path list identifying the reply button window —
(mail screen-1 reply) — and an attribute name for the window background. The
corresponding resource class contains the class names for the same path list and window
attribute.

Matching 13.4.2 The resource lookup algorithm searches a specified resource data
 Resource Names base and returns the value for the resource binding whose resource name is the closest

match to a given complete resource name and class. The intent of the lookup algorithm
is to formalize an intuitive notion of the closest match.

Precedence is given to a match which begins higher in the parent-child contact hierar-
chy. This allows a resource binding with a partial name to define a resource value shared
by all members of a window subtree. For example, suppose the resource database con-
tained the following resource bindings:

Resource Name Resource Value

(mail * background) ’red

(* reply background) ’blue

Suppose an application program searched by using the following complete resource
name:

(mail screen-1 reply background)

then the closest matching value returned would be ’red .

Precedence is given to the more specific match. A name match is more specific than a
class match. Either a name or class match is more specific than a wildcard match. For
example, suppose the resource database contained the following resource bindings:

Resource Name Resource Value

(mail * background) ’red

Resources

13-165CLX Programmer’s Reference

(mail * fill) ’blue

Suppose an application program searched by using the following complete resource
name and complete resource class:

(mail screen-1 reply background)

(application root button fill)

then the closest matching value returned would be ’red . However, suppose the resource
database contained the following resource bindings:

Resource Name Resource Value

(mail * background) ’red

(mail * button background) ’blue

then the closest matching value returned would be ’blue .

Resource 13.4.3 The following paragraphs describe the CLX functions used to return
Access Functions a value from a resource database.

get-resource database attribute-name attribute-class path-name path-class Function
Returns:
 value — Type t.

Returns the value of the resource binding in the database whose resource name most
closely matches the complete resource name/class given by the path-name, path-class,
attribute-name, and attribute-class. The lookup algorithm implements the precedence
rules described previously to determine the closest match. When comparing name ele-
ments, case is significant only if both elements are strings; otherwise, element match-
ing is case-insensitive.

database — A resource-database.

attribute-name — A string or symbol giving an attribute name from a complete resource
name.

attribute-class — A string or symbol giving an attribute class name from a complete re-
source class.

path-name — The path list from a complete resource name. path-name and path-
class must have the same length.

path-class — The path list from a complete resource class. path-name and path-
class must have the same length.

get-search-table database path-name path-class Function
Returns:
 search-table — Type list.

Returns a table containing the subset of the database that matches the path-name and
path-class. Resources using the same path-name and path-class can be accessed much
more efficiently by using this table as an argument to get-search-resource.

database — A resource-database.

path-name — The path list from a complete resource name. path-name and path-
class must have the same length.

path-class — The path list from a complete resource class. path-name and path-
class must have the same length.

Resources

13-166 CLX Programmer’s Reference

get-search-resource table attribute-name attribute-class Function
Returns:
 value — Type t.

Returns the value of the resource binding in the search table that most closely matches
the attribute-name and attribute-class. The table is computed by get-search-table and
represents a set of resource bindings. The closest match is determined by the same algo-
rithm used in get-resource.

The following two forms are functionally equivalent:

(get-resource

 database attribute-name attribute-class path-name path-class)

(get-search-resource

 (get-search-table database path-name path-class)

 attribute-name attribute-class)

However, the hard part of the search is done by get-search-table. Looking up values for
several resource attributes that share the same path list can be done much more efficient-
ly with calls to get-search-resource.

table — A search table returned by get-search-table.

attribute-name — A string or symbol giving an attribute name from a complete resource
name.

attribute-class — A string or symbol giving an attribute class name from a complete re-
source class.

Resource 13.5 X users and application programs can save resource bindings in a file,
Database Files using a standard file format shared by all X clients. The following paragraphs describe

the CLX functions used to convert between the standard external format of resource
files and the internal resource-database format used by application programs.

read-resources database pathname &key :key :test :test-not Function
Returns:
 database — Type resource-database.

Reads resource bindings from a resource file in standard X11 format and merges them
with the given resource database. The :key function is called to convert a file resource
value into the value stored in the database. By default, :key is #’identity . The :test and
:test-not functions are predicates that select resource bindings to merge, based on the
result of the :key function. For each file resource binding consisting of a resource-name
and a resource-value, the :test (or :test-not) function is called with the arguments re-
source-name and (funcall key resource-value).

database — The resource-database to merge.

pathname — A pathname for the resource file to read.

:key — A function used to convert a value from the resource file into a resource binding
value.

:test, :test-not — Functions used to select which resource bindings from the resource
file are merged with the database.

Resources

13-167CLX Programmer’s Reference

write-resources database pathname &key :write :test :test-not Function

Writes resource bindings found in the database to the file given by the pathname. The
output file is written in the standard X11 format. The :write function is used for writing
resource values; the default is #’princ . The :write function is passed two arguments: a
resource-value and a stream. The :test and :test-not functions are predicates which se-
lect resource bindings to write. For each resource binding consisting of a resource-
name and a resource-value, the :test (or :test-not) function is called with the arguments
resource-name and resource-value.

database — The resource-database to write.

pathname — A pathname of the file to write.

:write — A function for writing resource values.

:test, :test-not — Functions used to select which resource bindings from the resource
file are merged with the database.

Resources

13-168 CLX Programmer’s Reference

14-169CLX Programmer’s Reference

CONTROL FUNCTIONS

Grabbing 14.1 Certain cases may require that a client demand exclusive access to the
the Server server, causing the processing for all other clients to be suspended. Such exclusive ac-

cess is referred to as grabbing the server. CLX provides functions to grab and release
exclusive access to the server. These function should be used rarely and always with ex-
treme caution, since they have the potential to disrupt the entire window system for all
clients.

grab-server display Function

Disables processing of requests and close-downs on all connections other than the one
on which this request arrived.

display — A display.

ungrab-server display Function

Restarts processing of requests and close-downs on other connections.

display — A display.

with-server-grabbed display &body body Macro

Grabs the display server only within the dynamic extent of the body. ungrab-server is
automatically called upon exit from the body. This macro provides the most reliable way
for CLX clients to grab the server.

display — A display.

body — The forms to execute while the server is grabbed.

Pointer Control 14.2 The following paragraphs describe the CLX functions used to:

• Return or change the pointer acceleration and acceleration threshold

• Return or change the mapping of pointer button numbers

change-pointer-control display &key :acceleration :threshold Function

Changes the acceleration and/or the acceleration threshold of the pointer for the display.
The :acceleration number is used as a multiplier, typically specified as a rational num-
ber of the form C/P, where C is the number of pixel positions of cursor motion displayed
for P units of pointer device motion. The acceleration only occurs if the pointer moves
more that :threshold pixels at once, and only applies to the motion beyond the :thresh-
old. Either :acceleration or :threshold can be set to :default, that restores the de-
fault settings of the server.

display — A display.

:acceleration — A number for the acceleration ratio.

:threshold — The number of pixels required for acceleration to take effect.

Control Functions

14-170 CLX Programmer’s Reference

pointer-control display Function
Returns:
 acceleration, threshold — Type number.

Returns the acceleration and threshold for the display pointer.

display — A display.

pointer-mapping display &key (:result-type ’list) Function
Returns:
 mapping — Type sequence or card8.

Returns or (with setf) changes the mapping of button numbers for the display pointer.
The :result-type is not used when changing the mapping. If element i of the mapping
sequence is j, then the events from pointer button j are reported by the server as events for
button i+1. (Note that pointer buttons are numbered beginning with one, while the map-
ping sequence itself is indexed normally from zero.) If element i of the mapping se-
quence is zero, then button i+1 is disabled and can no longer generate input events. No
two elements of the mapping can have the same non-zero value.

The length of the mapping sequence indicates the actual number of buttons on the de-
vice. When changing the mapping, the new mapping must have this same length.

display — A display.

:result-type — The type of sequence to return.

Keyboard 14.3 The following paragraphs describe the CLX functions used to:
Control

• Return or change keyboard controls

• Ring the keyboard bell

• Return or change the mapping of modifiers

• Return the current up/down state of all keys

bell display &optional (percent-from-normal 0) Function

Rings the bell on the keyboard at a volume relative to the base volume for the keyboard,
if possible. Percent can range from –100 to 100 inclusive, or else a Value error occurs.
The following is the bell volume when percent is non-negative:

(– (+ base percent) (quotient (* base percent) 100))

and when percent is negative:

(+ base (quotient (* base percent) 100))

display — A display.

percent-from-normal — An integer (–100 through 100).

Control Functions

14-171CLX Programmer’s Reference

change-keyboard-control display &key :key-click-percent :bell-percent Function
:bell-pitch :bell-duration :led :led-mode :key :auto-repeat-mode

Changes the various aspects of the keyboard. The keyword arguments specify which
controls to change.

The :key-click-percent keyword sets the volume for key clicks, if possible. A value of 0
implies off, while a value of 100 implies loud. Setting :key-click-percent to :default
restores the default value.

The :bell-percent sets the base volume for the bell between 0 (off) and 100 (loud) if pos-
sible. Setting :bell-percent to :default restores the default value.

The :bell-pitch sets the pitch (specified in Hz) of the bell, if possible. Setting the :bell-
pitch to :default restores the default value. The :bell-duration sets the duration (speci-
fied in milliseconds) of the bell, if possible. Setting :bell-pitch to :default restores the
default. Note that a bell generator connected with the console but not directly on the key-
board is treated as if it were part of the keyboard.

If both :led-mode and :led are specified, then the state of that LED is changed, if pos-
sible. If only :led-mode is specified, the state of all LEDs are changed, if possible. At
most 32 LEDs are supported, numbered from one. No standard interpretation of the
LEDs are defined.

If both :auto-repeat-mode and :key are specified, the auto-repeat mode of that key is
changed, if possible. If only :auto-repeat-mode is specified, the global auto-repeat
mode for the entire keyboard is changed, if possible, without affecting the per-key set-
tings. An error occurs if :key is specified without :auto-repeat-mode.

display — A display.

:key-click-percent — An integer (0 100).

:bell-percent — An integer (0 100).

:bell-pitch — A card16.

:bell-duration — A card16.

:led — A card8.

:led-mode — Either :on or :off .

:key — A card8 keycode.

:auto-repeat-mode — Either :on, :off , or :default.

Control Functions

14-172 CLX Programmer’s Reference

keyboard-control display Function
Returns:

key-click-percent, bell-percent — Type card8.
bell-pitch bell-duration — Type card16.
led-mask — Type card32.
global-auto-repeat — Either :on or :off .
auto-repeats — Type bit-vector.

Returns the current control values for the keyboard. For the LEDs, the least significant
bit of led-mask corresponds to LED one, and each one bit in led-mask indicates an LED
that is lit. auto-repeats is a bit vector; each one bit indicates that auto-repeat is enabled
for the corresponding key. The vector is represented as 32 bytes. Byte n (from 0) contains
the bits for keys 8n to 8n+7, with the least significant bit in the byte representing key 8n.

display — A display.

modifier-mapping display Function
Returns:

shift-keycodes, lock-keycodes, control-keycodes, mod1-keycodes,
mod2-keycodes, mod3-keycodes, mod4-keycodes, mod5-keycodes —
Type list of card8.

Returns the set of keycodes used for each modifier on the display keyboard. Each return
value is a list of the card8 keycodes used for each modifier key. The order of keycodes
within each list is server-dependent.

display — A display.

query-keymap display Function
Returns:
 keymap — Type bit-vector 256.

Returns a bit vector that describes the state of the keyboard. Each one bit indicates that
the corresponding key is currently pressed. The vector is represented as 32 bytes. Byte n
(from 0) contains the bits for keys 8n to 8n+7, with the least significant bit in the byte
representing key 8n.

display — A display.

set-modifier-mapping display &key :shift :lock :control :mod1 :mod2 Function
:mod3 :mod4 :mod5
Returns:
 status — One of :success, :failed, or :device-busy.

Changes the set of keycodes mapped to the specified modifier keys on the display key-
board. Each keyword argument contains a sequence of new card8 keycodes for a specif-
ic modifier. The return value indicates whether the change was completed successfully.

A status of :failed is returned if hardware limitations prevent the requested change. For
example, multiple keycodes per modifier may not be supported, up transitions on a giv-
en keycode may not be supported, or autorepeat may be mandatory for a given keycode.
If :failed is returned, the mappings for all modifiers remain unchanged.

Control Functions

14-173CLX Programmer’s Reference

A status of :device-busy is returned if a new keycode given for a modifier was not pre-
viously mapped to that modifier and is currently in the down state. In this case, the map-
pings for all modifiers remain unchanged.

display — A display.

:shift , :lock, :control , :mod1, :mod2, :mod3, :mod4, :mod5 — A sequence of card8
keycodes for the given modifier.

Keyboard 14.4 Handling the great diversity of keyboard devices and international
Encodings language character encodings is a difficult problem for interactive programs that need to

receive text input but must also be portable. The X Window System solves this problem
by using different sets of encodings for device keys (keycodes) and for character sym-
bols (keysyms). Each X server maintains a keyboard mapping that associates keycodes
and keysyms, and which can be returned or changed by client programs.

To handle text input, a CLX client program must follow these steps:

1. Receive a :key-press (or :key-release) event containing a keycode.

2. Convert the keycode into its corresponding keysym, based on the current keyboard
mapping. See keycode-keysym.

3. Convert the keysym into the corresponding Common Lisp character. See keysym-
character.

Keycodes and 14.4.1 A keycode represents a physical (or logical) key. In CLX, keycodes
Keysyms are values of type (integer 8 255). A keycode value carries no intrinsic information, al-

though server implementors may attempt to encode geometry (for example, matrix) in-
formation in some fashion so it can be interpreted in a server- dependent fashion. The
mapping between keys and keycodes cannot be changed.

A keysym is an encoding of a symbol on the cap of a key. In CLX, keysyms are values of
type card32. The set of defined keysyms include the ISO Latin character sets (1-4), Ka-
takana, Arabic, Cyrillic, Greek, Technical, Special, Publishing, APL, Hebrew, and mis-
cellaneous keys found on keyboards (RETURN, HELP, TAB, and so on). The encoding
of keysyms is defined by the X Protocol.

A list of keysyms is associated with each keycode. The length of the list can vary with
each keycode. The list is intended to convey the set of symbols on the corresponding key.
By convention, if the list contains a single keysym and if that keysym is alphabetic and
case distinction is relevant, then it should be treated as equivalent to a two-element list of
the lowercase and uppercase keysyms. For example, if the list contains the single key-
sym for uppercase A, the client should treat it as if it were a pair with lowercase as the
first keysym and uppercase A as the second keysym.

For any keycode, the first keysym in the list should be chosen as the interpretation of a
key press when no modifier keys are down. The second keysym in the list normally
should be chosen when the :shift modifier is on, or when the :lock modifier is on and
:lock is interpreted as :shift-lock . When the :lock modifier is on and is interpreted as
:caps-lock, it is suggested that the :shift modifier first be applied to choose a keysym,
but if that keysym is lowercase alphabetic, the corresponding uppercase keysym should
be used instead.

Control Functions

14-174 CLX Programmer’s Reference

Other interpretations of :caps-lock are possible; for example, it may be viewed as equiv-
alent to :shift-lock , but only applying when the first keysym is lowercase alphabetic and
the second keysym is the corresponding uppercase alphabetic. No interpretation of key-
syms beyond the first two in a list is suggested here. No spatial geometry of the symbols
on the key is defined by their order in the keysym list, although a geometry might be de-
fined on a vendor-specific basis. The X server does not use the mapping between key-
codes and keysyms. Rather, the X server stores the mapping merely for reading and
writing by clients.

Keyboard 14.4.2 The X server maintains a keyboard mapping that associates each
Mapping keycode with one or more keysyms. The following paragraphs describe the CLX func-

tions used to return or change the mapping of keycodes.

change-keyboard-mapping display keysyms &key (:start 0) :end Function
(:first-keycode :start)

Changes the mapping of keycodes to keysyms. A :mapping-notify event is generated
for all clients.

The new keysyms are specified as a two-dimensional array in which:

(aref keysyms (+ :start i) j)

is keysym j associated with keycode (+ :first-keycode i). The maximum number of key-
syms associated with any one keycode is given by:

(array-dimension keysyms 1)

keysyms should contain nil elements to represent those keysyms that are undefined for a
given keycode. :start and :end define the subsequence of the keysyms array that defines
the new mapping, and the number of keycode mappings changed. By default, :end is
given by:

(array-dimension keysyms 0)

The keycodes whose mappings are changed are given by :first-keycode through the fol-
lowing:

(+ :first-keycode (– :end :start) –1)

keycodes outside this range of are not affected. :first-keycode must not be less than
(display-min-keycode display), and the last keycode modified must not be greater
than (display-max-keycode display).

display — A display.

keysyms — A two-dimensional array of keysym (card32) values.

:start , :end — Indexes for the subsequence of keysyms used.

:first-keycode — A card8 defining the first keycode mapping changed.

keyboard-mapping display &key :first-keycode :start :end :data Function
Returns:
 mappings — Type (array card32 (* *)).

Returns the keysyms mapped to the given range of keycodes for the display keyboard.
The mappings are returned in the form of a two-dimensional array of card32 keysym
values. The :data argument, if given, must be a two-dimensional array in which the re-
turned mappings will be stored. In this case:

Control Functions

14-175CLX Programmer’s Reference

(array-dimension :data 1)

defines the maximum number of keysyms returned for any keycode. Otherwise, a
new array is created and returned.

Upon return:

(aref mappings (+ :start i) j)

will contain keysym j associated with keycode (+ :first-keycode i) (or nil , if keysym j is
undefined for that keycode).

:first-keycode specifies the first keycode whose mapping is returned; by default, :first-
keycode is (display-min-keycode display). :start and :end define the subsequence of
the returned array in which the returned mappings are stored. By default, :start is given
by :first-keycode and :end is given by:

(1+ (display-max-keycode display))

:first-keycode must not be less than (display-min-keycode display), and
the last keycode returned must not be greater than (display-max-keycode display).

display — A display.

:first-keycode — A card8 defining the first keycode mapping returned.

:start , :end — Indexes for the subsequence of the returned array which is modified.

:data — If given, a two-dimensional array to receive the returned keysyms.

Using Keycodes 14.4.3 The following paragraphs describe the CLX functions used to:
and Keysyms

• Convert a keycode into a keysym

• Convert a keysym into a character

keycode-keysym display keycode keysym-index Function
Returns:
 keysym — Type keysym.

Returns the keysym at the given keysym-index from the keysym list for the keycode in the
current keyboard mapping for the display server.

display — A display.

keycode — A card8.

keysym-index — A card8.

keycode-character display keysym &optional (state 0) Function
Returns:
 character — Type character or null .

Returns the character associated with the keysym and the state. The state is a mask16 bit
mask representing the state of the display modifier keys and pointer buttons. See state-
mask-key in paragraph 1.6, Data Types. If the keysym does not represent a Common
Lisp character, then nil is returned.

The state determines the bits attribute of the returned character, as follows:

Control Functions

14-176 CLX Programmer’s Reference

:control char-control-bit
:mod-1 char-meta-bit
:mod-2 char-super-bit
:mod-3 char-hyper-bit

display — A display.

keysym — A keysym.

state — A mask16.

Client 14.5 The CLX functions affecting client termination are discussed in the
Termination following paragraphs.

When a display connection to an X server is closed, whether by an explicit call to close-
display or by some external condition, the server automatically performs a sequence of
operations to clean up server state information associated with the closed connection.
The effect of these operations depends the close-down mode and the save-set that the cli-
ent has specified for the closed display connection. The close-down mode of a display
determines whether server resources allocated by the connection are freed or not. The
save-set identifies windows that will remain after the connection is closed.

The display save-set is used primarily by window managers that reparent the top-level
windows of other clients. For example, such a window manager can automatically
create a frame window that encloses a top-level client window, along with a set of con-
trols used for window management. Ordinarily, termination of the window manager cli-
ent would then destroy all client windows! However, the window manager can prevent
this by adding to its save-set those windows created by other clients that should be pre-
served.

When a display connection closes, an X server performs the following operations:

1. For each selection owned by a window created on the connection, the selection
owner is set to nil .

2. An active or passive grab established for a window created on the connection is re-
leased.

3. If the connection has grabbed the server, the server is ungrabbed.

Control Functions

14-177CLX Programmer’s Reference

4. Server resources and colormap cells allocated by the connection are freed and de-
stroyed, depending on the close-down mode, as follows:

:retain-permanent — All resources are marked permanent, and no resources are
destroyed. These resources can later be destroyed by a call to kill-client .

:retain-temporary — All resources are marked temporary, and no resources are
destroyed. These resources can later be destroyed by a call to kill-client or kill-tem-
porary-clients.

:destroy — All resources are destroyed.

When server resources allocated by a display connection are destroyed — whether by
closing the connection with close-down mode :destroy or by later calling kill-client or
kill-temporary-clients — then an X server performs the following operations on each
member of the save-set before actually destroying resources.

1. If the save-set window is a descendant of a window created on the connection, the
save-set window is reparented. The new parent is the closest ancestor such that the
save-set window is no longer a descendant of any window created on the connec-
tion. The position of the reparented window with respect to its parent remains un-
changed.

2. If the save-set window is unmapped, then it is mapped.

If the last connection open to an X server is closed with close-down mode :destroy, the
server resets its state to restore all initial defaults. The server state after reset is the same
as its initial state when first started. When an X server resets, it performs the following
operations:

• All permanent and temporary server resources from previously-closed connections
are destroyed.

• All but the predefined atoms are deleted.

• All root window properties are deleted.

• All device control attributes and mappings are restored to their original default val-
ues.

• The default background and cursor for all root windows are restored.

• The default font path is restored.

• The input focus is set to :pointer-root .

• The access control list is reset.

The following paragraphs describe the CLX functions used to:

• Add or remove a window from a display save-set.

• Return or change the display close-down mode.

• Force a connection to be closed or all its server resources to be destroyed.

• Force a connection to be closed and all temporary resources to be destroyed.

Control Functions

14-178 CLX Programmer’s Reference

add-to-save-set window Function

Adds the specified window to the save-set of the window display. The window must have
been created by some other display. Windows are removed automatically from the save-
set when they are destroyed.

window — A window.

close-down-mode display Function
Returns:
 mode — One of :destroy, :retain-permanent, or :retain-temporary .

Returns and (with setf) sets the close-down mode of the client’s resources at connection
close.

display — A display.

kill-client display resource-id Function

Closes the display connection which created the given resource-id. The resource-id
must be valid, but need not belong to the given display.

If the closed connection was previously open, the connection is closed according to its
close-down mode. Otherwise, if the connection had been previously terminated with
close-down mode :retain-permanent or :retain-temporary , then all its retained server
resources — both permanent and temporary — are destroyed.

display — A display.

resource-id — A valid card29 resource ID.

kill-temporary-clients display Function

Closes the display connection and destroys all retained temporary server resources for
this and all previously-terminated connections.

If the display connection was previously open, the connection is closed according to its
close-down mode. Otherwise, if the display connection had been previously terminated
with close-down mode :retain-permanent or :retain-temporary , then all its retained
server resources — both permanent and temporary — are destroyed.

display — A display.

remove-from-save-set window Function

Removes the specified window from the save-set of the window display. The window
must have been created by some other display. Windows are removed automatically
from the save-set when they are destroyed.

window — A window.

Control Functions

14-179CLX Programmer’s Reference

Managing Host 14.6 An X server maintains a list of hosts from which client programs can be
Access run. Only clients executing on hosts that belong to this access control list are allowed to

open a connection to the server. Typically, the access control list can be changed by cli-
ents running on the same host as the server. Some server implementations can also im-
plement other authorization mechanisms in addition to, or in place of, this mechanism.
The action of this mechanism can be conditional based on the authorization protocol
name and data received by the server at connection setup.

The following paragraphs describe the CLX functions used to:

• Add or remove hosts on the access control list.

• Return the hosts on the access control list.

• Return or change the state of the access control list mechanism

access-control display Function
Returns:
 enabled-p — Type boolean.

Returns and (with setf) changes the state of the access control list mechanism for the dis-
play server. Returns true if access control is enabled; otherwise, nil is returned. If en-
abled, the access control list is used to validate each client during connection setup.

Only a client running on the same host as the server is allowed to enable or disable the
access control list mechanism.

display — A display.

access-hosts display &key (:result-type ’list) Function
Returns:
 hosts — sequence of string.
 enabled-p — Type boolean.

Returns a sequence containing the hosts that belong to the access control list of the dis-
play server. Elements of the returned hosts sequence are either strings or some other type
of object recognized as a host name by add-access-host and remove-access-host. The
second returned value specifies whether the access control list mechanism is current-
ly enabled or disabled (see access-control).

display — A display.

:result-type — The type of hosts sequence to return.

add-access-host display host Function

Adds the specified host to the access control list. Only a client running on the same host
as the server can change the access control list.

display — A display.

host — A host name. Either a string or some other implementation-dependent type.

Control Functions

14-180 CLX Programmer’s Reference

remove-access-host display host Function

Removes the specified host from the access control list. Only a client running on the
same host as the server can change the access control list.

display — A display.

host — A host name. Either a string or some other implementation-dependent type.

Screen Saver 14.7 To prevent monitor damage, an X server implements a screen saver function
which blanks screens during periods of unuse. The screen saver can be in one of three
states:

• Disabled — No screen blanking is done and screen content remains unchanged.

• Deactivated — The server is being used. When the server input devices are unused
for a specific amount of time, the screen saver becomes activated.

• Activated — The server input devices are unused. The screen saver blanks all server
screens or displays a server-dependent image. As soon as an input event from either
the pointer or the keyboard occurs, the screen saver is deactivated and its timer is
reset.

The following paragraphs describe the CLX functions used to:

• Return or change screen saver control values.

• Activate or reset the screen saver

activate-screen-saver display Function

Activates the screen saver for the display server.

display — A display.

reset-screen-saver display Function

Deactivates the screen saver for the display server (if necessary) and resets its timer, just
as if a pointer or keyboard event had occurred.

display — A display.

screen-saver display Function
Returns:
 timeout, period — Type int16.
 blanking, exposures — One of :yes or :no.

Returns the current control values for the display server screen saver. See set-screen-
saver.

display — A display.

Control Functions

14-181CLX Programmer’s Reference

set-screen-saver display timeout period blanking exposures Function

Changes the current control values for the display server screen saver. The screen saver
is reset. The screen saver is also disabled if:

• timeout is zero, or

• Both blanking and exposures are disabled and the server cannot regenerate the
screen contents without sending :exposure events.

The timeout specifies the (non-negative) number of seconds of input device inactivity
that must elapse before the screen saver is activated. The timeout can be set to :default to
restore the server default timeout interval.

If blanking is :yes and the screen hardware supports blanking, blanking is enabled; that
is, the screen saver will simply blank all screens when it is activated. blanking can be set
to :default to restore the server default state for blanking.

If exposures is :yes, exposures are enabled. If exposures are enabled, or if the server is
capable of regenerating screen contents without sending :exposure events, the screen
saver will display some server-dependent image when activated. Frequently, this image
will consist of a repeating animation sequence, in which case period specifies the (non-
negative) number of seconds for each repetition. A period of zero is a hint that no repeti-
tion should occur.

display — A display.

timeout — Specifies the delay until timeout takes over.

period — Specifies the periodic change interval, if used.

blanking — Specifies whether the blanking option is available.

exposures — Specifies whether exposures are allowed during blanking.

Control Functions

14-182 CLX Programmer’s Reference

15-183CLX Programmer’s Reference

EXTENSIONS

Extensions 15.1 The X Window System is based on a core protocol which can be extended to pro-
vide new functionality. An extension is generally represented by an additional set of re-
quests or event types that are implemented by an X server supporting the extension. By
definition, a client program using an extension may not be portable to other servers.
However, extensions allow different server implementations and different sites to add
their own special features to X, without disrupting clients that rely only on the core pro-
tocol.

Extensions are identified by assigning them unique name strings and major protocol
numbers. A client program can request an X server to use a protocol extension by fur-
nishing the extension protocol number
as an argument to open-display. The X Consortium maintains a registry of standard ex-
tension names and protocol numbers.

The following paragraphs describe the CLX functions used to:

• List all supported extensions.

• Find out if a given extension is supported.

list-extensions display &key (:result-type ’list) Function
Returns:
 names — Type sequence of string.

Returns a sequence containing the names of all extensions supported by the display serv-
er.

display — A display.

:result-type — The type of name sequence to return.

query-extension display name Function
Returns:
 major-opcode, first-event, first-error — Type card8 or null .

Returns the major-opcode for the given extension name support by the display server. If
the extension is not supported, only nil values are returned. The extension name must
contain only ISO Latin-1 characters; case is significant.

If the extension involves additional event types, the first-event returned is the base event
type code for new events; otherwise, the first-event is nil . If the extension involves addi-
tional error codes, the first-error returned is the base code for new errors; otherwise, the
first-error is nil . The formats of error and event messages sent by the server are com-
pletely defined by the extension.

display — A display.

name — An extension name string.

Extensions

15-184 CLX Programmer’s Reference

16-185CLX Programmer’s Reference

ERRORS

Introduction 16.1 CLX error conditions are hierarchial. The base error condition is
x-error , and all other conditions are built on top of x-error . x-error can be built on a
lower-level condition that is implementation dependent (this is probably the error con-
dition).

define-condition name (parent-types*) [({ slot-specifier*}) { option*}] Macro

Any new condition type must be defined with the define-condition macro. A condition
type has a name, parent types, report message, and any number of slot items. See the Lisp
Reference manual for further information regarding define-condition.

The following are the predefined error conditions that can occur in CLX.

access-error Condition

An access-error can occur for several reasons:

• A client attempted to grab a key/button combination already grabbed by another cli-
ent

• A client attempted to free a colormap entry that it did not already allocate

• A client attempted to store into a read-only colormap entry

• A client attempted to modify the access control list from other than the local (or
otherwise authorized) host

• A client attempted to select an event type that another client has already selected,
and, that at most, one client can select at a time

An access-error is a special case of the more general request-error (see page 16-189
for information on request-error).

alloc-error Condition

The server failed to allocate the requested resource or server memory.

An alloc-error is a special case of the more general request-error (see page 16-189 for
information on request-error).

atom-error Condition

A value for an atom argument does not name a defined atom.

An atom-error is a special case of the more general request-error (see page 16-189 for
information on request-error).

closed-display Condition

The closed-display condition is signaled when trying to read or write a closed display
(that is, close-display has been called on the display object, or a server-disconnect oc-
curred). The closed-display object is reported with the error.

Errors

16-186 CLX Programmer’s Reference

A closed-display condition is a special case of the more general x-error (see page
16-190 for information on x-error).

colormap-error Condition

A value for a colormap argument does not name a defined colormap.

A colormap-error is a special case of the more general resource-error (see page
16-189 for information on resource-error).

connection-failure Condition

Signaled when an X11 server refuses a connection. The following items are reported
along with the error:

• major-version — The major version of the X server code.

• minor-version — The minor version of the X server code.

• host — The host name for the X server.

• display — The display on which the error occurred.

• reason — A string indicating why the connection failed.

A connection-failure is a special case of the more general x-error (see page 16-190 for
information on x-error).

cursor-error Condition

A value for a cursor argument does not name a defined cursor.

A cursor-error is a special case of the more general resource-error (see page 16-189
for information on resource-error).

device-busy Condition

Signaled by (setf (pointer-mapping display) mapping) when the set-pointer-map-
ping request returns a busy status. A similar condition occurs in set-modifier-mapping,
but in this case, it returns a boolean indicating success, rather than signaling an error. The
device-busy condition returns the display object as part of the error.

A device-busy condition is a special case of the more general x-error (see page 16-190
for information on x-error).

drawable-error Condition

A value for a drawable argument does not name a defined window or pixmap.

A drawable-error is a special case of the more general resource-error (see page
16-189 for information on resource-error).

font-error Condition

A value for a font or gcontext argument does not name a defined font.

A font-error is a special case of the more general resource-error (see page 16-189 for
information on resource-error).

Errors

16-187CLX Programmer’s Reference

gcontext-error Condition

A value for a gcontext argument does not name a defined GContext.

A gcontext-error is a special case of the more general resource-error (see page 16-189
for information on resource-error).

id-choice-error Condition

The value chosen for a resource identifier is either not included in the range assigned to
the client or is already in use. Under normal circumstances, this cannot occur and should
be considered a server or CLX library error.

An id-choice-error is a special case of the more general resource-error (see page
16-189 for information on resource-error).

implementation-error Condition

The server does not implement some aspect of the request. A server that generates this
error for a core request is deficient. As such, this error is not listed for any of the requests.
However, clients should be prepared to receive such errors and either handle or discard
them.

An implementation-error is a special case of the more general resource-error (see
page 16-189 for information on resource-error).

length-error Condition

The length of a request is shorter or longer than that minimally required to contain the
arguments. This usually means an internal CLX error.

A length-error is a special case of the more general resource-error (see page 16-189
for information on resource-error).

lookup-error Condition

CLX has the option of caching different resource types (see *clx-cached-types*) in a
hash table by resource ID. When looking up an object in the hash table, if the type of the
object is wrong, a lookup-error is signaled.

For example: The cursor with ID 123 is interned in the hash table. An event is received
with a field for window 123. When 123 is looked up in the hash table, a cursor is found.
Since a window was expected, a lookup-error is signaled. This error indicates a prob-
lem with the extension code being used. The following items are reported along with the
error:

• id — The resource ID.

• display — The display being used.

• type — The resource type.

• object — The resource object.

A lookup-error is a special case of the more general x-error (see page 16-190 for infor-
mation on x-error).

Errors

16-188 CLX Programmer’s Reference

match-error Condition

In a graphics request, the root and depth of the GContext does not match that of the draw-
able. An :input-only window is used as a drawable. Some argument or pair of arguments
has the correct type and range but fails to match in some other way required by the re-
quest. An :input-only window locks this attribute. The values do not exist for an :input-
only window.

A match-error is a special case of the more general request-error (see page 16-189 for
information on request-error).

missing-parameter Condition

One or more of the required keyword parameters is missing or nil . The missing parame-
ters are reported along with the error.

A missing-parameter condition is a special case of the more general x-error (see page
16-190 for information on x-error).

name-error Condition

A font or color of the specified name does not exist.

A name-error is a special case of the more general request-error (see page 16-189 for
information on request-error).

pixmap-error Condition

A value for a pixmap argument does not name a defined pixmap.

A pixmap-error is a special case of the more general resource-error. (See page 16-189
for information on resource-error.)

reply-length-error (x-error) (slots*) Condition

The reply to a request has an unexpected length. The following items are reported along
with the error:

• reply-length — The actual reply length.

• expected-length — The expected reply length.

• display — The display on which the error occurred.

A reply-length-error is a special case of the more general x-error (see page 16-190 for
information on x-error).

reply-timeout Condition

The *reply-timeout* parameter specifies the maximum number of seconds to wait for a
request reply, or nil to wait forever (the default). When a reply has not been received after
* reply-timeout* seconds, the reply-timeout condition is signaled. The timeout period
and display are reported along with the error.

A reply-timeout condition is a special case of the more general x-error (see page
16-190 for information on x-error).

Errors

16-189CLX Programmer’s Reference

request-error Condition

The following items are reported along with the error:

The major or minor opcode does not specify a valid request.

• display — The display on which the error occurred.

• error-key — The error (sub)type.

• major — The major opcode.

• minor — The minor opcode.

• sequence — The actual sequence number.

• current-sequence — The current sequence number.

A request-error condition is a special case of the more general x-error (see page
16-190 for information on x-error).

resource-error Condition

All X11 errors for incorrect resource IDs are built on top of resource-error. These are
colormap-error, cursor-error , drawable-error, font-error , gcontext-error, id-
choice-error, pixmap-error and window-error . resource-error is never signaled di-
rectly.

A resource-error is a special case of the more general request-error (see page 16-189
for information on request-error).

sequence-error Condition

All X11 request replies contain the sequence number of their request. If a reply’s se-
quence does not match the request count, a sequence-error is signaled. A sequence-er-
ror usually indicates a locking problem with a multi-processing Lisp. The following
items are reported along with the error:

• display — The display on which the error occurred.

• req-sequence — The sequence number in the reply.

• msg-sequence — The current sequence number.

A sequence-error condition is a special case of the more general x-error . (See page
16-190 for information on x-error .)

server-disconnect Condition

The connection to the server was lost. The display on which the error occurred is re-
ported along with the error.

A server-disconnect condition is a special case of the more general x-error . (See page
16-190 for information on x-error .)

Errors

16-190 CLX Programmer’s Reference

unexpected-reply Condition

A reply was found when none was expected. This indicates a problem with the extension
code. The following items are reported along with the error:

• display — The display on which the error occurred.

• req-sequence — The sequence number in the reply.

• msg-sequence — The current sequence number.

• length — The message length of the reply.

An unexpected-reply condition is a special case of the more general
x-error . (See page 16-190 for information on x-error .)

unknown-error (request-error) (error-code) Condition

An error was received from the server with an unknown error code. This indicates a
problem with the extension code. The undefined error code is reported.

An unknown-error is a special case of the more general request-error. (See page
16-189 for information on request-error.)

value-error (request-error) (value) Condition

Some numeric value falls outside the range of values accepted by the request. Unless a
specific range is specified for an argument, the full range defined by the argument’s type
is accepted. Any argument defined as a set of alternatives can generate this error. The
erroneous value is reported.

A value-error is a special case of the more general request-error. (See page 16-189 for
information on request-error.)

window-error (resource-error) Condition

A value for a window argument does not name a defined window.

A window-error is a special case of the more general resource-error. (See page 16-189
for information on resource-error.)

x-error Condition

This is the most general error condition upon which all other conditions are defined.

A-191CLX Programmer’s Reference

PROTOCOL VS. CLX FUNCTIONAL
 CROSS-REFERENCE LISTING

 X11 Request Name CLX Function Name

AllocColor alloc-color
AllocColorCells alloc-color-cells
AllocColorPlanes alloc-color-planes
AllocNamedColor alloc-color
AllowEvents allow-events
Bell bell
ChangeAccessControl (setf (access-control display)
ChangeActivePointerGrab change-active-pointer-grab
ChangeCloseDownMode (setf (close-down-mode display))
ChangeGC force-gcontext-changes

(See with-gcontext)
(setf (gcontext-function gc))

 (setf (gcontext-plane-mask gc))
 (setf (gcontext-foreground gc))
 (setf (gcontext-background gc))
 (setf (gcontext-line-width gc))
 (setf (gcontext-line-style gc))
 (setf (gcontext-cap-style gc))
 (setf (gcontext-join-style gc))
 (setf (gcontext-fill-style gc))
 (setf (gcontext-fill-rule gc))
 (setf (gcontext-tile gc))
 (setf (gcontext-stipple gc))
 (setf (gcontext-ts-x gc))
 (setf (gcontext-ts-y gc))
 (setf (gcontext-font gc &optional

 metrics-p))
 (setf (gcontext-subwindow-mode gc))
 (setf (gcontext-exposures gc)))
 (setf (gcontext-clip-x gc))
 (setf (gcontext-clip-y gc))
 (setf (gcontext-clip-mask gc

 &optional ordering))
(setf (gcontext-dash-offset gc))

 (setf (gcontext-dashes gc))
(setf (gcontext-arc-mode gc))
(setf (gcontext-clip-ordering gc))

Protocol vs. CLX Functional
Cross-Reference Listing

A-192 CLX Programmer’s Reference

 X11 Request Name CLX Function Name

ChangeHosts add-access-host
ChangeHosts remove-access-host
ChangeKeyboardControl change-keyboard-control
ChangePointerControl change-pointer-control
ChangeProperty change-property
ChangeSaveSet remove-from-save-set
ChangeSaveSet add-to-save-set
ChangeWindowAttributes (See with-state)

(setf (window-background window))
 (setf (window-border window))
 (setf (window-bit-gravity window))
 (setf (window-gravity window))
 (setf (window-backing-store window))
 (setf (window-backing-planes window))
 (setf (window-backing-pixel window))
 (setf (window-override-redirect window)

(setf (window-save-under window))
 (setf (window-colormap window))
 (setf (window-cursor window))
 (setf (window-event-mask window))
 (setf (window-do-not-propagate-mask

 window))
CirculateWindow circulate-window-down
CirculateWindow circulate-window-up
ClearToBackground clear-area
CloseFont close-font
ConfigureWindow (See with-state)
 (setf (drawable-x drawable))
 (setf (drawable-y drawable))
 (setf (drawable-width drawable))
 (setf (drawable-height drawable))
 (setf (drawable-depth drawable))
 (setf (drawable-border-width drawable))
 (setf (window-priority window &optional

 sibling))
ConvertSelection convert-selection
CopyArea copy-area
CopyColormapAndFree copy-colormap-and-free
CopyGC copy-gcontext
CopyGC copy-gcontext-components
CopyPlane copy-plane
CreateColormap create-colormap
CreateCursor create-cursor
CreateGC create-gcontext
CreateGlyphCursor create-glyph-cursor
CreatePixmap create-pixmap
CreateWindow create-window
DeleteProperty delete-property
DestroySubwindows destroy-subwindows
DestroyWindow destroy-window
FillPoly draw-lines
ForceScreenSaver reset-screen-saver
ForceScreenSaver activate-screen-saver
FreeColormap free-colormap
FreeColors free-colors
FreeCursor free-cursor

Protocol vs. CLX Functional
Cross-Reference Listing

A-193CLX Programmer’s Reference

 X11 Request Name CLX Function Name

FreeGC free-gcontext
FreePixmap free-pixmap
GetAtomName atom-name
GetFontPath font-path
GetGeometry (See with-state)

drawable-root
drawable-x
drawable-y

 drawable-width
drawable-height
drawable-depth
drawable-border-width

GetImage get-raw-image
GetInputFocus input-focus
GetKeyboardControl keyboard-control
GetKeyboardMapping keyboard-mapping
GetModifierMapping modifier-mapping
GetMotionEvents motion-events
GetPointerControl pointer-control
GetPointerMapping pointer-mapping
GetProperty get-property
GetScreenSaver screen-saver
GetSelectionOwner selection-owner
GetWindowAttributes (See with-state)

window-visual
 window-class
 window-bit-gravity
 window-gravity
 window-backing-store
 window-backing-planes
 window-backing-pixel
 window-save-under
 window-override-redirect
 window-event-mask
 window-do-not-propagate-mask
 window-colormap
 window-colormap-installed-p
 window-all-event-masks
 window-map-state
GrabButton grab-button
GrabKey grab-key
GrabKeyboard grab-keyboard
GrabPointer grab-pointer
GrabServer grab-server
ImageText16 draw-image-glyphs
ImageText16 draw-image-glyph
ImageText8 draw-image-glyphs
InstallColormap install-colormap
InternAtom find-atom
InternAtom intern-atom
KillClient kill-temporary-clients
KillClient kill-client
ListExtensions list-extensions
ListFonts list-font-names
ListFontsWithInfo list-fonts
ListHosts access-control

Protocol vs. CLX Functional
Cross-Reference Listing

A-194 CLX Programmer’s Reference

 X11 Request Name CLX Function Name

ListHosts access-hosts
ListInstalledColormaps installed-colormaps
ListProperties list-properties
LookupColor lookup-color
MapSubwindows map-subwindows
MapWindow map-window
OpenFont open-font
PolyArc draw-arc
PolyArc draw-arcs
PolyFillArc draw-arc
PolyFillArc draw-arcs
PolyFillRectangle draw-rectangle
PolyFillRectangle draw-rectangles
PolyLine draw-line
PolyLine draw-lines
PolyPoint draw-point
PolyPoint draw-points
PolyRectangle draw-rectangle
PolyRectangle draw-rectangles
PolySegment draw-segments
PolyText16 draw-glyph
PolyText16 draw-glyphs
PolyText8 draw-glyphs
PutImage put-raw-image
QueryBestSize query-best-cursor
QueryBestSize query-best-stipple
QueryBestSize query-best-tile
QueryColors query-colors
QueryExtension query-extension
QueryFont font-name
 font-name
 font-direction
 font-min-char
 font-max-char
 font-min-byte1
 font-max-byte1
 font-min-byte2
 font-max-byte2
 font-all-chars-exist-p
 font-default-char
 font-ascent
 font-descent
 font-properties
 font-property
 char-left-bearing

char-right-bearing
char-width
char-ascent
char-descent
char-attributes
min-char-left-bearing

 min-char-right-bearing
 min-char-width
 min-char-ascent
 min-char-descent
 min-char-attributes

Protocol vs. CLX Functional
Cross-Reference Listing

A-195CLX Programmer’s Reference

 X11 Request Name CLX Function Name

 max-char-left-bearing
 max-char-right-bearing
 max-char-width
 max-char-ascent
 max-char-descent
 max-char-attributes
QueryKeymap query-keymap
QueryPointer global-pointer-position
QueryPointer pointer-position
QueryPointer query-pointer
QueryTextExtents text-extents
QueryTextExtents text-width
QueryTree query-tree
RecolorCursor recolor-cursor
ReparentWindow reparent-window
RotateProperties rotate-properties
SendEvent send-event
SetClipRectangles force-gcontext-changes

(See with-gcontext)
(setf (gcontext-clip-x gc))

 (setf (gcontext-clip-y gc))
 (setf (gcontext-clip-mask gc &optional

 ordering))
 (setf (gcontext-clip-ordering gc))
SetDashes force-gcontext-changes
 (See with-gcontext)
 (setf (gcontext-dash-offset gc))
 (setf (gcontext-dashes gc))
SetFontPath (setf (font-path font)
SetInputFocus set-input-focus
SetKeyboardMapping change-keyboard-mapping
SetModifierMapping set-modifier-mapping
SetPointerMapping set-pointer-mapping
SetScreenSaver set-screen-saver
SetSelectionOwner set-selection-owner
StoreColors store-color
StoreColors store-colors
StoreNamedColor store-color
StoreNamedColor store-colors
TranslateCoords translate-coordinates
UngrabButton ungrab-button
UngrabKey ungrab-key
UngrabKeyboard ungrab-keyboard
UngrabPointer ungrab-pointer
UngrabServer ungrab-server
UninstallColormap uninstall-colormap
UnmapSubwindows unmap-subwindows
UnmapWindow unmap-window
WarpPointer warp-pointer
WarpPointer warp-pointer-if-inside
WarpPointer warp-pointer-relative
WarpPointer warp-pointer-relative-if-inside
ListHosts access-control
ListHosts access-hosts
ForceScreenSaver activate-screen-saver
ChangeHosts add-access-host

Protocol vs. CLX Functional
Cross-Reference Listing

A-196 CLX Programmer’s Reference

 X11 Request Name CLX Function Name

ChangeSaveSet add-to-save-set
AllocColor alloc-color
AllocNamedColor alloc-color
AllocColorCells alloc-color-cells
AllocColorPlanes alloc-color-planes
AllowEvents allow-events
GetAtomName atom-name
Bell bell
ChangeActivePointerGrab change-active-pointer-grab
ChangeKeyboardControl change-keyboard-control
SetKeyboardMapping change-keyboard-mapping
ChangePointerControl change-pointer-control
ChangeProperty change-property
QueryFont char-ascent
QueryFont char-attributes
QueryFont char-descent
QueryFont char-left-bearing
QueryFont char-right-bearing
QueryFont char-width
CirculateWindow circulate-window-down
CirculateWindow circulate-window-up
ClearToBackground clear-area
CloseFont close-font
ConvertSelection convert-selection
CopyArea copy-area
CopyColormapAndFree copy-colormap-and-free
CopyGC copy-gcontext
CopyGC copy-gcontext-components
CopyPlane copy-plane
CreateColormap create-colormap
CreateCursor create-cursor
CreateGC create-gcontext
CreateGlyphCursor create-glyph-cursor
CreatePixmap create-pixmap
CreateWindow create-window
DeleteProperty delete-property
DestroySubwindows destroy-subwindows
DestroyWindow destroy-window
PolyArc draw-arc
PolyArc draw-arcs
PolyText16 draw-glyph
PolyText16 draw-glyphs
PolyText8 draw-glyphs
ImageText16 draw-image-glyph
ImageText16 draw-image-glyphs
ImageText8 draw-image-glyphs
PolyLine draw-line
PolyLine draw-lines
PolyPoint draw-point
PolyPoint draw-points
PolyFillRectangle draw-rectangle
PolyRectangle draw-rectangle
PolyFillRectangle draw-rectangles
PolyRectangle draw-rectangles
PolySegment draw-segments
GetGeometry drawable-border-width

Protocol vs. CLX Functional
Cross-Reference Listing

A-197CLX Programmer’s Reference

 X11 Request Name CLX Function Name

GetGeometry drawable-depth
GetGeometry drawable-height
GetGeometry drawable-root
GetGeometry drawable-width
GetGeometry drawable-x
GetGeometry drawable-y
FillPoly fill-polygon
InternAtom find-atom
QueryFont font-all-chars-exist-p
QueryFont font-ascent
QueryFont font-default-char
QueryFont font-descent
QueryFont font-direction
QueryFont font-max-byte1
QueryFont font-max-byte2
QueryFont font-max-char
QueryFont font-min-byte1
QueryFont font-min-byte2
QueryFont font-min-char
QueryFont font-name
QueryFont font-name
GetFontPath font-path
QueryFont font-properties
QueryFont font-property
ChangeGC force-gcontext-changes
SetClipRectangles force-gcontext-changes
SetDashes force-gcontext-changes
FreeColormap free-colormap
FreeColors free-colors
FreeCursor free-cursor
FreeGC free-gcontext
FreePixmap free-pixmap
GetProperty get-property
GetImage get-raw-image
QueryPointer global-pointer-position
GrabButton grab-button
GrabKey grab-key
GrabKeyboard grab-keyboard
GrabPointer grab-pointer
GrabServer grab-server
GrabServer with-server-grabbed
GetInputFocus input-focus
InstallColormap install-colormap
ListInstalledColormaps installed-colormaps
InternAtom intern-atom
GetKeyboardControl keyboard-control
GetKeyboardMapping keyboard-mapping
KillClient kill-client
KillClient kill-temporary-clients
ListExtensions list-extensions
ListFonts list-font-names
ListFontsWithInfo list-fonts
ListProperties list-properties
LookupColor lookup-color
MapSubwindows map-subwindows
MapWindow map-window

Protocol vs. CLX Functional
Cross-Reference Listing

A-198 CLX Programmer’s Reference

 X11 Request Name CLX Function Name

QueryFont max-char-ascent
QueryFont max-char-attributes
QueryFont max-char-descent
QueryFont max-char-left-bearing
QueryFont max-char-right-bearing
QueryFont max-char-width
QueryFont min-char-ascent
QueryFont min-char-attributes
QueryFont min-char-descent
QueryFont min-char-left-bearing
QueryFont min-char-right-bearing
QueryFont min-char-width
GetModifierMapping modifier-mapping
GetMotionEvents motion-events
OpenFont open-font
GetPointerControl pointer-control
GetPointerMapping pointer-mapping
QueryPointer pointer-position
PutImage put-raw-image
QueryBestSize query-best-cursor
QueryBestSize query-best-stipple
QueryBestSize query-best-tile
QueryColors query-colors
QueryExtension query-extension
QueryKeymap query-keymap
QueryPointer query-pointer
QueryTree query-tree
RecolorCursor recolor-cursor
ChangeHosts remove-access-host
ChangeSaveSet remove-from-save-set
ReparentWindow reparent-window
ForceScreenSaver reset-screen-saver
RotateProperties rotate-properties
GetScreenSaver screen-saver
GetSelectionOwner selection-owner
SendEvent send-event
ChangeAccessControl set-access-control
ChangeCloseDownMode set-close-down-mode
SetInputFocus set-input-focus
SetModifierMapping set-modifier-mapping
SetPointerMapping set-pointer-mapping
SetScreenSaver set-screen-saver
SetSelectionOwner set-selection-owner
StoreColors store-color
StoreColors store-colors
StoreNamedColor store-color
StoreNamedColor store-colors
QueryTextExtents text-extents
QueryTextExtents text-width
TranslateCoords translate-coordinates
UngrabButton ungrab-button
UngrabKey ungrab-key
UngrabKeyboard ungrab-keyboard
UngrabPointer ungrab-pointer
UngrabServer ungrab-server
UngrabServer with-server-grabbed

Protocol vs. CLX Functional
Cross-Reference Listing

A-199CLX Programmer’s Reference

 X11 Request Name CLX Function Name

UninstallColormap uninstall-colormap
UnmapSubwindows unmap-subwindows
UnmapWindow unmap-window
WarpPointer warp-pointer
WarpPointer warp-pointer-if-inside
WarpPointer warp-pointer-relative
WarpPointer warp-pointer-relative-if-inside
GetWindowAttributes window-all-event-masks
GetWindowAttributes window-backing-pixel
GetWindowAttributes window-backing-planes
GetWindowAttributes window-backing-store
GetWindowAttributes window-bit-gravity
GetWindowAttributes window-class
GetWindowAttributes window-colormap
GetWindowAttributes window-colormap-installed-p
GetWindowAttributes window-do-not-propagate-mask
GetWindowAttributes window-event-mask
GetWindowAttributes window-gravity
GetWindowAttributes window-map-state
GetWindowAttributes window-override-redirect
GetWindowAttributes window-save-under
GetWindowAttributes window-visual
ConfigureWindow (setf (drawable-border-width drawable))
ConfigureWindow (setf (drawable-depth drawable))
ConfigureWindow (setf (drawable-height drawable))
ConfigureWindow (setf (drawable-width drawable))
ConfigureWindow (setf (drawable-x drawable))
ConfigureWindow (setf (drawable-y drawable))
SetFontPath (setf (font-path font) paths)
ChangeGC (setf (gcontext-arc-mode gc))
ChangeGC (setf (gcontext-background gc))
ChangeGC (setf (gcontext-cap-style gc))
SetClipRectangles (setf (gcontext-clip-mask gc &optional

ordering))
SetClipRectangles (setf (gcontext-clip-ordering gc))
SetClipRectangles (setf (gcontext-clip-x gc))
SetClipRectangles (setf (gcontext-clip-y gc))
SetDashes (setf (gcontext-dash-offset gc))
SetDashes (setf (gcontext-dashes gc))
ChangeGC (setf (gcontext-exposures gc))
ChangeGC (setf (gcontext-fill-rule gc) keyword)
ChangeGC (setf (gcontext-fill-style gc) keyword)
ChangeGC (setf (gcontext-font gc &optional

metrics-p)
ChangeGC (setf (gcontext-foreground gc) card32)
ChangeGC (setf (gcontext-function gc))
ChangeGC (setf (gcontext-join-style gc) keyword)
ChangeGC (setf (gcontext-line-style gc) keyword)
ChangeGC (setf (gcontext-line-width gc) card16)
ChangeGC (setf (gcontext-plane-mask gc) card32)
ChangeGC (setf (gcontext-stipple gc) pixmap)
ChangeGC (setf (gcontext-subwindow-mode gc))
ChangeGC (setf (gcontext-tile gc))
ChangeGC (setf (gcontext-ts-x gc))
ChangeGC (setf (gcontext-ts-y gc))
ChangeWindowAttributes (setf (window-background window))

Protocol vs. CLX Functional
Cross-Reference Listing

A-200 CLX Programmer’s Reference

 X11 Request Name CLX Function Name

ChangeWindowAttributes (setf (window-backing-pixel window))
ChangeWindowAttributes (setf (window-backing-planes window))
ChangeWindowAttributes (setf (window-backing-store window))
ChangeWindowAttributes (setf (window-bit-gravity window))
ChangeWindowAttributes (setf (window-border window))
ChangeWindowAttributes (setf (window-colormap window))
ChangeWindowAttributes (setf (window-cursor window))
ChangeWindowAttributes (setf (window-do-not-propagate-mask

window))
ChangeWindowAttributes (setf (window-event-mask window))
ChangeWindowAttributes (setf (window-gravity window))
ChangeWindowAttributes (setf (window-override-redirect window))
ConfigureWindow (setf (window-priority window &optional

sibling))
ChangeWindowAttributes (setf (window-save-under window))

Glossary-201CLX Programmer’s Reference

GLOSSARY

a

access control list X maintains a list of hosts from which client programs can be run. By default, only pro-
grams on the local host can use the display, plus any hosts specified in an initial list read
by the server. This access control list can be changed by clients on the local host. Some
server implementations can also implement other authorization mechanisms in addition
to or in place of this mechanism. The action of this mechanism can be conditional based
on the authorization protocol name and data received by the server at connection setup.

action A function that is designed to handle an input event. CLUE input processing consists of
matching an event with an event specification found in a contact’s event-translations
slot and then calling actions associated with the matching event specification.

active grab A grab is active when the pointer or keyboard is actually owned by the single grabbing
client.

ancestors If W is an inferior of A, then A is an ancestor of W.

atom A unique ID corresponding to a string name. Atoms are used to identify properties,
types, and selections.

b

backing store When a server maintains the contents of a window, the off-screen saved pixels are known
as a backing store.

before action An action of a contact-display that is called when an event is dispatched to a contact, but
before any other contact input processing is performed.

bit gravity When a window is resized, the contents of the window are not necessarily discarded. It is
possible to request the server to relocate the previous contents to some region of the win-
dow. This attraction of window contents for some location of a window is known as bit
gravity.

bitmap A pixmap of depth one.

button grabbing Buttons on the pointer can be passively grabbed by a client. When the button is pressed,
the pointer is then actively grabbed by the client.

byte order For image (pixmap/bitmap) data, byte order is defined by the server, and clients with dif-
ferent native byte ordering must swap bytes as necessary. For all other parts of the proto-
col, the byte order is defined by the client, and the server swaps bytes as necessary.

c

callback A function that represents a connection between a contact and the rest of an application
program. A contact calls a callback function in order to report the results of the user inter-
face component that it represents.

children First-level subwindows of a window.

Glossary

Glossary-202 CLX Programmer’s Reference

class event Event translations that belong to all instances of a contact class. A class event
translations translation is created by the defevent macro.

class resources Resources defined for each instance of a contact class. Also see constraint resources.

click A :button-press event followed immediately by a :button-release event for the same
button, with no intervening change in pointer position or modifier key state.

client An application program connects to the window system server by some interprocess
communication (IPC) path, such as a TCP connection or a shared memory buffer. This
program is referred to as a client of the window system server. More precisely, the client
is the IPC path itself. A program with multiple paths open to the server is viewed as mul-
tiple clients by the protocol. Resource lifetimes are controlled by connection lifetimes,
not by program lifetimes.

clipping regions In a graphics context, a bitmap or list of rectangles can be specified to restrict output to a
particular region of the window. The image defined by the bitmap or rectangles is called
a clipping region.

colormap A set of entries defining color values. The colormap associated with a window is used to
display the contents of the window. Each pixel value indexes the colormap to produce
RGB values that drive the guns of a monitor. Depending on hardware limitations, one or
more colormaps can be installed at one time, such that windows associated with those
maps display with correct colors.

composite A subclass of contact representing contacts that are the parents of other contacts. A com-
posite provides geometry management and input focus management services for the
contacts that are its children.

complete resource A list of symbols containing the class of the contact, the class of the contact’s
class parent (and so on), and the class of the contact-display to which the contact belongs.

The complete resource class is one of the two items used as a key by a CLUE application
in order to access a contact resource value in a resource database.

complete resource A list of symbols containing the name of the contact, the name of the
name contact’s parent (and so on), and the name of the contact-display to which the contact

belongs. The complete resource name is one of the two items used as a key by a CLUE
application in order to access a contact resource value in a resource database.

connection The IPC path between the server and client program. A client program typically has one
connection to the server over which requests and events are sent.

constraint resources Resources defined for each child belonging to a member of a composite class. Constraint
resources are typically used to control the parent’s geometry management policy. Also
see class resources.

contact The basic CLUE object for programming a user interface.

contact-display The CLUE object type that represents a connection to an X server and that supports an
event loop for application input.

contact initialization The process of collecting initial values for all contact attributes. No server resources
(windows and so on) are actually allocated until contact realization.

contact realization The process of allocating contact resources. This process completes contact creation.

Glossary

Glossary-203CLX Programmer’s Reference

containment A window contains the pointer if the window is viewable and the hot spot of the cursor is
within a visible region of the window or a visible region of one of its inferiors. The border
of the window is included as part of the window for containment. The pointer is in a win-
dow if the window contains the pointer but no inferior contains the pointer.

content The single child of a shell. The basic geometry management policy implemented by the
shell class constrains a shell and its content to have the same width and height; size
changes to one are automatically applied to the other.

coordinate system The coordinate system has x horizontal and y vertical, with the origin [0, 0] at the upper
left. Coordinates are discrete and are in terms of pixels. Each window and pixmap has its
own coordinate system. For a window, the origin is at the inside upper left, inside the
border.

cursor The visible shape of the pointer on a screen. It consists of a hot-spot, a source bitmap, a
shape bitmap, and a pair of colors. The cursor defined for a window controls the visible
appearance when the pointer is in that window.

d

depth The depth of a window or pixmap is number of bits per pixel it has. The depth of a graph-
ics context is the depth of the drawables it can be used in conjunction with for graphics
output.

descendant If W is an inferior of A, then W is a descendant of A.

device Keyboards, mice, tablets, track-balls, button boxes, and so forth, are all collectively
known as input devices. The core protocol only deals with two devices: the keyboard and
the pointer.

direct color A class of colormap in which a pixel value is decomposed into three separate subfields
for indexing. One subfield indexes an array to produce red intensity values, the second
subfield indexes a second array to produce blue intensity values, and the third subfield
indexes a third array to produce green intensity values. The RGB values can be changed
dynamically.

dispatching an event The process of finding the appropriate contact and its actions.

double-click A sequence of two clicks of the same button in rapid succession.

drawable Both windows and pixmaps can be used as sources and destinations in graphics opera-
tions. These are collectively known as drawables. However, an :input-only window
cannot be used as a source or destination in a graphics operation.

e

event Clients receive information asynchronously via events. These events can be either asyn-
chronously generated from devices, or generated as side effects of client requests.
Events are grouped into types; events are never sent to a client by the server unless the
client has specifically asked to be informed of that type of event, but clients can force
events to be sent to other clients. Events are typically reported relative to a window.

Glossary

Glossary-204 CLX Programmer’s Reference

event compression Ignoring (or compressing) certain redundant input events. Compression of redundant
events is controlled by the class slots compress-exposures and compress-motion,
which are shared by all instances of a contact class.

event loop The fundamental application control structure: wait for an event, figure out how to han-
dle it, process the event, then go back and wait for the next one. In CLUE, the event loop
is implemented using the process-next-event function.

event mask Events are requested relative to a window. The set of event types a client requests relative
to a window are described using an event mask.

event propagation Device-related events propagate from the source window to ancestor windows until
some client has expressed interest in handling that type of event, or until the event is dis-
carded explicitly.

event specification A notation for describing a certain sort of event. CLUE input processing consists of
matching an event with an event specification found in a contact’s event-translations
slot and then calling actions associated with the matching event specification.

event synchronization Certain race conditions are possible when demultiplexing device events to clients (in
particular deciding where pointer and keyboard events should be sent when in the middle
of window management operations). The event synchronization mechanism allows syn-
chronous processing of device events.

event source The smallest window containing the pointer is the source of a device related event.

event translation The process of determining which contact action functions will be executed. An event
translation is a list found in a contact’s event-translations slot associating an event spec-
ification with one or more action names. Also see class event translations.

exposure event Servers do not guarantee to preserve the contents of windows when windows are ob-
scured or reconfigured. Exposure events are sent to clients to inform them when contents
of regions of windows have been lost.

extension Named extensions to the core protocol can be defined to extend the system. Extension to
output requests, resources, and event types are all possible, and expected.

f

focus window Another term for the input focus.

font A matrix of glyphs (typically characters). The protocol does no translation or interpreta-
tion of character sets. The client simply indicates values used to index the glyph array. A
font contains additional metric information to determine inter-glyph and inter-line spac-
ing.

g

geometry The process whereby a composite controls the geometrical properties of its
management child contacts; the composite is referred to as the geometry manager.

glyph An image, typically of a character, in a font.

Glossary

Glossary-205CLX Programmer’s Reference

grab Keyboard keys, the keyboard, pointer buttons, the pointer, and the server can be grabbed
for exclusive use by a client. In general, these facilities are not intended to be used by
normal applications but are intended for various input and window managers to imple-
ment various styles of user interfaces.

gcontext Shorthand for graphics context.

graphics context Various information for graphics output is stored in a graphics context (or gcontext),
such as foreground pixel, background pixel, line width, clipping region, and so forth. A
graphics context can only be used with drawables that have the same root and the same
depth as the graphics context.

gray scale A degenerate case of pseudo color, in which the red, green, and blue values in any given
colormap entry are equal, thus producing shades of gray. The gray values can be changed
dynamically.

h

hot spot A cursor has an associated hot spot that defines a point in the cursor that corresponds to
the coordinates reported for the pointer.

i

identifier Each resource has an identifier, a unique value associated with it that clients use to name
the resource. An identifier can be used over any connection to name the resource.

inferiors All of the subwindows nested below a window: the children, the children’s children, and
so on.

initialization See contact initialization.

input event See event.

input focus Normally a window defining the scope for processing of keyboard input. If a generated
keyboard event would normally be reported to this window or one of its inferiors, the
event is reported normally; otherwise, the event is reported with respect to the focus win-
dow. The input focus also can be set such that all keyboard events are discarded and that
the focus window is dynamically taken to be the root window of whatever screen the
pointer is on at each keyboard event.

input-only window A window that cannot be used for graphics requests. input-only windows are invisible,
and can be used to control such things as cursors, input event generation, and grabbing.
input-only windows cannot have input/output windows as inferiors.

input/output window The normal kind of opaque window, used for both input and output. Input/output win-
dows can have both input/output and input-only windows as inferiors.

insensitivity See sensitivity.

interactive-stream A contact subclass designed to integrate CLUE with the conventional stream-based I/O
of Common Lisp.

Glossary

Glossary-206 CLX Programmer’s Reference

k

key grabbing Keys on the keyboard can be passively grabbed by a client. When the key is pressed, the
keyboard is then actively grabbed by the client.

keyboard grabbing A client can actively grab control of the keyboard, and key events will be sent to that
client rather than the client to which the events would normally have been sent.

keysym An encoding of a symbol on a keycap on a keyboard.

m

managed A contact under geometry management control.

mapped A window is said to be mapped if a map call has been performed on it. Unmapped win-
dows and their inferiors are never viewable or visible.

modifier keys SHIFT, CONTROL, META, SUPER, HYPER, ALT, Compose, Apple, CAPS LOCK,
Shift Lock, and similar keys are called modifier keys.

monochrome A special case of static gray, in which there are only two colormap entries.

o

obscure A window is obscured if some other window obscures it. For example, window A ob-
scures window B if:

• Both windows are viewable :input-output windows

• Window A is higher in the global stacking order than window B

• The rectangle defined by the outside edges of window A intersects the rectangle de-
fined by the outside edges of window B

Notice that window borders are included in the calculation, and that a window can be
obscured and yet still have visible regions. See occlude (there is a fine distinction be-
tween obscure and occlude).

occlude A window is occluded if some other window occludes it. For example, window A oc-
cludes window B if:

• Both windows are mapped

• Window A is higher in the global stacking order than window B

• The rectangle defined by the outside edges of window A intersects the rectangle de-
fined by the outside edges of window B

Notice that window borders are included in the calculation. See obscure (there is a fine
distinction between occlude and obscure).

Glossary

Glossary-207CLX Programmer’s Reference

override-shell A subclass of shell used to override the window manager. This subclass contains pop-up
menus and other temporary objects that the user can never resize and so on.

p

padding Some padding bytes are inserted in the data stream to maintain alignment of the protocol
requests on natural boundaries. This increases ease of portability to some machine archi-
tectures.

parent window If C is a child of P, then P is the parent of C.

passive grab Grabbing a key or button is a passive grab. The grab activates when the key or button is
actually pressed.

pixel value An n-bit value, where n is the number of bit planes used in (that is, the depth of) a particu-
lar window or pixmap. For a window, a pixel value indexes a colormap to derive an actu-
al color to be displayed.

pixmap A three dimensional array of bits. A pixmap is normally thought of as a two dimensional

array of pixels, where each pixel can be a value from 0 to (2
n

)� 1, where n is the depth (z
axis) of the pixmap. A pixmap can also be thought of as a stack of n bitmaps.

plane When a pixmap or window is thought of as a stack of bitmaps, each bitmap is called a
plane or bit plane.

plane mask Graphics operations can be restricted to only affect a subset of bit planes of a destination.
A plane mask is a bit mask describing which planes are to be modified, and it is stored in a
graphics context.

pointer The pointing device attached to the cursor and tracked on the screens.

pointer grabbing A client can actively grab control of the pointer, and button and motion events will be
sent to that client rather than the client to which the events would normally have been
sent.

pointing device Typically a mouse or tablet, or some other device with effective dimensional motion.
There is only one visible cursor defined by the core protocol, and it tracks whatever
pointing device is attached as the pointer.

pop-up One of the uses of a top-level shell (for example, a menu that pops up when a command
button contact is activated). Setting the state of a shell to :mapped is sometimes referred
to as mapping or popping up the shell. Setting the state of a shell to :withdrawn or :icon-
ic is sometimes referred to as unmapping or popping down the shell.

property Windows can have associated properties, consisting of a name, a type, a data format, and
some data. The protocol places no interpretation on properties; they are intended as a
general-purpose naming mechanism for clients. For example, clients might share infor-
mation such as resize hints, program names, and icon formats with a window manager
via properties.

property list The list of properties that have been defined for a window.

pseudo color A class of colormap in which a pixel value indexes the colormap to produce independent
red, green, and blue values. That is, the colormap is viewed as an array of triples (RGB
values). The RGB values can be changed dynamically.

Glossary

Glossary-208 CLX Programmer’s Reference

r

realization See contact realization.

redirecting control Window managers (or client programs) may choose to enforce window layout policy in
various ways. When a client attempts to change the size or position of a window, the op-
eration can be redirected to a specified client, rather than the operation actually being
performed.

reply Information requested by a client program is sent back to the client with a reply. Both
events and replies are multiplexed on the same connection. Most requests do not gener-
ate replies. However, some requests generate multiple replies.

representation type The type of representation of a resource value. For example, a color value might be rep-
resented either as a namestring (“red”), a pixel value, an RGB triplet, an HSV triplet, and
so on.

request A command to the server is called a request. It is a single block of data sent over a connec-
tion.

resource A value of the user interface that can be changed by the user in a resource database via
CLX functions add-resource, get-resource, and so forth. See server resource.

resource class, See complete resource class.
complete

resource database Conceptually, a set of resource name/value pairs (or resource bindings). CLX defines
functions for storing and retrieving interface resources from a resource database.

resource name, See complete resource name.
complete

RGB values Red, green, and blue intensity values used to define color. These values are always repre-
sented as 16-bit unsigned numbers, with zero being the minimum intensity and 65535
being the maximum intensity. The values are scaled by the server to match the display
hardware.

root A special composite contact used to represent an entire display screen.

root window Each screen has a root window covering it. It cannot be reconfigured or unmapped, but
otherwise acts as a full-fledged window. A root window has no parent.

s

save set The save set of a client is a list of other client’s windows that, if they are inferiors of one
of the client’s windows at connection close, should not be destroyed and that should be
remapped if it is unmapped. Save sets are typically used by window managers to avoid
lost windows if the manager should terminate abnormally.

scanline A list of pixel or bit values viewed as a horizontal row (all values having the same y coor-
dinate) of an image, with the values ordered by increasing x coordinate.

scanline order An image represented in scanline order contains scanlines ordered by increasing y coor-
dinate.

Glossary

Glossary-209CLX Programmer’s Reference

screen A server can provide several independent screens, which typically have physically inde-
pendent monitors. This would be the expected configuration when there is only a single
keyboard and pointer shared among the screens.

selection A selection can be thought of as an indirect property with dynamic type. That is, rather
than having the property stored in the server, it is maintained by some client (the owner).
A selection is global in nature, being thought of as belonging to the user (but maintained
by clients), rather than being private to a particular window subhierarchy or a particular
set of clients. When a client asks for the contents of a selection, it specifies a selection
target type. This target type can be used to control the transmitted representation of the
contents.

For example, if the selection is “the last thing the user clicked on” and that is currently an
image, then the target type might specify whether the contents of the image should be
sent in XY Format or Z Format. The target type can also be used to control the class of
contents transmitted; that is, asking for the looks (fonts, line spacing, indentation, and so
forth) of a paragraph selection, rather than the text of the paragraph. The target type can
also be used for other purposes; the semantics is not constrained by the protocol.

sensitivity A condition in which a user interface component of an application will accept input.
Conversely, when a contact is insensitive, events of particular types are not dispatched to
the contact and are ignored.

server The server provides the basic windowing mechanism. It handles IPC connections from
clients, demultiplexes graphics requests onto the screens, and multiplexes input back to
the appropriate clients.

server grabbing The server can be grabbed by a single client for exclusive use. This prevents processing
of any requests from other client connections until the grab is complete. This is typically
only a transient state for such things as rubber-banding and pop-up menus, or to execute
requests indivisibly.

server resource Windows, pixmaps, cursors, fonts, gcontexts, and colormaps are known as resources.
They all have unique identifiers associated with them for naming purposes. The lifetime
of a resource is bounded by the lifetime of the connection over which the resource was
created. See resource.

shell A composite that handles the duties required by standard conventions for top-level X
windows.

sibling Children of the same parent window are known as sibling windows.

static color A degenerate case of pseudo color in which the RGB values are predefined and read-
only.

static gray A degenerate case of gray scale in which the gray values are predefined and read-only.
The values are typically (near-)linear increasing ramps.

stacking order Sibling windows can stack on top of each other. Windows above both obscure and oc-
clude lower windows. This is similar to paper on a desk. The relationship between sib-
ling windows is known as the stacking order.

state A slot of contact that controls the visual effect of the contact.

stipple A bitmap that is used to tile a region to serve as an additional clip mask for a fill operation
with the foreground color.

Glossary

Glossary-210 CLX Programmer’s Reference

t

tile A pixmap can be replicated in two dimensions to tile a region. The pixmap itself is also
known as a tile.

timer A CLUE object that provides support for animation and other types of time-sensitive
user interfaces. A timer causes :timer events to be dispatched to a specific contact for
processing.

timestamp A time value, expressed in milliseconds, typically since the last server reset. Timestamp
values wrap around (after about 49.7 days). The server, given its current time is repre-
sented by timestamp T, always interprets timestamps from clients by treating half of the
timestamp space as being earlier in time than T and half of the timestamp space as being
later in time than T. One timestamp value (named CurrentTime) is never generated by the
server; this value is reserved for use in requests to represent the current server time.

top-level contact A contact whose parent is a root. A top-level contact is usually a composite at the top of a
hierarchy of other contacts created by an application program.

top-level-session A subclass of shell that is used to communicate with a session manager.

top-level-shell A subclass of shell that provides full window manager interaction.

transient-shell A subclass of shell that a window manager typically will unmap when its owner be-
comes unmapped or iconified and will not allow to be individually iconified.

true color A degenerate case of direct color in which the subfields in the pixel value directly encode
the corresponding RGB values. That is, the colormap has predefined read-only RGB
values. The values are typically (near-)linear increasing ramps.

type An arbitrary atom used to identify the interpretation of property data. Types are com-
pletely uninterpreted by the server; they are solely for the benefit of clients.

u

unmanaged A contact that is not under geometry management control.

user interface A set of abstract interface objects used to control the dialog between an application and
its human user.

v

viewable A window is viewable if it and all of its ancestors are mapped. This does not imply that
any portion of the window is actually visible. Graphics requests can be performed on a
window when it is not viewable, but output will not be retained unless the server is main-
taining backing store.

visible A region of a window is visible if someone looking at the screen can actually see it; that
is, the window is viewable and the region is not occluded by any other window.

Glossary

Glossary-211CLX Programmer’s Reference

w

window gravity When windows are resized, subwindows can be repositioned automatically relative to
some position in the window. This attraction of a subwindow to some part of its parent is
known as window gravity.

window manager Manipulation of windows on the screen, and much of the user interface (policy) is typi-
cally provided by a window manager client.

window manager shell A subclass of shell called wm-shell that interacts with the window manager.

x

XY Format The data for a pixmap is said to be in XY Format if it is organized as a set of bitmaps
representing individual bit planes, with the planes appearing from most to least signifi-
cant in bit order.

z

Z Format The data for a pixmap is said to be in Z Format if it is organized as a set of pixel values in
scanline order.

Glossary

Glossary-212 CLX Programmer’s Reference

General In-
dex

CLX Programmer’s Reference Index-213

General

A
access control list, 14-179

arc-mode attribute of graphics context, 5-55

arcs, drawing, 6-74—6-75

area of a window, 6-69—6-71

atom, 11-111—11-112

attribute name, 13-161

authorization
data of display, 2-24
name of display, 2-24

auto-repeat keys, 14-170—14-173

B
background attribute

graphics context, 5-56
window, 4-38

backing-pixel attribute of window, 4-39

backing-planes attribute of window, 4-39

backing-store attribute of window, 4-39

backing-stores attribute of screen, 3-32

bell, 14-170—14-173

bit-gravity attribute of window, 4-39

bit vector, keyboard, 14-170—14-173

bitmap, 1-2
format of display, 2-24

black-pixel attribute of screen, 3-32

border attribute of window, 4-40

border-width attribute of window, 4-37

button, grabbing, 12-132—12-133

:button-press event, 12-136

:button-release event, 12-136
example, 1-9

byte order of display, 2-24

C
cap-style attribute of graphics context, 5-56

character, 8-89—8-98
attributes, 8-89, 8-96—8-97

:circulate-notify event, 12-147

:circulate-request event, 12-152

class, window, 4-40

classes of visual types supported, 3-31

client, 1-2
communications events, 12-155—12-157
termination, 14-176—14-178

:client-message event, 12-155

clip-mask attribute of graphics context, 5-57

clip-x attribute of graphics context, 5-58

clip-y attribute of graphics context, 5-58

CLX
error conditions, 16-185—16-190
examples, 1-3—1-11

calculating menu size, 1-6
creating menu window, 1-5
creating subwindows, 1-5
definition of menu structure, 1-3
drawing/redrawing menus, 1-7
main client program, 1-10
menu processing of user input, 1-8

overview, 1-1—1-22
xatom objects, 11-111

color, 9-99—9-108
allocating, 9-103—9-105
changing, 9-99, 9-105—9-106
creating, 9-99
finding, 9-105

colormap, 9-99—9-108
accessors, 9-107
attribute of window, 4-40
creating, 9-101—9-102
installing, 9-102—9-103
maximum number for screen, 3-33
minimum number for screen, 3-33
screen default, 3-32

:colormap-notify event, 12-153

complete resource class, 13-163

General Index

CLX Programmer’s ReferenceIndex-214

complete resource name, 13-163

conditions, CLX, 16-185

:configure-notify event, 12-148

:configure-request event, 12-153

control, 14-169—14-182
client termination, 14-176—14-178
grabbing the server, 14-169
host access, 14-179—14-180
keyboard, 14-170—14-173
pointer, 14-169—14-170
screen saver, 14-180—14-182

:create-notify event, 12-149

cursor, 10-107—10-110
attribute of window, 4-41

D
dash-offset attribute of graphics context, 5-58

dashes attribute of graphics context, 5-58

default colormap of screen, 3-32

depth attribute of window, 4-37

depths of screen, 3-32

:destroy-notify event, 12-149

destroying windows, 4-49

device events, 12-119
events returned, 12-119

display, 1-2, 2-23—2-30
attributes, 2-24—2-29
authorization

data, 2-24
name, 2-24

bitmap format, 2-24
byte order, 2-24
closing, 2-29
error handler, 2-25
image leftmost bit, 2-25
keycode

maximum value, 2-26
minimum value, 2-26
range, 2-25

motion buffer size, 2-26
number, 2-24
opening, 2-23
output buffer management, 2-29
pixmap formats, 2-26
property list, 2-27
protocol

major version, 2-27

minor version, 2-27
version, 2-27

request maximum length, 2-26
resource-id

base, 2-27
mask, 2-28

roots, 2-28
server resource ID, 2-28
vendor, 2-28

name, 2-28
version number, 2-28
window object, 4-41

do-not-propagate-mask attribute of window, 4-41

drawable, 1-2, 4-35—4-52
geometry

reader and setf functions, 4-45
values, batching, 4-43

drawing
arcs, 6-74
glyphs, 6-75—6-80
lines, 6-71—6-73
points, 6-71
rectangles, 6-73
text, 6-75

E
:enter-notify event, 12-138

example, 1-9

error conditions, CLX, 16-185—16-190

error handler of display, 2-25

event, 1-2, 12-119—12-160
:button-press, 12-136
:button-release, 12-136

example, 1-9
:circulate-notify, 12-147
:circulate-request, 12-152
client communications, 12-155—12-157
:client-message, 12-155
:colormap-notify, 12-153
:configure-notify, 12-148
:configure-request, 12-153
:create-notify, 12-149
:destroy-notify, 12-149
device, 12-119

events returned, 12-119
:enter-notify, 12-138

example, 1-9
:exposure, 12-145

example, 1-9
exposure, 12-145—12-147
:focus-in, 12-140

General In-
dex

CLX Programmer’s Reference Index-215

:focus-out, 12-140
grabbing

button, 12-132—12-133
key, 12-134—12-160
keyboard, 12-133—12-134
pointer, 12-130—12-131

:graphics-exposure, 12-146
:gravity-notify, 12-150
input, 1-2
input focus, 12-140—12-143
:key-press, 12-136
:key-release, 12-136
keyboard, 12-136—12-140

state, 12-144
:keymap-notify, 12-144
:leave-notify, 12-138

example, 1-9
managing

event queue, 12-124—12-125
input focus, 12-128—12-129

:map-notify, 12-150
:map-request, 12-154
:mapping-notify, 12-144
:motion-notify, 12-137
:no-exposure, 12-146
pointer, 12-136—12-140

position, 12-126—12-128
state, 12-144

processing, 12-122—12-124
:property-notify, 12-155
:reparent-notify, 12-151
:resize-request, 12-154
selecting, 12-120—12-121
:selection-clear, 12-155
:selection-notify, 12-156
:selection-request, 12-156
sending, 12-125—12-126
side-effect, 12-119

events returned, 12-119
structure control, 12-152—12-154
types, 12-135—12-158

declaring, 12-157
:unmap-notify, 12-151
:visibility-notify, 12-152
window state, 12-147—12-152

event mask
keywords, 12-121

event types selected, 12-121
root of screen, 3-32

event-mask, attribute of window, 4-41

event masks, window, 4-38

examples, CLX. See CLX examples

:exposure event, 12-145
example, 1-9

exposure events, 12-145—12-147

exposures attribute of graphics context, 5-59

extensions, 15-183—15-184

F
fill-rule attribute of graphics context, 5-59

fill-style attribute of graphics context, 5-60

:focus-in event, 12-140

:focus-out event, 12-140

font, 8-89—8-98
attribute of graphics context, 5-61
attributes, 8-91—8-95
character attributes, 8-89, 8-96
closing, 8-89
listing, 8-90—8-91
opening, 8-89—8-90
querying text size, 8-97—8-98

foreground attribute of graphics context, 5-61

function attribute of graphics context, 5-61
logical operation codes, 5-62

G
glyphs, 8-89

drawing, 6-75—6-80

grab types, 12-120

grabbing
button, 12-132—12-133
key, 12-134—12-160
keyboard, 12-133—12-134
pointer, 12-130—12-131
server, 14-169

graphics, 6-69—6-80
area, 6-69—6-71
drawing

arcs, 6-74—6-75
glyphs, 6-75—6-80
lines, 6-71—6-73
points, 6-71
rectangles, 6-73
text, 6-75—6-80

plane, 6-69—6-71

graphics context, 5-53—5-68
attribute

arc-mode, 5-55

General Index

CLX Programmer’s ReferenceIndex-216

background, 5-56
cap-style, 5-56
clip-mask, 5-57
clip-x, 5-58
clip-y, 5-58
dash-offset, 5-58
dashes, 5-58
exposures, 5-59
fill-rule, 5-59
fill-style, 5-60
font, 5-61
foreground, 5-61
function, 5-61

logical operation codes, 5-62
join-style, 5-62
line-style, 5-63
line-width, 5-63
plane-mask, 5-64
stipple, 5-65

best, 5-67
subwindow-mode, 5-66
tile, 5-66

best, 5-67
ts-x, 5-67
ts-y, 5-67

attributes, 5-55—5-67
cache, 5-68
components, default values, 5-55
copying, 5-67
creating, 5-54—5-55
destroying, 5-68
local cache mode, 5-56

:graphics-exposure event, 12-146

gravity attribute of window, 4-41

:gravity-notify event, 12-150

H
height

attribute of window, 4-37
screen, 3-33
screen in millimeters, 3-33

host, managing access, 14-179—14-180

I
ID, window, 4-42

image, 7-81—7-88
leftmost bit of display, 2-25

input
event, 1-2

focus events, 12-140—12-143

J
join-style attribute of graphics context, 5-62

K
key

auto-repeat, 14-170—14-173
click, 14-170—14-173
grabbing, 12-134—12-160

:key-press event, 12-136

:key-release event, 12-136

keyboard
bell, 14-170
bit vector, 14-170—14-173
control, 14-170—14-173
encodings, 14-173—14-176
events, 12-136—12-140
grabbing, 12-133—12-134
mapping, 14-170—14-173, 14-174—14-175
state event, 12-144

keycode
maximum value of display, 2-26
minimum value of display, 2-26
range of display, 2-25

keycodes, 14-173—14-174
usage, 14-175—14-176

:keymap-notify event, 12-144

keysyms, 14-173—14-174
usage, 14-175—14-176

L
:leave-notify event, 12-138

example, 1-9

line-style attribute of graphics context, 5-63

line-width attribute of graphics context, 5-63

lines, drawing, 6-71—6-73

M
:map-notify event, 12-150

:map-request event, 12-154

map state of window, 4-42

:mapping-notify event, 12-144

General In-
dex

CLX Programmer’s Reference Index-217

mapping windows, 4-47—4-49

motion buffer size of display, 2-26

:motion-notify event, 12-137

mouse, behavior, 14-170—14-173

N
:no-exposure event, 12-146

number of display, 2-24

O
obscuring window, 1-2

output buffer management, 2-29

override-redirect attribute of window, 4-42

P
path list, 13-161

pixmap, 1-2, 4-35—4-52
formats of display, 2-26

plane, 6-69—6-71

plane-mask attribute of graphics context, 5-64

pointer
button

obtaining, 14-170—14-173
setting, 14-170—14-173

control, 14-169—14-170
events, 12-136—12-140
grabbing, 12-130—12-131
position, 12-126—12-128
state event, 12-144

points, drawing, 6-71

property, 11-112—11-115

property list
display, 2-27
screen, 3-33
window, 4-43

:property-notify event, 12-155

protocol
major version of display, 2-27
minor version of display, 2-27
version of display, 2-27

R
rectangles, drawing, 6-73

:reparent-notify event, 12-151

reply, 1-2

representation type, standard conversions, 4-45

request maximum length of display, 2-26

:resize-request event, 12-154

resource, 13-161—13-168
accessing, 13-163—13-166
binding, 13-161—13-162

examples, 13-162
complete class, 13-163
complete name, 13-163
database, 13-161, 13-162—13-163

files, 13-166
matching, 13-164
name, 13-161
search table, 13-165
server, 13-161

resource-id
base of display, 2-27
mask of display, 2-28

root, 1-2
depth of screen, 3-34
display, 2-28
event mask of screen, 3-32
visual type of screen, 3-34
window of screen, 3-33

S
save-under attribute of window, 4-43

save-unders-p attribute of screen, 3-34

screen, 1-2, 3-31—3-34
attributes, 3-31—3-34
backing-stores attribute, 3-32
black-pixel attribute, 3-32
colormap, default, 3-32
colormaps maximum number, 3-33
colormaps minimum number, 3-33
depths, 3-32
event mask root, 3-32
height, 3-33
height in millimeters, 3-33
property list, 3-33
root depth, 3-34
root visual type, 3-34
root window, 3-33
save-unders-p attribute, 3-34
saver, 14-180—14-182

General Index

CLX Programmer’s ReferenceIndex-218

white pixel, 3-34
width, 3-34
width in millimeters, 3-34

selection, 11-115—11-118

:selection-clear event, 12-155

:selection-notify event, 12-156

:selection-request event, 12-156

server
grabbing, 14-169
resource, 13-161
resource ID of display, 2-28

shell
popping down, 208
popping up, 208

side-effect events, 12-119
events returned, 12-119

stacking order of window, 4-45—4-46

stacking priority of window, 4-43

stipple
attribute of graphics context, 5-65
best, graphics context, 5-67

structure control events, 12-152—12-154

subwindow-mode attribute of graphics context, 5-66

T
text

drawing, 6-75—6-80
size querying, 8-97—8-98

tile, 1-2
attribute of graphics context, 5-66
best, graphics context, 5-67

ts-x attribute of graphics context, 5-67

ts-y attribute of graphics context, 5-67

U
:unmap-notify event, 12-151

unmapping windows, 4-47—4-49

V
vendor

display, 2-28
name of display, 2-28

version number of display, 2-28

:visibility-notify event, 12-152

visual type of window, 4-43

visual types, classes supported, 3-31

visuals, 3-31

W
white pixel of screen, 3-34

width
attribute of window, 4-37
screen, 3-34
screen in millimeters, 3-34

window, 4-35—4-52
attribute

background, 4-38
backing-pixel, 4-39
backing-planes, 4-39
backing-store, 4-39
bit-gravity, 4-39
border, 4-40
border-width, 4-37
colormap, 4-40
cursor, 4-41
depth, 4-37
do-not-propagate-mask, 4-41
event-mask, 4-41
gravity, 4-41
height, 4-37
override-redirect, 4-42
save-under, 4-43
width, 4-37

attributes, 4-37
batching, 2-29, 4-43
reader and setf functions, 4-45

class, 4-40
creating, 4-35
destroying, 4-49
display object, 4-41
event masks, 4-38
hierarchy, 4-46—4-47
ID, 4-42
map state, 4-42
mapping, 4-47—4-49
obscure, 1-2
property list, 4-43
stacking order, 4-45—4-46
stacking priority, 4-43
state events, 12-147—12-152
unmapping, 4-47—4-49
visual type, 4-43
x coordinate, 4-38
y coordinate, 4-38

General In-
dex

CLX Programmer’s Reference Index-219

X
X server, reset operations, 14-177

X Window System, overview, 1-1—1-3

Conditions Index

CLX Programmer’s ReferenceIndex-220

Conditions

A
xlib:access-error, 16-185

xlib:alloc-error, 16-185

xlib:atom-error, 16-185

C
xlib:closed-display, 16-185

xlib:colormap-error, 16-186

xlib:connection-failure, 16-186

xlib:cursor-error, 16-186

D
xlib:device-busy, 16-186

xlib:drawable-error, 16-186

F
xlib:font-error, 16-186

G
xlib:gcontext-error, 16-187

I
xlib:id-choice-error, 16-187

xlib:implementation-error, 16-187

L
xlib:length-error, 16-187

xlib:lookup-error, 16-187

M
xlib:match-error, 16-188

xlib:missing-parameter, 16-188

N
xlib:name-error, 16-188

P
xlib:pixmap-error, 16-188

R
xlib:reply-length-error, 16-188

xlib:reply-timeout, 16-188

xlib:request-error, 16-189

xlib:resource-error, 16-189

S
xlib:sequence-error, 16-189

xlib:server-disconnect, 16-189

U
xlib:unexpected-reply, 16-190

xlib:unknown-error, 16-190

V
xlib:value-error, 16-190

W
xlib:window-error, 16-190

X
xlib:x-error, 16-190

Function Index

CLX Programmer’s Reference Index-221

Functions

A
xlib:access-control, 14-179

xlib:access-hosts, 14-179

xlib:activate-screen-saver, 14-180

xlib:add-access-host, 14-179

xlib:add-resource, 13-162

xlib:add-to-save-set, 14-178

xlib:alloc-color, 9-103

xlib:alloc-color-cells, 9-103

xlib:alloc-color-planes, 9-104

xlib:allow-events, 12-158

xlib:atom-name, 11-112

B
xlib:bell, 14-170

C
xlib:change-active-pointer-grab, 12-131

xlib:change-keyboard-control, 14-171

xlib:change-keyboard-mapping, 14-174

xlib:change-pointer-control, 14-169

xlib:change-property, 11-113

xlib:char-ascent, 8-96

xlib:char-attributes, 8-96

xlib:char-descent, 8-96

xlib:char-left-bearing, 8-96

xlib:char-right-bearing, 8-96

xlib:char-width, 8-97

xlib:circulate-window-down, 4-45

xlib:circulate-window-up, 4-46

xlib:clear-area, 6-69

xlib:close-display, 2-30, 5-57
example, 1-10

xlib:close-down-mode, 14-178

xlib:close-font, 8-90

xlib:color-blue, 9-100

xlib:color-green, 9-100

xlib:color-p, 9-100

xlib:color-red, 9-100

xlib:color-rgb, 9-100

xlib:colormap-display, 9-107

xlib:colormap-equal, 9-107

xlib:colormap-id, 9-107

xlib:colormap-p, 9-107

xlib:colormap-plist, 9-107

xlib:convert-selection, 11-116

xlib:copy-area, 6-70

xlib:copy-colormap-and-free, 9-102

xlib:copy-gcontext, 5-67

xlib:copy-gcontext-components, 5-68

xlib:copy-image, 7-85

xlib:copy-plane, 6-70

xlib:create-colormap, 9-101

xlib:create-cursor, 10-107

xlib:create-gcontext, 5-54
example, 1-5

xlib:create-glyph-cursor, 10-108

xlib:create-image, 7-83

xlib:create-pixmap, 4-50

xlib:create-window, 4-35
example, 1-5, 1-6

xlib:cursor-display, 10-109

xlib:cursor-equal, 10-109

xlib:cursor-id, 10-109

xlib:cursor-p, 10-109

xlib:cursor-plist, 10-109

D
xlib:declare-event, 12-157

xlib:define-condition, 16-185

xlib:delete-property, 11-113

xlib:delete-resource, 13-163

Function Index

CLX Programmer’s ReferenceIndex-222

xlib:destroy-subwindows, 4-49

xlib:destroy-window, 4-49
example, 1-6

xlib:discard-current-event, 12-124

xlib:discard-font-info, 8-90

xlib:display-after-function, 2-29

xlib:display-authorization-data, 2-24

xlib:display-authorization-name, 2-24

xlib:display-bitmap-format, 2-24

xlib:display-byte-order, 2-24

xlib:display-display, 2-24

xlib:display-error-handler, 2-25

xlib:display-finish-output, 2-29

xlib:display-force-output, 2-29

xlib:display-image-lsb-first-p, 2-25

xlib:display-keycode-range, 2-25

xlib:display-max-keycode, 2-26

xlib:display-max-request-length, 2-26

xlib:display-min-keycode, 2-26

xlib:display-motion-buffer-size, 2-26

xlib:display-p, 2-26

xlib:display-pixmap-formats, 2-26

xlib:display-plist, 2-27

xlib:display-protocol-major-version, 2-27

xlib:display-protocol-minor-version, 2-27

xlib:display-protocol-version, 2-27

xlib:display-resource-id-base, 2-27

xlib:display-resource-id-mask , 2-28

xlib:display-roots, 2-28
example, 1-10

xlib:display-vendor, 2-28

xlib:display-vendor-name, 2-28

xlib:display-version-number, 2-28

xlib:display-xid, 2-28

xlib:draw-arc, 6-74

xlib:draw-arcs, 6-75

xlib:draw-glyph, 6-76

xlib:draw-glyphs, 6-76

xlib:draw-image-glyph, 6-77

xlib:draw-image-glyphs, 6-78
example, 1-8

xlib:draw-line, 6-72

xlib:draw-lines, 6-72

xlib:draw-point, 6-71

xlib:draw-points, 6-71

xlib:draw-rectangle, 6-73

xlib:draw-rectangles, 6-73

xlib:draw-segments, 6-73

xlib:drawable-border-width, 4-37

xlib:drawable-depth, 4-37

xlib:drawable-display, 4-35
example, 1-9

xlib:drawable-equal, 4-35

xlib:drawable-height, 4-37
example, 1-7

xlib:drawable-id, 4-35

xlib:drawable-p, 4-35

xlib:drawable-plist, 4-35

xlib:drawable-root, 4-46

xlib:drawable-width, 4-37
example, 1-7

xlib:drawable-x, 4-38
example, 1-7

xlib:drawable-y, 4-38
example, 1-7

E
xlib:event-case, 12-123

example, 1-9

xlib:event-cond, 12-123

xlib:event-listen, 12-125

F
xlib:find-atom, 11-112

xlib:font-all-chars-exist-p, 8-91

xlib:font-ascent, 8-91
example, 1-7, 1-8

xlib:font-default-char, 8-91

xlib:font-descent, 8-92
example, 1-7

xlib:font-direction, 8-92

Function Index

CLX Programmer’s Reference Index-223

xlib:font-display, 8-92

xlib:font-equal, 8-92

xlib:font-id, 8-92

xlib:font-max-byte1, 8-92

xlib:font-max-byte2, 8-92

xlib:font-max-char, 8-93

xlib:font-min-byte1, 8-93

xlib:font-min-byte2, 8-93

xlib:font-min-char, 8-93

xlib:font-name, 8-93

xlib:font-p, 8-93

xlib:font-path, 8-90

xlib:font-plist, 8-93

xlib:font-properties, 8-94

xlib:font-property, 8-94

xlib:force-gcontext-changes, 5-68

xlib:free-colormap, 9-102

xlib:free-colors, 9-104

xlib:free-cursor, 10-108

xlib:free-gcontext, 5-68

xlib:free-pixmap, 4-50

G
xlib:gcontext-arc-mode, 5-55

xlib:gcontext-background, 5-56
example, 1-6, 1-8

xlib:gcontext-cache-p, 5-56

xlib:gcontext-cap-style, 5-56

xlib:gcontext-clip-x, 5-58

xlib:gcontext-clip-y, 5-58

xlib:gcontext-dash-offset, 5-58

xlib:gcontext-dashes, 5-58

xlib:gcontext-display, 5-59

xlib:gcontext-equal, 5-59

xlib:gcontext-exposures, 5-59

xlib:gcontext-fill-rule, 5-59

xlib:gcontext-fill-style, 5-60

xlib:gcontext-font, 5-61
example, 1-7, 1-8

xlib:gcontext-foreground, 5-61
example, 1-8

xlib:gcontext-function, 5-61

xlib:gcontext-id, 5-62

xlib:gcontext-join-style, 5-62

xlib:gcontext-line-style, 5-63

xlib:gcontext-line-width, 5-63

xlib:gcontext-p, 5-64

xlib:gcontext-plane-mask, 5-64

xlib:gcontext-plist, 5-65

xlib:gcontext-stipple, 5-65

xlib:gcontext-subwindow-mode, 5-66

xlib:gcontext-tile, 5-66

xlib:gcontext-ts-x, 5-67

xlib:gcontext-ts-y, 5-67

xlib:get-image, 7-85

xlib:get-property, 11-114

xlib:get-raw-image, 7-87

xlib:get-resources, 13-165

xlib:get-search-resource, 13-166

xlib:get-search-table, 13-165

xlib:global-pointer-position, 12-126

xlib:grab-button, 12-132

xlib:grab-keyboard, 12-133, 12-134

xlib:grab-pointer, 12-130

xlib:grab-server, 14-169

H
xlib:handler-function, 12-122

I
xlib:image-blue-mask, 7-81

xlib:image-depth, 7-81

xlib:image-green-mask, 7-81

xlib:image-height, 7-82

xlib:image-name, 7-82

xlib:image-plist, 7-82

xlib:image-red-mask, 7-82

xlib:image-width, 7-82

Function Index

CLX Programmer’s ReferenceIndex-224

xlib:image-x-hot, 7-82

xlib:image-xy-bitmap-list, 7-83

xlib:image-y-hot, 7-82

xlib:image-z-bits-per-pixel, 7-83

xlib:image-z-pixarray, 7-83

xlib:input-focus, 12-129

xlib:install-colormap, 9-102

xlib:installed-colormaps, 9-102

xlib:intern-atom, 11-112

K
xlib:keyboard-control, 14-172

xlib:keyboard-mapping, 14-175

xlib:keycode-character, 14-176

xlib:keycode-keysym, 14-175

xlib:kill-client, 14-178

xlib:kill-temporary-clients, 14-178

L
xlib:list-extensions, 15-183

xlib:list-font-names, 8-91

xlib:list-fonts, 8-91

xlib:list-properties, 11-114

xlib:lookup-color, 9-105

M
xlib:make-color, 9-100

xlib:make-event-keys, 1-16

xlib:make-event-mask, 1-16
example, 1-5, 1-6

xlib:make-resource-database, 13-162

xlib:make-state-keys, 1-20

xlib:make-state-mask, 1-20

xlib:map-resource, 13-163

xlib:map-subwindows, 4-49
example, 1-7

xlib:map-window, 4-48

xlib:max-char-ascent, 8-94

xlib:max-char-attributes, 8-94

xlib:max-char-descent, 8-94

xlib:max-char-left-bearing, 8-94

xlib:max-char-right-bearing, 8-94

xlib:max-char-width, 8-94

xlib:merge-resources, 13-163

xlib:min-char-ascent , 8-95

xlib:min-char-attributes, 8-95

xlib:min-char-descent, 8-95

xlib:min-char-left-bearing, 8-95

xlib:min-char-right-bearing, 8-95

xlib:min-char-width, 8-95

xlib:modifier-mapping, 14-172

xlib:motion-events, 12-127

O
xlib:open-display, 2-23

example, 1-10

xlib:open-font, 8-90
example, 1-10

P
xlib:pixmap-display, 4-50

xlib:pixmap-equal, 4-50

xlib:pixmap-id, 4-50

xlib:pixmap-p, 4-51

xlib:pixmap-plist, 4-51

xlib:pointer-control, 14-170

xlib:pointer-mapping, 14-170

xlib:pointer-position, 12-126

xlib:process-event, 12-122

xlib:put-image, 7-86

xlib:put-raw-image, 7-88

Q
xlib:query-best-cursor, 10-109

xlib:query-best-stipple, 5-67

xlib:query-best-tile, 5-67

xlib:query-colors, 9-105

Function Index

CLX Programmer’s Reference Index-225

xlib:query-extension, 15-183

xlib:query-keymap, 14-172

xlib:query-pointer, 12-126
example, 1-10

xlib:query-tree, 4-46

xlib:queue-event, 12-124

R
xlib:read-bitmap-file, 7-87

xlib:read-resources, 13-166

xlib:recolor-cursor, 10-109

xlib:remove-access-host, 14-180

xlib:remove-from-save-set , 14-178

xlib:reparent-window, 4-46

xlib:reset-screen-saver, 14-180

xlib:rotate-properties, 11-114

S
xlib:screen-backing-stores, 3-32

xlib:screen-black-pixel, 3-32
example, 1-10

xlib:screen-default-colormap, 3-32

xlib:screen-depths, 3-32

xlib:screen-event-mask-at-open, 3-32

xlib:screen-height, 3-33

xlib:screen-height-in-millimeters, 3-33

xlib:screen-max-installed-maps, 3-33

xlib:screen-min-installed-maps, 3-33

xlib:screen-p, 3-33

xlib:screen-plist, 3-33

xlib:screen-root, 3-33
example, 1-10

xlib:screen-root-depth, 3-34

xlib:screen-root-visual, 3-34

xlib:screen-save-unders-p, 3-34

xlib:screen-saver, 14-180

xlib:screen-white-pixel, 3-34
example, 1-10

xlib:screen-width, 3-34

xlib:screen-width-in-millimeters, 3-34

xlib:selection-owner, 11-117

xlib:send-event, 12-125

xlib:set-input-focus, 12-128

xlib:set-modifier-mapping, 14-172

xlib:set-screen-saver, 14-181

xlib:store-color, 9-105

xlib:store-colors, 9-106

T
xlib:text-extents, 8-97

example, 1-7

xlib:text-width, 8-98

xlib:translate-coordinates, 4-47

xlib:translate-function, 6-78

U
xlib:ungrab-button, 12-133

xlib:ungrab-key, 12-135

xlib:ungrab-keyboard, 12-134

xlib:ungrab-pointer, 12-131

xlib:ungrab-server, 14-169

xlib:uninstall-colormap, 9-103

xlib:unmap-subwindows, 4-49

xlib:unmap-window, 4-49
example, 1-9

W
xlib:warp-pointer, 12-127

xlib:warp-pointer-if-inside, 12-127

xlib:warp-pointer-relative, 12-127

xlib:warp-pointer-relative-if-inside, 12-128

xlib:window-all-event-masks , 4-38

xlib:window-background, 4-38

xlib:window-backing-pixel, 4-39

xlib:window-backing-planes, 4-39

xlib:window-backing-store, 4-39

xlib:window-bit-gravity, 4-39

xlib:window-border, 4-40

Function Index

CLX Programmer’s ReferenceIndex-226

xlib:window-class, 4-40

xlib:window-colormap, 4-40

xlib:window-colormap-installed-p, 4-40

xlib:window-cursor, 4-41

xlib:window-display, 4-41

xlib:window-do-not-propagate-mask, 4-41

xlib:window-equal, 4-41

xlib:window-event-mask, 4-41

xlib:window-gravity, 4-41

xlib:window-id, 4-42

xlib:window-map-state, 4-42

xlib:window-override-redirect, 4-42

xlib:window-p, 4-43

xlib:window-plist, 4-43

xlib:window-priority, 4-43

xlib:window-save-under, 4-43

xlib:window-visual, 4-43

xlib:with-display, 2-29

xlib:with-event-queue, 12-125

xlib:with-gcontext, 5-68
example, 1-8

xlib:with-server-grabbed, 14-169

xlib:with-state, 4-43
example, 1-7

xlib:write-bitmap-file, 7-87

xlib:write-resources, 13-167

Types Index

CLX Programmer’s Reference Index-227

Types

A
xlib:alist, 1-12

xlib:angle, 1-12

xlib:arc-seq, 1-12

xlib:array-index, 1-12

B
xlib:bit-gravity, 1-12

xlib:bitmap, 1-12

xlib:bitmap-format, 1-13

xlib:boole-constant, 1-14

xlib:boolean, 1-14

C
xlib:card16, 1-14

xlib:card29, 1-14

xlib:card32, 1-14

xlib:card8, 1-14

xlib:color, 1-14

xlib:colormap, 1-14

xlib:cursor, 1-14

D
xlib:device-event-mask, 1-14

xlib:device-event-mask-class, 1-14

xlib:display, 1-15

xlib:draw-direction, 1-15

xlib:drawable, 1-15

E
xlib:error-key, 1-15

xlib:event-key, 1-15

xlib:event-mask, 1-15

xlib:event-mask-class, 1-16

F
xlib:font, 1-16

xlib:font-props, 1-16

xlib:fontable, 1-16

G
xlib:gcontext, 1-16

xlib:gcontext-key, 1-16

xlib:grab-status, 1-17

I
xlib:image-depth, 1-17

xlib:index-size, 1-17

xlib:int16, 1-17

xlib:int32, 1-17

xlib:int8, 1-17

K
xlib:keysym, 1-17

M
xlib:mask16, 1-17

xlib:mask32, 1-18

xlib:modifier-key, 1-18

xlib:modifier-mask, 1-18

P
xlib:pixarray, 1-18

xlib:pixel, 1-18

xlib:pixmap, 1-18

xlib:pixmap-format, 1-18

Types Index

CLX Programmer’s ReferenceIndex-228

xlib:point-seq, 1-19

xlib:pointer-event-mask, 1-19

xlib:pointer-event-mask-class, 1-19

R
xlib:rect-seq, 1-19

xlib:repeat-seq, 1-19

xlib:resource-id, 1-20

xlib:rgb-val, 1-20

S
xlib:screen, 1-20

xlib:seg-seq, 1-20

xlib:state-mask-key, 1-20

xlib:stringable, 1-20

T
xlib:timestamp, 1-21

V
xlib:visual-info, 1-21

W
xlib:win-gravity, 1-22

xlib:window, 1-22

X
xlib:xatom, 1-22

	INTRODUCTION TO CLX
	Introduction
	The X Window System
	A Quick Tour of CLX
	Naming and Argument Conventions
	Programming Considerations
	Data Types

	DISPLAYS
	Introduction
	Opening the Display
	Display Attributes
	Managing the Output Buffer
	Closing the Display

	SCREENS
	Screens and Visuals
	Screen Attributes

	WINDOWS AND PIXMAPS
	Drawables
	Creating Windows
	Window Attributes
	Stacking Order
	Window Hierarchy
	Mapping Windows
	Destroying Windows
	Pixmaps

	GRAPHICS CONTEXTS
	Introduction
	Creating Graphics Contexts
	Graphics Context Attributes
	Copying Graphics Contexts
	Destroying Graphics Contexts
	Graphics Context Cache

	GRAPHIC OPERATIONS
	Introduction
	Area and Plane Operations
	Drawing Points
	Drawing Lines
	Drawing Rectangles
	Drawing Arcs
	Drawing Text

	IMAGES
	Introduction
	Image Types
	Image Functions
	Image Files
	Direct Image Transfer

	FONTS AND CHARACTERS
	Introduction
	Opening Fonts
	Listing Fonts
	Font Attributes
	Character Attributes
	Querying Text Size

	COLORS
	Colormaps and Colors
	Color Functions
	Colormap Functions

	CURSORS
	Introduction
	Creating Cursors
	Cursor Functions
	Cursor Attributes

	ATOMS, PROPERTIES, AND SELECTIONS
	Atoms
	Properties
	Selections

	EVENTS AND INPUT
	Introduction
	Selecting Events
	Processing Events
	Managing the Event Queue
	Sending Events
	Pointer Position
	Managing Input Focus
	Grabbing the Pointer
	Grabbing a Button
	Grabbing the Keyboard
	Grabbing a Key
	Event Types
	Releasing Queued Events

	RESOURCES
	Introduction
	Resource Bindings
	Basic Resource Database Functions
	Accessing Resource Values
	Resource Database Files

	CONTROL FUNCTIONS
	Grabbing the Server
	Pointer Control
	Keyboard Control
	Keyboard Encodings
	Client Termination
	Managing Host Access
	Screen Saver

	EXTENSIONS
	Extensions

	ERRORS
	Introduction

	PROTOCOL VS. CLX FUNCTIONAL CROSS- REFERENCE LISTING
	GLOSSARY

