CLX
Common LISP X Interface

[0 1988, 1989 Texas Instruments Incorporated

Permission is granted to any individual or institution to use, copy, modify and distribute this document, provided that
this complete copyright and permission notice is maintained, intact, in all copies and supporting documentation.
Texas Instruments Incorporated makes no representations about the suitability of this document or the software
described herein for any purpose. It is provided "as is” without express or implied warranty.

CLX Programmer’s Reference



ACKNOWLEDGMENTS

Primary Interface Author:
Robert W. Scheifler
MIT Laboratory for Computer Science
545 Technology Square, Room 418
Cambridge, MA 02139
rws@zermatt.lcs.mit.edu

Primary Implementation Author:
LaMott Oren
Texas Instruments
PO Box 655474, MS 238
Dallas, TX 75265
oren@csc.ti.com

Design Contributors:
Dan Cerys, BBN
Scott Fahlman, CMU
Kerry Kimbrough, Texas Instruments
Chris Lindblad, MIT
Rob MacLachlan, CMU
Mike McMahon, Symbolics
David Moon, Symbolics
LaMott Oren, Texas Instruments
Daniel Weinreb, Symbolics
John Wroclawski, MIT
Richard Zippel, Symbolics

Documentation Contributors:
Keith Cessna, Texas Instruments
Kerry Kimbrough, Texas Instruments
Mike Myjak
LaMott Oren, Texas Instruments
Dan Stenger, Texas Instruments

The X Window System is a trademark of MIT.
UNIX is a trademark of AT&T Bell Laboratories.

ULTRIX, ULTRIX-32, ULTRIX-32m, ULTRIX-32w, and VAX/VMS are trademarks of Digital Equipment
Corporation.

ii CLX Programmer’s Reference



CONTENTS

Section Title

1 INTRODUCTION TO CLX

2 DISPLAYS

3 SCREENS

4 WINDOWS AND PIXMAPS

5 GRAPHICS CONTEXTS

6 GRAPHIC OPERATIONS

7 IMAGES

8 FONTS AND CHARACTERS

9 COLORS

10 CURSORS

11 ATOMS, PROPERTIES, AND SELECTIONS

12 EVENTS AND INPUT

13 RESOURCES

14 CONTROL FUNCTIONS

15 EXTENSIONS

16 ERRORS

A PROTOCOL VS. CLX FUNCTION
CROSS-REFERENCE LISTING

B GLOSSARY
INDEX

CLX Programmer’s Reference



CLX Programmer’s Reference



INTRODUCTION TO CLX

Introduction

1.1 This manual assumes a basic understanding of window systems and the Common
Lisp programming language. To provide an introduction to the Common Lisp X Inter-
face (CLX) programming, this section discusses the following:

«  Overview of the X Window System

- Naming and argument conventions

«  Programming considerations

The X Window
System

1.2 The X Window System was developed at the Massachusetts Institute of
Technology (MIT) and first released in 1985. Since then, the X Window System has be-
come an industry-standard product available on virtually every type of bit-mapped
workstation. The current version of X, Version 11, has been implemented for several dif-
ferent computer architectures, for a wide variety of display hardware, and also for many
different operating systems. X Version 11 represents the fulfillment of the original de-
sign goals proposed by MIT, as follows:

- Portable — Support virtually any bitmap display and any interactive input device
(including keyboards, mice, tablets, joysticks, and touch screens). Make it easy to
implement the window system on different operating systems.

- Device-Independent Applications — Avoid rewriting, recompiling, or even relink-
ing in order to use different display/input hardware. Make it easy for an application
to work on both monochrome and color hardware.

«  Network Transparent — Let an application run on one computer while using anoth-
er computer’s display, even if the other computer has a different operating system or
hardware architecture.

- Multitasking — Support multiple applications being displayed simultaneously.

« No User Interface Policy — Since no one agrees on what constitutes the best user
interface, make it possible for a broad range of user interface styles (or policies) to
be implemented, external to the window system and to the application programs.

«  Cheap Windows — Windows should be abundant, and ubiquitous. Provide overlap-
ping windows and a simple mechanism for window hierarchy.

« High-Performance Graphics — Provide powerful interfaces for synthesizing 2-D
images (geometric primitives, high-quality text with multiple typefaces, and
scanned images).

- Extensible — Include a mechanism for adding new capabilities. Allow separate
sites to develop independent extensions without becoming incompatible with re-
mote applications.

CLX Programmer’s Reference

1-1



Introduction to CLX

Windows

Input Events

Some of these goals lead directly to the basic X architecture — the client-server model.
The basic window system is implemented by tleeX/erprogram. An application pro-

gram (theclient) sends window systeraquestgo the X server through a reliable two-

way byte-stream.

In general, the server and the client can be executing on separate host computers, in
which case the byte-stream is implemented via some network protocol (TCP, DECnet
Chaosnet, and so forth). The X server, which is connected to several client programs run-
ning concurrently, executes client requests in round-robin fashion. The server is respon-
sible for drawing client graphics on the display screen and for making sure that graphics
output to a window stays inside its boundary.

The other primary job of the X server is to channel input from the keyboard, pointer, and
other input devices back to the appropriate client programs. Input arrives at the client
asynchronously in the form of inpewventgepresenting up/down transitions of keys or
pointer buttons, changes in the pointer position, and so on. In some cases, a request gen-
erates a return value (@ply) from the server, which is another kind of client input. Re-

plies and input events are received via the same byte-stream connecting the client with
the server.

1.2.1 The X Window System supports one or more screens containing overlapping
windows and subwindows. gcreenis a physical monitor and hardware, which can be
either color or black and white. There can be multiple screens per display workstation. A
single server can provide display services for any number of screens. A set of screens for
a single user with one keyboard and one mouse is catlisplay

Allwindows in an X server are arranged in a strict hierarchy. At the top of the hierarchy
are theoot windowswhich cover each of the display screens. Each root window is ei-
ther partially or completely covered by child windows. All windows, except for root
windows, have parents. Any window can in turn have its own children. In this way, an
application program can create a window tree of arbitrary depth on each screen.

A child window can be larger than its parent. That is, part or all of the child window can
extend beyond the boundaries of the parent. However, all output to a window is clipped
by the boundaries of its parent window. If several children of a window have overlapping
locations, one of the children is considered to be on top of/or raised over theaithers,
scuringthem. Window output to areas that are covered by other windows is suppressed.

A window has a border that is zero or more pixels in width and can be any pattern (pix-
map) or solid color. A window usually has a background pattern that is drawn by the X
server. Each window has its own coordinate system. Child windows obscure their par-
ents unless the child windows have no background. Graphics operations in the parent
window are usually clipped by the children.

X also provides objects call@ikmapgor off-screen storage of graphics. Single-plane
pixmaps (that is, of depth 1) are sometimes referred bitragps Both pixmaps and
windows can be used interchangeably in most graphics functions. Pixmaps are also used
in various graphics operations to define pattern#lesr Windows and pixmaps togeth-

er are referred to alvawables

1.2.2 The X input mechanism is conceptually simple yet quite powerful. Most events
are attached to a particular window (that is, contain an identifier for the window receiv-
ing the event). A client program can receive multiple window input streams, all multi-
plexed over the single byte-stream connection to the server.

1-2

CLX Programmer’s Reference



Introduction to CLX

Clients can tailor their input by expressing interest in only certain event types. The server
uses special event types to send important messages to the client. For example, the client
can elect to receive aenter-notify event when the pointer cursor moves into a certain
window. Another vital message from the server igaposureevent. This is a signal to

the client indicating that at least some portion of the window has suddenly become vis-
ible (perhaps the user moved another window which had been overlapping it). The client
is then responsible for doing what is necessary to redisplay the window's image. Client
programs must be prepared to regenerate the contents of windows in this way on de-
mand.

Input is also subject to policy decisions about which client window receives keyboard
and pointer events. Since the pointer is free to roam between windows, just clicking on a
window is often enough to send a pointer event to that window. Keyboard events, how-
ever, must go to a keyboard focus window which has to be designated in some other way.
Usually, the arbiter of such input management policy is a program callednitiew
manager The window manager gives the human user a way to make a window the key-
board focus, to manage the layout of windows on the screen, to represent windows with
icons, and so forth. In fact, the window manager client determines most of the so-called
look and feel of the X Window System.

A Quic
of CLX

k Tour

A Simple Menu

1.3 The X Window System is defined by the X Window System Protocol
Specification, a detailed description of the encoding and the meaning of requests and
events sent between a client and a server. This standard protocol does not depend on any
particular programming language. As a result, each programming language must define
its own functional interface for using the X protocol. The standard X interface used by
Common Lisp programmers is called CLX. CLX is a set of data types, functions, and
macros which allow a Common Lisp client program to interact with an X server to send
requests and to receive input events and replies.

For the most part, CLX functions are closely tied to the underlying requests in the X pro-
tocol. Many CLX functions simply add requests to an output buffer. These requests later
execute asynchronously on the X display server. However, some functions of CLX lie
outside the scope of the protocol—for example, reading events and managing a client-
side event queue. CLX is also responsible for important batching and caching tasks that
minimize network communication.

The following paragraphs show an example of a CLX client program. All CLX functions
and macros are shown in upper case. Note that some of the terms used are unique to X,
while other terms that are common to other window systems have different meanings in
X. It may be helpful to refer to the glossary when you are uncertain of aterm’s meaning in
the context of the X Window System.

1.3.1 The example client program creates and displays a simple pop-up menu consist-
ing of a column of strings—a title string followed by selectable menu item strings. The
implementation uses one window to represent the entire menu, plus a set of subwindows,
one for each menu item. Here is the definition of a structure which represents such a
menu.

CLX Programmer’s Reference

1-3



Introduction to CLX

(defstruct (menu)
“A simple menu of text strings.”
(title “Choose an item:”)
item—alist ;((item—window item-—string))
window
gcontext
width
titte—width
item—width
item—height
(geometry—changed-p t)) ;nil if unchanged since displayed

Thewindow slot will contain thevindow object that represents the menu. fdmeal-

ist represents the relationship between the menu items and their associated subwin-
dows. Each entry iiiem-alist is alistwhose first elementis a (sub)window object and
whose second element is the corresponding item strimgndow object is an instance

of a CLX-defined data type which represents X windowsifdow object actually car-

ries two pieces of information: an X window ID integer aisplay object. Adisplay

is another CLX-defined data type that represents a connection to a specific X display
server. Thegcontext  slot contains an instance of a CLX data type knowrgaahics
context A graphics context is a set of display attribute values, such as foreground color,
fill style, line style, text font, and so forth. Each X graphics request (and hence each CLX
graphics function call) must supply a graphics context to use in displaying the request.
The menu’gicontext  will thus hold all of the attribute values used during menu display.

1-4

CLX Programmer’s Reference



Introduction to CLX

The first thing to do is make an instance afeau object:

(defun create—menu (parent—window text—color background—color

text—font)
(make—menu

;; Create menu graphics context
:gcontext (CREATE-GCONTEXT :drawable parent—window

:foreground text—color
:background background—color
:font text—font)

;; Create menu window
:window (CREATE-WINDOW

:parent parent—window

:class :input—output

X 0 ;temporary value

Yy 0 ;stemporary value
:width 16 ;temporary value
:height 16 ;temporary value

:border—width 2

:border text—color

:background background—color

:save—under :on

:override—redirect :on ;override window mgr when positioning
:event—mask (MAKE-EVENT-MASK :leave—window

:exposure))))

create-windowis one of the mostimportant CLX functions, since it creates and returns a
window object. Several of its options are shown here. The default window class is
put-output, but X provides forinput-only windows, too. Every window must have a
parent window, except for a system-definaot windowwhich represents an entire dis-

play screen. Thevent-maskkeyword value, a CL¥vent-maskdata type, says thatan
input event will be received for the menu window when the window is exposed and also
when the pointer cursor leaves the window. The window border is a pattern-filled or (as
in this case) a solid-colored boundary which is maintained automatically by the X server;
a client cannot draw in a window’s border, since all graphics requests are relative to the
origin (upper-left corner) of the window's interior and are clipped by the server to this
inside region. Turning on theave-underoption is a hint to the X server that, when this
window is made visible, it may be more efficient to save the pixels it obscures, rather
than require several client programs to refresh their windows when the pop-up menu dis-
appears. This is a way to work around X’s client-managed refresh policy when only a
small amount of screen space is needed temporarily.

Why is:override-redirect turned on for the menu window? This is actually a little un-
usual, because it prevents any window manager clientredirectingthe position of

the menu when it is popped up. Remember that the window manager represents the
user’s policy for controlling the positions of his windows, so this kind of redirection is
ordinarily correct. However, in this case, as a favor to the user, the menu avoids redirec-
tion in order to pop up the menu at a very specific location; that is, under the pointer cur-
sor.

What about the item subwindows? Tieu-set-item-list function in the following
example creates them whenever the menu'’s item list is changed. The upper-left x and y
coordinates and the width and height are not important yet, because they are computed
just before the menu is displayed. This function also cediste-window demonstrat-

ing the equal treatment of parent and children windows in the X window hierarchy.

CLX Programmer’s Reference

1-5



Introduction to CLX

(defun menu—set-item-list (menu &rest item-strings)
;; Assume the new items will change the menu’s width and height
(setf (menu—geometry—changed—p menu) t)

;; Destroy any existing item windows
(dolist (item (menu—item-alist menu))
(DESTROY-WINDOW (first item)))

;; Add (item—-window item—string) elements to item—alist
(setf (menu—item—alist menu)

Displaying
the Menu

(let (alist)
(dolist (item item—strings (nreverse alist))
(push (list (CREATE-WINDOW
:parent  (menu—-window menu)

X 0 ;temporary value
: 0 ;temporary value
‘width 16 ;temporary value
‘height 16 ;temporary value

:background (GCONTEXT-BACKGROUND (menu—gcontext menu))
:event—-mask (MAKE-EVENT—-MASK :enter—window
:leave—window
:button—press
:button—release))
item)

alist)))))

1.3.2 The menu-recompute-geometry function (shown in the following
example) handles the job of calculating the size of the menu, based oniits currentitem list
and its current text font. CLX provides a way to inquire the geometrical properties of a
font object (for example, its ascent and descent from the baseline) anidatsexdents
function.text-extentsreturns the geometry of a given string as displayed in a given font.
Notice the use of theith-state macro when setting a window’s geometry attributes.
CLX strives to preserve the familisetfstyle of accessing individual window attributes,
even though an attribute access actually involves sending a request to a (possibly re-
mote) server and/or waiting for a rephjth-state tells CLX to batch together all read

and write accesses to a given window, using a local cache to minimize the number of
server requests. This CLX feature can result in a dramatic improvement in client perfor-
mance without burdening the programmer interface.

menu-recompute-geometry  causes all the item subwindows to becona@ped Map-

ping a window means attempting to make it visible on the screen. However, a subwin-
dow will not actually bevisible until it and all of its ancestors are mapped. Even then,
another window might be covering up the subwindow.

1-6

CLX Programmer’s Reference



Introduction to CLX

(defun menu-recompute—geometry (menu)
(when (menu—geometry—changed—p menu)

(let* ((menu—font (GCONTEXT—FONT (menu—gcontext menuy)))
(title—width (TEXT-EXTENTS menu—font (menu-title menu)))
(item—height (+ (FONT-ASCENT menu—font)

(FONT-DESCENT menu—font)
*menu—item—margin*))
(item—width 0)
(items (menu—item—alist menu))
menu-width)

;; Find max item string width
(setf item—width
(+ *menu—item—-margin*
(dolist (next—item items item—-width)
(setf item—width (max item-width
(TEXT-EXTENTS menu-font (second next—item)))))))

;; Compute final menu width, taking margins into account
(setf menu—width (max tittle—width (+ item—width *menu-item—margin*)))
(let ((window (menu—window menu)))

;; Update width and height of menu window
(WITH-STATE (window)
(setf (DRAWABLE-WIDTH window) menu-width
(DRAWABLE-HEIGHT window) (* (1+ (length items)) item—height)))

;; Update width, height, position of item windows
(let ((item—left  (round (— menu—width item—width) 2))
(next—item—top (— item-height (round *menu—item—margin* 2))))
(dolist (next—item items)
(let ((window (first next—item)))

(WITH-STATE (window)

(setf (DRAWABLE-HEIGHT window) item-height
(DRAWABLE-WIDTH window) item—width
(DRAWABLE-X  window) item-left
(DRAWABLE-Y  window) next—item—top)))

(incf next—item—top item—height))))

;; Map all item windows
(MAP-SUBWINDOWS (menu—window menu))

;; Save item geometry

(setf (menu—item—width menu) item—width
(menu-item—height menu) item—height
(menu—width menu) menu-width

(menu-title—width menu) title—width
(menu—geometry—changed—p menu) nil))))

Of course, the sample client must know how to draw/redraw the menu and its items, so
the functionmenu-refresh  is defined next to handle that task (shown in the following
example). Note that the location of window output is given relative to the window origin.
Windows and subwindows have different coordinate systems. The location of the origin
(upper-left corner) of a subwindow’s coordinate system is given with respect to its parent
window’s coordinate system. Negative coordinates are valid, although only output to the
+x/+y quadrant of a window’s coordinate system will ever be visible.

CLX Programmer’s Reference 1-7



Introduction to CLX

Menu Input

(defun menu-refresh (menu)
(let* ((gcontext (menu—gcontext menu))
(baseline—y (FONT-ASCENT (GCONTEXT—-FONT gcontext))))
;; Show title centered in “reverse—video”
(let ((fg (GCONTEXT-BACKGROUND gcontext))
(bg (GCONTEXT-FOREGROUND gcontext)))
(WITH-GCONTEXT (gcontext :foreground fg :background bg)
(DRAW-IMAGE-GLYPHS
(menu—window menu)
gcontext
(round (— (menu-width menu)
(menu-title—width menu)) 2) ;start x
baseline-y ;starty
(menu-title menu))))

;;» Show each menu item (position is relative to item window)
(let ((box—margin (round *menu—item—margin* 2)))
(dolist (item (menu—item-alist menu))
(DRAW-IMAGE-GLYPHS
(first item) gcontext
box—margin ;start x
(+ baseline—y box—margin) ;starty
(second item))))))

with-gcontextis a CLX macro that allows you temporarily to modify a graphics context
within the dynamic scope of the macro bathaw-image-glyphsis a CLX text drawing
function which produces a terminal-like rendering: foreground character on a back-
ground block. (More sophisticated text rendering functions are also available.) The
strange use @lyphsinstead ostring here actually highlights an important fact: X and
Common Lisp have totally different concepts of a character. A Common Lisp character
is an object whose implementation can comprehend a vast universe of text complexities
(typefaces, type styles, international character sets, symbols, and so forth). However, to
X, astring is just a sequence of integer indexes into the array of bitmaps represented by a
CLX font object. In generaljraw-image-glyphs text-extents and other CLX text
functions accept @ranslate keyword argument. Its value is a function which translates
the characters of a string argument into the appropriate font-and-index pairs needed by
CLX. This example relies upon the default translation function, which simplghaes

codeto compute an index into the current font.

1.3.3 Now that a menu can be displayed, the sample client program must define how
the menu will process user input. Thenu-choose function (shown in the following
example) has the classic structure of an X client program. First, do some initialization
(for example, present the menu at a given location). Then, enter an input event loop.
Read an input event, process it, and repeat the loop until a termination event is received.
Theevent-casanacro continues reading an event from the menu window’s display ob-
ject until one of its clauses returns noih-These clauses specify the action to be taken

for each event type and also bind values from the event report to local variables, such as
the event-window receiving the event. Notice that tHerce-output-p option is en-

abled, causingvent-caseao begin by sending any client requests which CLX has not yet
output to the server. To improve performance, CLX quietly queues up requests and peri-
odically sends them off in a batch. However, in an interactive feedback loop such as this,
it is important to keep the display crisply up-to-date.

1-8

CLX Programmer’s Reference



Introduction to CLX

(defun menu—choose (menu x y)
;; Display the menu so that first item is at x,y.
(menu—present menu x y)

(let ((items (menu-item—alist menu))
(mw  (menu—window menu))
selected—item)

;; Event processing loop
(do () (selected—item)
(EVENT-CASE ((DRAWABLE-DISPLAY mw) :force—output—p t)
(:exposure
(count)
;; Discard all but final :exposure then display the menu
(when (zerop count) (menu-refresh menu))

t)

(:button—release
(event—-window)
;;Select an item
(setf selected—item (second (assoc event—window items)))

t)

(:enter—notify
(window)
;;Highlight an item
(menu-highlight—item menu (find window items :key #'first))

1)

(:leave—notify
(window kind)
(if (eql mw window)
;; Quit if pointer moved out of main menu window
(setf selected—item (when (eq kind :ancestor) :none))
;; Otherwise, unhighlight the item window left
(menu-unhighlight—item menu (find window items :key #first)))

t)

(otherwise

0

;;Ignore and discard any other event

1))

;; Erase the menu
(UNMAP-WINDOW mw)

;1 Return selected item string, if any
(unless (eq selected—item :none) selected—item)))

The event loop imenu-choose demonstrates an idiom used in all X programs: the con-
tents of a window are displayed (in this case, by caltiegi-refresh ) only when an
.exposure eventis received, signaling that the server has actually made the window
viewable The handling ofexposurein menu-choose also implements a little trick for
improving efficiency. In general, when a window is exposed after being previously ob-
scured (perhaps only partially), the server is free to send sexguakureevents, one

for eachrectangular tile of the exposed region. For small windows like this menu, itis not
worth the trouble to redraw the image one tile at a time. So the code above justignores all
but the last tile exposure and redraws everything in one aadlnierefresh

CLX Programmer’s Reference 1-9



Introduction to CLX

The Main 1.3.4 After all the preceding build-up and the other functions referenced
Program  (but not shown here) have been implemented, the code for the main client program is
very small.

(defun just—say-lisp (host &optional (font—-name “fg—16"))
(let* ((display (OPEN-DISPLAY host))
(screen (first (DISPLAY-ROOTS display)))
(fg—color (SCREEN-BLACK-PIXEL screen))
(bg—color (SCREEN-WHITE-PIXEL screen))
(nice—font (OPEN—-FONT display font-name))

;; Create a menu as a child of the root window.
(a—menu (create—menu (SCREEN-ROQOT screen)
fg—color bg—color nice—font)))

(setf (menu-title a—menu) “Please pick your favorite language:”)
(menu-set—item-list a—menu “Fortran” “APL” “Forth” “Lisp”)

;; Bedevil the user until he picks a nice programming language
(unwind—protect
(loop
;; Determine the current root window position of the pointer
(multiple—value—bind (x y) (QUERY—POINTER (SCREEN-ROQOT screen))

(let ((choice (menu—choose a—menu x y)))
(when (string—equal “Lisp” choice)

(return)))))

(CLOSE-DISPLAY display))))

Note that the main program event loop lies in the body ohaind-protect form. This

is a good programming technique because, without this protection, an unexpected error
could cause the program to terminate without freeingdéheer resourceishas created.

Server resources are CLX objects which refer to objects actually stored on the X server.
Examples of these angndow, font, pixmap, cursor, colormap, andgcontextobjects.

These server resources are created and destroyed by user requests. Server resources
created by a client are also destroyed when its display connection is closed. If client re-
sources are repeatedly created without being destroyed, then the server will eventually
run out of memory and fail.

Most server resources are potentially sharable between applications. In fact, windows
are manipulated explicitly by window manager programs. Fonts and cursors are typical-
ly shared automatically since the X server loads and unloads font storage as needed.
gcontextobjects are not ordinarily shared between client applications.

Debugging 1.3.5 Typically, most CLX programs do not need to control the buffering

With CLX  of output requests directly. However, CLX programmers need to be aware of the asyn-
chronous nature of client-server communication. It may be convenient to control the
CLX output buffer more directly, especially during debugging.

A client that wants a request to execute immediately instead of asynchronously can fol-
low it with a call tadisplay-force-output. This functiorblocks(does not return) until all
previously buffered output requests have been sent. Otherwise, the output buffer is al-
ways flushed by a call to any function which returns a value from the server or which
waits for input (for exampleget-property). Certain output requests can cause input
events to be sent. For exampiegp-window can causeexposureevents to be sent.
Synchronizing output with the resulting input can be done wittigmay-finish-out-

put function. This function blocks until all previously buffered output has been sent and
all resulting input events have been received.

1-10 CLX Programmer’s Reference



Introduction to CLX

Functions that return information from the server block until an explicit reply is received
or an error occurs. If a nonblocking call results in an error, the error is generally not re-
ported until later. All errors (synchronous and asynchronous) are processed by calling an
error handler defined for the display. If the handler is a sequence it is expected to contain
handler functions specific to each error. The error code is used to index the sequence,
fetching the appropriate handler. Any results returned by the handler are ignored since it
is assumed that the handler either takes care of the error completely, or else signals.

Naming and
Argument
Conventions

1.4 Throughout CLX, a number of conventions for naming and syntax of
the CLX functions have been followed. These conventions are intended to
make the syntax of the functions more predictable.

The major naming conventions are as follows:

- To better differentiate the CLX symbols from other symbols, they have all been
placed in the package XLIB. External symbols have been explicitly exported.

- Thedisplayargument, where used, is always first in the argument list.

- All'server resource objects, where used, occur at the beginning of the argument list,
immediately after the display variable.

- When a graphics contexgdontex} is present together with another type of server
resource (most commonlygdeawablé, the graphics context occurs in the argument
list after the other server resource. Drawables out rank all other server resources.
«  Source arguments always precede the destination arguments in the argument list.
- Thexargument always precedes thargument in the argument list.

- Thewidth argument always precedes tieghtargument in the argument list.

+  Where the, y, widthandheightarguments are used togetherxh@dy arguments
always precede theidth andheightarguments.

«  Where anaskis accompanied withstructure the mask always precedes the struc-
ture in the argument list.

Programming
Considerations

1.5 The major programming considerations are as follows:

- Keyboards are the greatest variable between different manufacturer’s workstations.
If you want your program to be portable, you should be particularly conservative
here.

- Many display systems have limited amounts of off-screen memory. If you can, you
should minimize use of pixmaps and backing store.

«  The user should have control of his screen real-estate. Therefore, you should write
your applications to react to window management, rather than presume control of
the entire screen. What you do inside of your top level window, however, is up to
your application.

- Coordinates and sizes in X are actually 16-bit quantities. They usually are declared
as anntl16 in the functions. Values larger than 16 bits can be truncated silently. Sizes
(width and height) are unsigned quantities.

CLX Programmer’s Reference

1-11



Introduction to CLX

- The typesolor, colormap, cursor, display, font, gcontext pixmap, screen and
window are defined solely by a functional interface. Even though they are treated
like structures in this document, it is not specified whether they are implemented as
structures or classes. Although some interfaces are described as functions, they are
not required to be defined usidgfun. (It is a requirement that they be functions as

opposed to macros or special forms.)

Data Types 1.6 The following are some data type definitions that are commonly used in
CLX function definitions.

alist (key-type-and-name datum-type-and-nhtinst Type

alist defines an association list. An association list is a sequence, containing zero or more
repetitions of the given elements with each of the elements expressgubasafnie

angle‘(number ,(* —2pi) ,(* 2pi)) Type
angledefines an angle in units of radians and is bounded oy &A21 (7). Note that we
are explicitly using a different angle representation than what is actually transmitted in

the protocol.

arc-seq’(repeat-seq(intl6 x) (int16 y) (card16 width) (card16 heigh) Type
(angleangle) (angleangled)
arc-seqdefines a six-tuple sequence of the foxng,(vidth, height anglel angled. The
pointsx andy are signed, 16-bit quantities with a range from —32,768 to 32,767. The
width andheightvalues are unsigned, 16-bit quantities and range from 0 to 65,535.
anglelandangle2are in units of radians, and bounded byr-@&nd (27).

array-index ‘(integer 0 array-dimension-limi Type
array-index defines a type which is a subtype of the integers and can be used to describe
all variables that can be array indices. The range is inclusive because start and end array
index specifiers can be one (1) past the end.

bit-gravity '(member gravity*) Type
A keyword that specifies which region of a window should be retained when the window
is resized.

gravity— One of the following:

:center :north :south :static
:east :north-east :south-east :west
:forget :north-west :south-west

If awindow is reconfigured without changing its inside width or height, then the contents
of the window moves with the window and are not lost. Otherwise, the contents of a re-
sized window are either moved or lost, depending on its bit-gravity attributeiisee
dow-bit-gravity, in paragraph 4.3, Window Attributes, for additional information.

bitmap '(array bit (* *)) Type
Specifies a two-dimensional array of bits.

bitmap-format Structure
A structure that describes the storage format of a bitmap.

CLX Programmer’s Reference

1-12



unit

pad

Isb-first-p

Introduction to CLX

The bitmap-format structure contains slots fanit, pad, andlsb-first-p. Theunit
member indicates the unit of increments used to maintain the bitmap data. The units
available for use are 8, 16, or 32 bits. pad member indicates how many bits are need-

ed to pad the left edge of the scan-line. [Bbefirst-p member is a predicate which indi-
cates the ordering of bits with the bitmap unit.

Slot ofbitmap-format
Type: (nember8 16 32).

The size of a contiguous grouping of bits, which can be 8, 16, or 32. The default is 8.

Slot of bitmap-format
Type: (member8 16 32).

The number of bits to left-pad the scan-line, which can be 8, 16, or 32. The default is 8.

Slot ofbitmap-format
Type:boolean

A predicate indicating whether the least significant bit comes fitst) or not (il).

CLX Programmer’s Reference

1-13



Introduction to CLX

boolean’(or nil (not nil)) Type
booleandefines a type which is all inclusive. It is used for variables that can take on a
true (nonnil) or false (il) value.

boole-constant(member value) Type

boole—constantefines a type that is a set of the values associated with the 16 boolean
operation-code constants for the Common Lisp language. Itis used for the set of allowed
source and destination combination functions in a graphics context.

value —One of the following:

boole-1 boole-cl boole-nand boole-xor
boole-2 boole-c2 boole-nor
boole-andboole-clr boole-orcl
boole-andcl boole-eqv boole-orc2
boole-andc2 boole-ior boole-set
card8'(unsigned-byte8) Type

An unsigned integer value that is a maximum of eight bits long. This gives a number of
this type a range from 0 to 255.

card16’(unsigned-byte16) Type
An unsigned integer value that is a maximum of 16 bits long. This gives a number of this
type a range from 0 to 65,535.

card29’(unsigned-byte29) Type
An unsigned integer value that is a maximum of 29 bits long. This gives a number of this
type a range from O to 536,870,911.

card32’(unsigned-byte32) Type
An unsigned integer value that is a maximum of 32 bits long. This gives a number of this
type a range from 0 to 4,294,967,295.

color '(satisfiescolor-p) Type
A color. See paragraph 9.2, Color Functions, for additional information.

colormap '(satisfiescolormap-p) Type
A colormap. See paragraph 9.3, Colormap Functions, for additional information.

cursor ’'(satisfiescursor-p) Type
A cursor. See Section 10, Cursors, for additional information.

device-event-masK(or mask32 (list device-event-mask-clag$ Type

Provides a way to specify a set of bits for an event bitmask. Two ways of specifying the
bits are allowed: by setting the event bits in a 32 bit mask, or by listing the keyword
names of the device related event bits in a list.

device-event-mask-clas§ memberevent) Type
A keyword name, for a device related event, that corresponds to a particular bit in an
event bitmask. The set of names is a subset of the names in tegdypenask-class

event —One of the following:

1-14 CLX Programmer’s Reference



Introduction to CLX

:button-1-motion :button-motion
:button-2-motion :button-press
:button-3-motion :key-press
:button-4-motion ‘key-release
:button-5-motion :pointer-motion
display ’'(satisfiesdisplay-p) Type

A connection to an X server. See Section 2, Displays, for additional information.

drawable '(or window pixmap) Type
Bothwindows andpixmaps can be used as sources and destinations in graphics opera-
tions.windows andpixmaps together are known asawables However, aninput-
only window cannot be used as a source or destination in a graphics operation.
draw-direction '(member :left-to-right :right-to-left ) Type
Defines a list of rotation directions for drawing arcs and faingsv-direction can have
the values ofleft-to-right or :right-to-left .
error-key '(member error*) Type

Defines a list of all predefined errors. All errors (synchronous and asynchronous) are
processed by calling an error handler in the display. The handler is called with the display
as the first argument and the error-key as its second argument.

error — One of the following:

:access :drawable implementation  :value
:alloc :font ‘length :‘window
:atom gcontext ‘match
:colormap  :id-choice :name
:cursor sillegal-request ‘pixmap
event-key’(member event-typ¥) Type

Defines a list that specifies all predefined event-types. Clients are informed of informa-
tion asynchronously by means of events. These events can be either asynchronously
generated from devices or generated as side effects of client requests.

event-type— One of the following:

:button-press :exposure :motion-notify
‘button-release :focus-in ‘no-exposure
:circulate-notify :focus-out :property-notify
:circulate-request :graphics-exposure ‘reparent-notify
.client-message :gravity-notify :resize-request
:colormap-notify :keymap-notify :selection-clear
:configure-notify :key-press :selection-notify
:configure-request ‘key-release :selection-request
.create-notify :leave-notify :unmap-notify
:destroy-notify ‘map-notify :visibility-notify
-enter-notify :map-request

event-mask’(or mask32 (list event-mask-clasp Type

Provides a way to specify a set of bits for an event bitmask. Two ways of specifying the
bits are allowed: by setting the event bits in a 32 bit mask, or by listing the keyword
names of the event bits in a list.

CLX Programmer’s Reference 1-15



Introduction to CLX

event-mask-class( memberevent) Type

The elements of the tyeent-mask-classire keyword names that correspond to a par-
ticular bit in an event bitmask.

event —One of the following:

:button-1-motion :enter-window :pointer-motion-hint
:button-2-motion :exposure :property-change
:button-3-motion :focus-change ‘resize-redirect
:button-4-motion :key-press :structure-notify
:button-5-motion ‘key-release :substructure-notify
:button-motion :keymap-state :substructure-redirect
:button-press ‘leave-window :visibility-change
:button-release :owner-grab-button
:colormap-change ‘pointer-motion

make-event-keysvent-mask Function

Returnsevent-keywords- Typelist.

Returns a list oévent-mask-claskeyword names for the event bits that are set in the
specified event mask.

event-mask— An event mask (typmask32.

make-event-mask&restkeys Function
Returns:
event-mask— Typemask32

Constructs an event mask from a setw#nt-mask-claskeyword names.

keys— event-mask-claskeywords.

font ’(satisfiesfont-p) Type
A text font. See Section 8, Fonts and Characters, for additional information.

fontable '(or stringable font) Type
A fontable is either gont object or the name of one of the fonts in the font database.

font-props 'list Type
A list that contains alternating keywords and integers.

gcontext’( satisfiesgcontext-p) Type
A graphics context. See Section 5, Graphics Contexts, for additional information.

gcontext-key’'(member type) Type

Alist of predefined types for use@eontextprocessing. Various information for graph-
ics output is stored in a graphics context (GC or GContext), such as foreground pixel,
background pixel, line width, clipping region, and so forth.

type— One of the following:

1-16

CLX Programmer’s Reference



Introduction to CLX

:arc-mode :exposures Jline-width
:background fill-rule :plane—mask
.cap-style :fill-style :stipple
:clip-mask :font :subwindow-mode
.clip-x .foreground :tile
:clip-y :function ‘ts-x
.dash-offset ;join-style ‘ts-y
:dashes line-style
grab-status’(member grab-typé) Type

There are two kinds of grabs: active and passiveadiive graboccurs when a single
client grabs the keyboard and/or pointer explicitly. Clients can also grab a particular key-
board key or pointer button in a window. The grab activates when the key or button is
actually pressed, and is calledassive grabPassive grabs can be very convenient for
implementing reliable pop-up menus.

grab-type— One of the following:

:already-grabbed
:frozen
sinvalid-time
:not-viewable
:success
image-depth’(integer 0 32) Type

Used in determining the depth of a pixmap, window, or image. The value specifies the
number of bits deefhat a given pixel has within a given pixmap, window, or image.

index-size’(member :default 8 16) Type

Used to control the element size of the destination buffer given to the translate function
when drawing glyphs. Ifdefault is specified, the size is based on the current font, if
known; otherwise, 16 is used.

int8 ’(signed-byte8) Type

A signed integer value that is a maximum of eight bits long. A number of this type can
have a range from —128 to 127.

int16 '(signed-byte16) Type

A signed integer value that is a maximum of 16 bits long. A number of this type can have
a range from —32,768 to 32,767.

int32 ’(signed-byte32) Type

A signed integer value that is a maximum of 32 bits long. A number of this type can have
a range from —2,147,483,648 to 2,147,483,647.

keysym’ card32 Type

Used as an encoding of a symbol on a keycap on a keyboard. It is an unsigned integer
value represented in a maximum of 32 bits longeysymtype can have a range from 0
to 4,294,967,295.

mask16’ card16 Type

A positional bitmask that contains 16 boolean flags.

CLX Programmer’s Reference 1-17



Introduction to CLX

mask32' card32 Type

A positional bitmask that contains 32 boolean flags.

modifier-key '(member modifier) Type

A keyword identifying one of the modifier keys on the keyboard device.

modifier— One of the following:

:shift :mod-2
:lock :mod-3
:control :mod-4
:mod-1 :mod-5
modifier-mask ’(or (member :any) mask16(list modifier-key)) Type

A bitmask or list of keywords that specifies a set of modifier keys. The keyamyds
equivalent to any subset of modifier key.

pixarray '(or (array pixel (* *)) Type
@rray card16 (* *))
@rray card8 (* *))
@rray (unsigned-byte 4 (* *))
@rray bit (**)))

Specifies a two-dimensional array of pixels.
pixel ’(unsigned-byte32) Type

An unsigned integer value that is a maximum of 32 bits long. This gives a pixel type a
value range from 0 to 4,294,967,295. Useful values are dependent on the class of color-
map being used.

pixmap '( satisfiespixmap-p) Type

A pixmap. See paragraph 4.8, Pixmaps, for additional information.

pixmap-format Structure

A structure that describes the storage format of a pixmap.

The pixmap-format structure contains slots fdepth, bits-per-pixel, andscanline-

pad. Thedepth member indicates the number of bit planes in the pixmagbitdhper-

pixel member indicates the number of bits used to represent a single pixel. For X, a pixel
canbe 1, 4,8, 16, 24, or 32 bits wide. Adfitmap-format, thescanline-padmember
indicates how many pixels are needed to pad the left edge of the scan-line.

depth Slot of pixmap-format
Type:image-depth

The number of bit planes in the pixmap.

bits-per-pixel Slot of pixmap-format
Type: (nemberl1 4 8 16 24 32).

The number of consecutive bits used to encode a single pixel. The default
is 8.

1-18

CLX Programmer’s Reference



Introduction to CLX

scanline-pad Slot of pixmap-format
Type: (member8 16 32).

The number of bits to left-pad the scan-line, which can be 8, 16, or 32. The default is 8.

point-seq’(repeat-seq(intl16 x) (int16 y)) Type
Thepoint-seqtype is used to define sequencex®l pairs of points. The paired values
are 16-bit, signed integer quantities. This gives the points in this type a range from
—32,768 to 32,767.

pointer-event-mask’(or mask32 (list pointer-event-mask-clasy) Type

Provides a way to specify a set of bits for an event bitmask. Two ways of specifying the
bits are allowed: by setting the event bits in a 32 bit mask, or by listing the keyword
names of the pointer related event bits in a list.

pointer-event-mask-class( memberevent? Type

A keyword name, for a pointer related event, that corresponds to a particular bit in an
event bitmask. The set of names is a subset of the names in tegdypenask-class

event —One of the following:

:button-1-motion :button-motion :leave-window
:button-2-motion ‘button-press ‘pointer-motion
:button-3-motion :button-release :pointer-motion-hint
:button-4-motion :enter-window
:button-5-motion :keymap-state
rect-seq’(repeat-seq(intl6 x) (int16 y) (card16 width) (card16 heighd) Type

rect-seqdefines a four-tuple sequence of the foxny,(vidth, heigh). The pointsandy
are signed, 16-bit quantities with a range from —32,768 to 32,76 Witltlteandheight
values are unsigned, 16-bit quantities and range from 0 to 65,535.

repeat-seq(&restelts) 'sequence Type

A subtype used to define repeating sequences.

CLX Programmer’s Reference 1-19



Introduction to CLX

resource-id’ card29 Type
A numeric identifier that is assigned by the server to a server resource object.

rgb-val '(float 0.0 1.0) Type

Anrgb-val is a floating-point value between 0 and 1 that specifies a saturation for a red,
green, or blue additive primary. The 0 value indicates no saturation and 1 indicates full
saturation.

screen’(satisfiesscreen-p Type
A display screen. See Section 3, Screens, for further information.

seg-sed(repeat-seq(int16 x1) (int16 y1) (int16 x2) (intl6 y2)) Type

Defines sequences ofl( y1, x2, y2) sets of points. The point values are 16-bit, signed
integer quantities. This gives the points in this type a range from —32,768 to 32,767.

state-mask-key'(or modifier-key (member buttorr) Type

A keyword identifying one of the display modifier keys or pointer buttons whose state is
reported in device events.

button— One of the following:

:button-1 :button-4
:button-2 :button-5
:button-3
make-state-keysstate-mask Function
Returns:

state-keywords— Typelist.
Returns a list oétate-mask-keysymbols corresponding to tistate-maskA symbol
belongs to the returned list if, and only if, the corresponsiiate-maskit is 1.
state-mask— A 16-bit mask of typenask16

make-state-mask&restkeys Function
Returns:
mask— Typemask16

Returns a 16-bitnaskrepresenting the givestate-mask-keysymbols. The returned
maskcontains a 1 bit for each keyword.

keys— A list of state-mask-keysymbols.

stringable ’(or string symbol) Type

Used for naming something. This type can be either a stringyonlaolwhosesymbol-
nameis used as the string containing the name. The case of the characters in the string is
ignored when comparing stringables.

1-20 CLX Programmer’s Reference



Introduction to CLX

timestamp’(or null card32) Type

An encoding of a timenil stands for the current time.

visual-info Structure
A structure that represents a visual type. The elements of this structdretss red-
mask, green-mask blue-mask bits-per-rgh, andcolormap-entries
id Slot ofvisual-info
Type:card29.
A unigue identification number.
class Slot ofvisual-info
Type: (member :direct-color :gray-scale:pseudo-color:static-color
‘static-gray :true-color).
The class of the visual type.
red-mask, green-mask blue-mask Slots ofvisual-info
Type: pixel.
Thered-mask, green-mask andblue-maskelements are only meaningful for tiaé
rect-color and:true-color classes. Each mask has one contiguous set of bits with no in-
tersections.
bits-per-rgb Slot ofvisual-info
Type:card8.
Specifies the log base 2 of the approximate number of distinct color values (individually)
of red, green, and blue. Actual RGB values are unsigned 16-bit numbers.
colormap-entries Slot of visual-info

Type:card16.

Defines the number of available colormap entries in a newly created colormag- For
rect-color and:true-color, this is the size of an individual pixel subfield.

CLX Programmer’s Reference

1-21



Introduction to CLX

win-gravity '(member gravity*) Type

A keyword that specifies how to reposition a window when its parent is resized.

gravity— One of the following:

:center :north-west  :static
:east :south :unmap
:north :south-east :west

:north-east :south-west

If a parent window is reconfigured without changing its inside width or height, then all
child windows move with the parent and are not changed. Otherwise, each child of the
resized parent is moved, depending on the child’s gravity attributeviSgew-gravi-

ty, in paragraph 4.3, Window Attributes, for additional information.

window ’(satisfieswindow-p) Type
A window. See Section 4, Windows and Pixmaps, for additional information.

xatom '(or string symbol) Type

A name that has been assigned a corresponding unique ID by thesdomsare used
to identify properties, selections, and types defined in the X serveatdm can be
either astring or symbolwhosesymbol-nameis used as theatom name. The case of
the characters in the string are significant when compadtams

1-22 CLX Programmer’s Reference



DISPLAYS

Introduction 2.1 A particular X server, together with its screens and input devices, is caiged a
play. The CLXdisplay object contains all the information about the particular display
and its screens, as well as the state that is needed to communicate with the display over a
particular connection.

Before your program can use a display, you must establish a connection to the X server
driving your display. Once you have established a connection, you then can use the CLX
macros and functions discussed in this section to return information about the display.

This section discusses how to:

«  Open (connect) a display

«  Obtain information about a display

- Access and change display attributes

+  Close (disconnect) a display

O_pening the 2.2 Theopen-displayfunction is used to open a connection to an X server.
Display
open-displayhost &ey :display :protocol Function
Returns:

display— Typedisplay.

Returns alisplay that serves as the connection to the X server and contains all the infor-
mation about that X server.

host —Specifies the name of t@stmachine on which the server executes. A string
must be acceptable aviast but otherwise the possible types are not constrained
and will likely be very system dependent.

:display — An integer that specifies which display device orhtbetshould be used for
this connection. This is needed since multiple displays can be controlled by a single
X server. The default is display O (zero).

:protocol — A keyword argument that specifies which network protocol should be used
for connecting to the server (for examplep, :dna, or:chaog. The set of possible
values and the default value are implementation specific.

Authorization, if any, is assumed to come from the environment. After a successful call
to open-display all screens on the display can be used by the client application.

CLX Programmer’s Reference 2-23



Displays

Display 2.3 The complete set of display attributes is discussed in the following
Attributes paragraphs.
display-authorization-data display Function
Returns:

authorization-data— Typestring.

Returns the authorization data string displaythat was transmitted to the server by
open-displayduring connection setup. The data is specific to the particular authoriza-
tion protocol that was used. Tlisplay-authorization-namefunction returns the pro-
tocol used.

display —A display object.

display-authorization-namedisplay Function
Returns:
authorization-name— Typestring.

Returns the authorization protocol namestringifsplaythat was transmitted lmpen-

display to the server during connection setup. &b#horization-naméndicates what
authorization protocol the client expects the server to use. Specification of valid authori-
zation mechanisms is not part of the X protocol. A server that implements a different
protocol than the client expects, or a server that only implements the host-based mecha-
nism, can simply ignore this information. If both name and data strings are empty, this is
to be interpreted as “no explicit authorization.”

display —A display object.

display-bitmap-format display Function
Returns:
bitmap-format— Typebitmap-format .

Returns théditmap-formatinformation for the specifiedisplay

display —A display object.

display-byte-order display Function
Returns:
byte-order— Either:lsbfirst or :msbfirst.

Returns thédyte-orderto be employed in communication with the server for the given
display The possible values are as follows:
. :Isbfirst — Values are transmitted least significant byte first.

« :msbfirst — Values are transmitted most significant byte first.

Except where explicitly noted in the protocol, all 16-bit and 32-bit quantities sent by the
client must be transmitted with tHigte-order and all 16-bit and 32-bit quantities re-
turned by the server are transmitted with thyite-order

display —A display object.

display-display display Function
Returns:
display-numbe+s— Typeinteger.

Returns thelisplay-numbefor the host associated witisplay

display —A display object.

2-24 CLX Programmer’s Reference



Displays

display-error-handler display Function
Returns:
error-handler— Typefunction or sequence

Returns and (witketf) sets therror-handlerfunction for the givewisplay CLX calls

(one of) the display error handler functions to handle server errors returned to the con-
nection. The default error handlegfault-error-handler, signals conditions as they
occur. See Section 16, Errors, for a list of the conditions that CLX can signal. For more
information about errors and error handling, refer to the section entitted Common Lisp
Condition System in theisp Referencenanual.

If the value ofrror-handleris a sequence, itis expected to contain a handler function for
each specific error. The error code is used as an index into the sequence to fetch the ap-
propriate handler function. If this element is a function, it is called for all errors. Any
results returned by the handler are ignored since it is assumed the handler either takes
care of the error completely or else signals. The arguments passed to the handler function
are thedisplay object, a symbol naming the type of error, and a set of keyword-value
argument pairs that vary depending on the type of error. For all core errors, the keyword-
value argument pairs are:

:current-sequence card16
‘major card8
‘minor card16
:sequence card16

Forcolormap, cursor, drawable, font, gcontext id-choice, pixmap, andwindow er-
rors, the keyword-value pairs are the core error pairs plus:

‘resource-id card32
For:atom errors, the keyword-value pairs are the core error pairs plus:
:atom-id card32
For:value errors, the keyword-value pairs are the core error pairs plus:
:value card32

display —A display object.

display-image-Isb-first-p display Function
Returns:
image-Isb-first-p— Typeboolean

Although the server is generally responsible for byte swapping communication data to
match the client, images (pixmaps/bitmaps) are always transmitted and received in for-
mats (including byte order) specified by the server. Withinimages for each scan-line unit
in bitmaps or for each pixel value in pixmaps, the leftmost bit in the image as displayed
on the screen is either the least or most significant bit in the unit. For thedgipéay
display-image-Ish-first-preturns nomil if the leftmost bit is the least significant bit;
otherwise, it returnail.

display —A display object.

display-keycode-rangealisplay Function
Returns:
min-keycodemax-keycode— Typecard8.

Returnsmin-keycodendmax-keycodas multiple values. See thesplay-max-key-
codeanddisplay-min-keycodefunctions for additional information.

CLX Programmer’s Reference 2-25



Displays

display —A display object.

display-max-keycodedisplay Function
Returns:
max-keycode- Typecard8.

Returns the maximum keycode value for the spedifigolay This value is never great-
er than 255. Not all keycodes in the allowed range are required to have corresponding

keys.

display —A display object.

display-max-request-lengthdisplay Function
Returns:
max-request-length- Typecard16.

Returns the maximum length of a request, in four-byte units, that is accepted by the spe-
cified display Requests larger than this generate a length error, and the server will read
and simply discard the entire request. This length is always at least 4096 (that is, requests
of length up to and including 16384 bytes are accepted by all servers).

display —A display object.

display-min-keycodedisplay Function
Returns:
min-keycode— Typecard8.

Returns the minimum keycode value for the speciisglay This value is never less
than eight. Not all keycodes in the allowed range are required to have corresponding
keys.

display —A display object.

display-motion-buffer-size display Function
Returns:
motion-buffer-size— Typecard32.

Returns the approximate size of the motion buffer for the spedispthy The server
can retain the recent history of pointer motion at a finer granularity than is reported by
:motion-notify events. Such history is available throughrtt@ion-eventsfunction.

display —A display object.

display-p display Function
Returns:
display-p— Typeboolean

Returns nomil if displayis adisplay object; otherwise, returnsl.

display-pixmap-formats display Function
Returns:
pixmap-formats— Typelist.

Returns the list gpixmap-format values for the givedisplay This list contains one

entry for each depth value. The entry describes the format used to represent images of
that depth. An entry for a depth is included if any screen supports that depth, and all
screens supporting that depth must support (only) the format for that depth.

display —A display object.

2-26 CLX Programmer’s Reference



Displays

display-plist display Function
Returns:
plist— Typelist.

Returns and (witketf) sets the property list for the specifigidplay This function pro-
vides a hook where extensions can add data.

display —A display object.

display-protocol-major-version display Function
Returns:
protocol-major-versior— Typecard16.

Returns the major version number of the X protocol associated with the spdisfied

play. In general, the major version would increment for incompatible changes. The re-
turned protocol version number indicates the protocol the server actually supports. This
might not equal the version supported by the client. The server can (but need not) refuse
connections from clients that offer a different version than the server supports. A server
can (but need not) support more than one version simultaneously.

display —A display object.

display-protocol-minor-version display Function
Returns:
protocol-minor-versior— Typecard16.

Returns the minor protocol revision number associated with the spetigjddy In
general, the minor version would increment for small upward compatible changes in the
X protocol.

display —A display object.

display-protocol-versiondisplay Function
Returns:
protocol-major-versionprotocol-minor-version— Typecard16.

Returngrotocol-major-versiomndprotocol-minor-versioras multiple values. See the
display-protocol-major-version anddisplay-protocol-minor-version functions for
additional information.

display —A display object.

display-resource-id-basealisplay Function
Returns:
resource-id-base- Typeresource-id

Returns theesource-id-basgalue that was returned from the server during connection
setup for the specifiedisplay This is used in combination with thresource-id-masto
construct valid IDs for this connection.

display —A display object.

2-27

CLX Programmer’s Reference



Displays

display-resource-id-maskdisplay Function
Returns:
resource-id-mask- Typeresource-id

Returns theesource-id-masthat was returned from the server during connection setup

for the specifiedlisplay Theresource-id-maskontains a single contiguous set of bits

(at least 18) which the client uses to allocate resource IDs forwgpdsw, pixmap,

cursor, font, gcontext andcolormap by choosing a value with (only) some subset of
these bits set, amding it with theresource-id-baseOnly values constructed in this way

can be used to name newly created server resources over this connection. Server re-
source IDs never have the top three bits set. The client is not restricted to linear or contig-
uous allocation of server resource IDs. Once an ID has been freed, it can be reused, but
this should not be necessary.

An ID must be unique with respect to the IDs of all other server resources, not just other
server resources of the same type. However, note that the value spaces of server resource
identifiers, atoms, visualids, and keysyms are distinguished by context, and as such are
not required to be disjoint (for example, a given numeric value might be both a valid win-
dow ID, a valid atom, and a valid keysym.)

display —A display object.

display-roots display Function
Returns:
roots— A list of screens.

Returns a list of all thecreenstructures available for the givdisplay

display —A display object.

display-vendor display Function
Returns:
vendor-namgrelease-number— Typecard32

Returnsvendor-namendrelease-numbesis multiple values. See tbisplay-vendor-
name anddisplay-release-numberfunctions for additional information.
display —A display object.

display-vendor-namedisplay Function
Returns:
vendor-name— Typestring.

Returns a string that provides some vendor identification of the X server implementation
associated with the specifiéisplay
display —A display object.

display-version-numberdisplay Function
Returns:
version-number— Typecard16.

Returns the X protocol version number for this implementation of CLX.

display —A display object.

display-xid display Function
Returns:
resource-allocator— Typefunction.

Returns the function that is used to allocate server resource IDs fdisibiay

display —A display object.

2-28 CLX Programmer’s Reference



Displays

with-display display&body body Macro

This macro is for use in a multi-process environmaith-display provides exclusive
access to the locdisplay object for multiple request generation. It need not provide
immediate exclusive access for replies. That is, if another process is waiting for a reply
(while notin awith-display), then synchronization need not (but can) occurimmediate-

ly. Except where noted, all routines effectively contain an implitii-display where
needed, so that correct synchronization is always provided at the interface level on a per-
call basis. Nested uses of this macro work correctly. This macro does not prevent concur-
rent event processing (saih-event-queus.

display —A display.

Managing the
Output Buffer

2.4 Most CLX functions cause output requests to be generated to an X
server. Output requests are not transmitted immediately but instead are stoi@atin an

put bufferfor the appropriate display. Requests in the output buffer are typically sent
only when the buffer is filled. Alternatively, buffered requests can be sent prior to proc-
essing an event in the input event queue (see paragraph 12.3, Processing Events). In ei-
ther case, CLX sends the output buffer automatically without explicit instructions from
the client application.

However, in some cases, explicit control over the output buffer is needed, typically to
ensure that the X server is in a consistent state before proceeding furtrdispldne
force-output anddisplay-finish-output functions allow a client program to synchro-
nize with buffered output requests.

display-after-function display Function

Returns:
after-function— Typefunction or null.

Returns and (witlsetf) sets thafter-functionfor the giverdisplay If after-functionis

non-il, itis a function that is called after every protocol request is generated, even those
inside an expliciwith-display, but never called from inside tladter-function The
function is called inside the effectivath-display for the associated request. The de-
fault value isil. This can be set, for example, taigplay-force-output or #'display-
finish-output.

display— A display object.

display-force-output display Function

Forces any buffered output to be sent to the X server.

display— A display object.

display-finish-output display Function

Forces any buffered output to be sent to the X server and then waits until all requests have
been received and processed. Any errors generated are read and handled by the display
error handler. Any events generated by output requests are read and stored in the event
gueue.

display— A display object.

Closing the
Display

2.5 To close or disconnect a display from the X serverclose-display

CLX Programmer’s Reference

2-29



Displays

close-displaydisplay Function

Closes the connection to the X server for the spediigulay It destroys all server re-
sources\indow, font, pixmap, colormap, cursor, andgcontex, that the client ap-
plication has created on this display, unless the close down mode of the server resource
has been changed (s-close-down-modge Therefore, these server resources should
never be referenced again. In addition, this function discards any output requests that
have been buffered but have not yet been sent.

display —A display object.

2-30 CLX Programmer’s Reference



SCREENS

Screens and
Visuals

3.1 An X display supports graphical output to one or nsmreensEach
screen has its own root window and window hierarchy. Each window belongs to exactly
one screen and cannot simultaneously appear on another screen.

The kinds of graphics hardware used by X screens can vary greatly in their support for
color and in their methods for accessing raster memory. X uses the conceisuel a
type(usually referred to simply ayesual) which uniquely identifies the hardware capa-
bilities of a display screen. Fundamentally, a visual is representedaogi2 integer

ID, which uniquely identifies the visual type relative to a single display. CLX also repre-
sents a visual withvsual-info structure that contains other attributes associated with a
visual (see paragraph 1.6, Data Types). A screen can support more than one depth (that
is, pixel size), and for each supported depth, a screen may support more than one visual.
However, it is more typical for a screen to have only a single depth and a single visual

type.

A visual represents various aspects of the screen hardware, as follows:

- A screen can be color or gray-scale.

- Ascreen can have a colormap that is either writable or read-only.

- A screen can have a single colormap or separate colormaps for each of the red,
green, and blue components. With separate colormaps, a pixel value is decomposed
into three parts to determine indexes into each of the red, green, and blue colormaps.

CLX supports the following classes of visual typegect-color, :gray-scale :pseu-

do-color, :static-color, :static-gray, and:true-color. The following tables show how

the characteristics of a screen determine the class of its visual type.

For screens with a single colormap:

Color Gray-Scale

Read-only :static-color :static-gray
Writable  :pseudo-color :gray-scale

For screens with red, green, and blue colormaps:

Read-only :true-color
Writable -direct-color :gray-scale

The visual class also indicates how screen colormaps are handled. See paragraph 9.1,
Colormaps and Colors.

Screen
Attributes

3.2 In CLX, each display screen is represented bgraenstructure. The
display-rootsfunction returns the list gcreenstructures for the display. The following
paragraphs discuss the attributes of GlcXeenstructures.

CLX Programmer’s Reference

3-31



Screens

screen-backing-storescreen Function
Returns:
backing-stores-type- One of:always, :never, or :when-mapped

Returns a value indicating when gereersupports backing stores, although it may be
storage limited in the number of windows it can support at once. The value returned can
be one ofalways, :never, or :when-mapped

screen— A screen

screen-black-pixelscreen Function
Returns:
black-pixel— Typepixel.

Returns the black pixel value for the specifsedeen

screen— A screen

screen-default-colormapscreen Function
Returns:
default-colormap— Typecolormap.

Returns thelefault-colormagor the specifiedcreen Thedefault-colormags initially
associated with the root window. Clients with minimal color requirements creating win-
dows of the same depth as the root may want to allocate from this map by default. Most
routine allocations of color should be made out of this colormap.

screen— A screen

screen-depthsscreen Function
Returns:
depths— Typealist.

Returns an association list that specifies what drawable depths are supported on the spe-
cified screen Elements of the returned association list have the form (deqtat),

where eachisualis avisual-info structure. Pixmaps are supported for each depth listed,
and windows of that depth are supported if at least one visual type is listed for the depth.
A pixmap depth of one is always supported and listed, but windows of depth one might
not be supported. A depth of zero is never listed, but zero-deptfi-only windows

are always supported.

screen— A screen

screen-event-mask-at-opescreen Function
Returns:
event-mask-at-opes Typemask32

Returns the initial root event mask for the specifieten

screen— A screen

3-32 CLX Programmer’s Reference



Screens

screen-heightscreen Function
Returns:
height— Typecard16.

Returns théneightof the specifiegcreenin pixel units.

screen— A screen

screen-height-in-millimetersscreen Function
Returns:
height-in-millimeters— Typecard16.

Returns the height of the specifzeerin millimeters. The returned height can be used
with the width in millimeters to determine the physical size and the aspect ratio of the
screen.

screen— A screen

screen-max-installed-mapscreen Function
Returns:
max-installed-colormaps- Typecard16.

Returns the maximum number of colormaps that can be installed simultaneously with
install-colormap.
screen— A screen

screen-min-installed-mapsscreen Function
Returns:
min-installed-colormaps— Typecard16.

Returns the minimum number of colormaps that can be guaranteed to be installed simul-
taneously.
screen— A screen

screen-pscreeri-unction
Returns:
screen-p— Typeboolean

Returns nomil if the screenargument is acreenstructure; otherwise, returnd.
screen-plistscreen Function

Returns:
plist— Typelist.

Returns and (witketf) sets the property list for the specifiateen This function pro-
vides a hook where extensions can add data.
screen— A screen

screen-rootscreen Function
Returns:
root-window— Typewindow or null.

Returns theoot-windowfor the specifiedcreen This function is useful with functions
that take a parent window as an argument. The class of the root window is: adpiatys
output.

screen— A screen

CLX Programmer’s Reference 3-33



Screens

screen-root-depthscreen Function
Returns:
root-window-depth— Typeimage-depth

Returns the depth of the root window for the speciden Other depths can also be
supported on thiscreen

screen— A screen

screen-root-visualscreen Function
Returns:
root-window-visual— Typecard29.

Returns the default visual type for the root window for the spedfiezken

screen— A screen

screen-save-unders-gcreen Function
Returns:
save-unders-p— Typeboolean

If true, the server can support the save-under modeate-windowand in changing
window attributes.
screen— A screen.

screen-white-pixelscreen Function
Returns:
white-pixel— Typepixel.

Returns the white pixel value for the specifestieen

screen— A screen.

screen-widthscreen Function
Returns:
width— Typecard16.

Returns the width of the specifisdreenin pixel units.

screen— A screen.

screen-width-in-millimeters screen Function
Returns:
width-in-millimeters— Typecard16.

Returns the width of the specifisdreenin millimeters. The returned width can be used

with the height in millimeters to determine the physical size and the aspect ratio of the

screen.

screen— A screen.

3-34

CLX Programmer’s Reference



WINDOWS AND PIXMAPS

Drawables 4.1 Both windows and pixmaps can be used as sources and destinations in graphics
operations. These are collectively knowrtdesvables The following functions apply
to both windows and pixmaps.

drawable-display drawable Function
Returns the display for the specifidcawable
drawable— A drawable object.
drawable-equaldrawable-1drawable-2 Function
Returns true if the two arguments refer to the same server resounci jethey do not.
drawable-1 drawable-2— drawable objects.
drawable-id drawable Function
Returns:
id — Typeresource-id
Returns the unique resource ID assigned to the spedifieable
drawable— A drawable object.
drawable-p drawable Function
Returns:
boole— Typeboolean
Returns true if the argument isleawable andnil otherwise.
drawable-plist drawable Function
Returns:
plist— A property list.
Returns and (witlsetf) sets the property list for the specifidichwable This function
provides a hook where extensions can add data.

Cr_eating 4.2 A window is a drawable that can also receive input events. CLX

Windows represents a window withvéindow object. Thecreate-windowfunction creates a new
window object.

create-window &key :parent :x :y :width :height (:depth 0) Function

(:border-width 0) (.class:copy) (:visual :copy) :background
:border :gravity :bit-gravity :backing-store :backing-planes :backing-pixel
:save-under :event-mask :do-not-propagate-mask :override-redirect :colormap
:cursor
Returns:

window— Typewindow.

Creates and returns a window:pgarent window must be specified; the first window
created by a client will have a root window aspisrent. The new window is initially
unmapped and is placed on top of its siblings in the stacking ordere@te-notify
event is generated by the server.

CLX Programmer’s Reference 4-35



Windows and Pixmaps

The:classof a window can benput-output or:input-only. Windows of classnput-

only cannot be used as the destination drawable for graphics output and can never re-
ceive:exposureevents, but otherwise operate the samiepst-output windows. The
:classcan also becopy, in which case the new window has the same classpariésit.

For aniinput-output window, thevisual and:depth must be a combination supported
by the:parent’s screen, but thelepth need not be the same as:{terent’s. The:par-
ent of an:input-output window must also b@nput-output . A :depth of 0 means that
the depth of theparent is used.

For aninput-only window, thedepth must be zero, and théasual must be supported
by the:parent’s screen. Theparent of an:input-only window can be of any class. The
only attributes that can be given for:aput-only window arecursor, :do-not-prop-
agate-mask :event-mask :gravity, and:override-redirect.

parent — The parent window. This argument is required.

X, :y —int16 coordinates for the outside upper-left corner of the new window with re-
spect to the origin (inside upper-left corner) of fha@ent. These arguments are
required.

:width , :height — card16 values for the size of the new window. These arguments are
required.

:depth — A card16 specifying the depth of the new window.
:class— One of:iinput-output, :input-only, or:copy.
:visual — A card29 ID specifying the visual type of the new window.

:background, :backing-pixel, :backing-planes :backing-store, :bit-gravity , :bor-
der, :border-width, :colormap, :cursor, :do-not-propagate-mask :event-
mask, :gravity, :override-redirect, :save-under— Initial attribute values for the
new window. Ifnil, the default value is defined by the X protocol. See paragraph
4.3, Window Attributes.

4-36

CLX Programmer’s Reference



Windows and Pixmaps

Window 4.3 The following paragraphs describe the CLX functions used to return or
Attributes change window attributes. Using tivégh-state macro improves the performance of at-
tribute access by batching related accesses in the minimum number of server requests.
drawable-border-width drawable Function
Returns:
border-width— Typecard16.

Returns théorder-widthof thedrawablein pixels. It always returns zero if tHeawable

is a pixmap or arinput-only window. Used wittsetf, this function also changes the
border width of theinput-only window. The default border width of a new window is
zero.

Changing just the border width leaves the outer left corner of a window in a fixed posi-
tion but moves the absolute position of the window’s origin. It is an error to make the
border width of aninput-only window nonzero.

When changing the border-width of a window, if the override-redirect attribute of the
window is:off and some other client has selectbstructure-redirect on the parent,
a:configure-requestevent is generated, and no further processing is performed. Other-
wise, the border-width is changed.

drawable — A drawable object.

drawable-depth drawable Function

Returns:
depth— Typecard8.

Returns the depth of the specifiddwable(bits per pixel).

drawable— A drawable object.

drawable-heightdrawable Function
Returns:
inside-height— Typecard16.
drawable-width drawable Function
Returns:

inside-width— Typecard16.

These functions return the height or width ofdrewvable These coordinates define the
inside size of thelrawable in pixels. Used witlsetf, these functions also change the
inside height or width of a window. However, the height or width of a pixmap cannot be
changed.

Changing the width and height resizes a window without changing its position or stack-
ing priority.

Changing the size of a mapped window may cause the window to lose its contents and
generate arexposureevent. If a mapped window is made smalkxposureevents are
generated on windows that it formerly obscured.

When changing the size of a window, if the override-redirect attribute of the window is
:off and some other client has selectitbstructure-redirect on the parent, @onfig-
ure-requestevent is generated, and no further processing is performed. Otherwise, if
another client has selectadsize-redirect on the window, aresize-requestevent is
generated, and the current inside width and height are maintained. Note that the over-
ride-redirect attribute of the window has no effectm@size-redirect and thatsub-
structure-redirect on the parent has precedence orgsize-redirecton the window.

CLX Programmer’s Reference

4-37



Windows and Pixmaps

When the inside size of the window is changed, the children of the window can move
according to their window gravity. Depending on the window’s bit gravity, the contents
of the window can also be moved.

drawable— A drawable object.

drawable-x drawable Function
Returns:
outside-left— Typeint16.
drawable-y drawable Function
Returns:

outside-top— Typeint16.

These functions return the x or y coordinate of the spedf@dable They always re-

turn zero if thelrawableis a pixmap. These coordinates define the location of the top left
pixel of the window'’s border or of the window, if it has no border. Usedseiththese
functions also change the x or y coordinate of a window. However, the x or y coordinate
of a pixmap cannot be changed.

Changing the x and y coordinates moves a window without changing its size or stacking
priority. Moving a mapped window generategposureevents on any formerly ob-
scured windows.

When changing the position of a window, if the override-redirect attribute of the window
is :off and some other client has selecgdbstructure-redirect on the parent, Zon-
figure-requestevent is generated, and no further processing is performed. Otherwise,
the window is moved.

drawable— A drawable object.

window-all-event-maskswindow Function
Returns:
all-event-masks— Typemask32

Returns the inclusive-or of the event masks selected on the spedifaivby all cli-
ents.

window— A window.

setf (window-background) window background Function
Returns:
background— Either apixel, apixmap, :none, or :parent-relative.

Changes thbackgroundattribute of thevindowto the specified value. This operation is

not allowed on aninput-only window. Changing the background does not cause the
window contents to be changed. Note that the background of a window cannot be re-
turned from the X server. The default background of a new windoveie.

In general, the server automatically fills in exposed areas of the window when they are
first made visible. A background pixmap is tiled to fill each area. However, if the back-
ground isnone, the server will not modify exposed areas. If the backgroupdrient-

relative, the window and its parent must have the same depth. In this case, the window
shares the same background as its parent. The parent’s background is not copied and is
reexamined whenever the window’s background is required. If the backgropad is
ent-relative, the background pixmap tile origin is the same as the parent’s; otherwise,
the tile origin is the window origin.

window— A window.

background— Either apixel, apixmap, :none, or :parent-relative.

4-38 CLX Programmer’s Reference



Windows and Pixmaps

window-backing-pixel window Function
Returns:
backing-pixel— Typepixel.

Returns and (witketf) changes the value of the backing-pixel attribute for the specified

window Changing the backing-pixel attribute of a mapped window may have no imme-
diate effect. The default backing-pixel of a new window is zero.

window— A window.

window-backing-planes window Function
Returns:
backing-planes— Typepixel.

Returns and (witlsetf) changes the value of the backing-planes attribute for the speci-
fied window Changing the backing-planes attribute of a mapped window may have no
immediate effect. The default backing-planes of a new window is all one’s.

window— A window.

window-backing-storewindow Function
Returns:
backing-store-type— One of:always, :not-useful, or :when-mapped

Returns and (witketf) changes the value of the backing-store attribute for the specified
window Changing the backing-store attribute of an obscured windowhen-

mappedor :always may have no immediate effect. The default backing-store of a new
window is:not-useful.

window— A window.

window-bit-gravity window Function
Returns:
bit-gravity— Typebit-gravity .

Returns and (witlsetf) changes the bit-gravity attribute of tendow If a window is
reconfigured without changing its inside width or height, the contents of the window
move with the window and are not lost. Otherwise, the contents of the resized window

are either moved or lost, depending on its bit-gravity attribute. The default bit-gravity of
a new window isforget.

For example, suppose a window’s size is changadf pixels in width andH pixels in
height. The following table shows, for each bit-gravity value, the change in position (rel-
ative to the window origin) that results for each pixel of the window contents.

Bit-Gravity X Change Y Change
:center W2 H/2

.east W H2

:north WP 0
:north-east W 0
:north-west 0 0

:south W2 H
:south-east W H
:south-west 0 H

:west 0 H/2

A :static bit-gravity indicates the contents or window should not move relative to the
origin of the root window.

CLX Programmer’s Reference 4-39



Windows and Pixmaps

A server can choose to ignore the specified bit-gravity attribute anfibrgget instead.

A :forget bit-gravity attribute indicates that the window contents are always discarded
after a size change, even if backing-store or save-under attributas.driee window’s
background is displayed (unless itisne), and zero or mor@xposureevents are gen-
erated.

window— A window.

setf (window-border) window border Function
Returns:
border— Either apixel, apixmap, or:copy.

Changes thborderattribute of thevindowto the specified value. This operation is not
allowed on aninput-only window. Changing the border attribute also causes the win-
dow border to be repainted. Note that the border of a window cannot be returned from the
X server. The default border of a new windowcispy.

Aborder pixmap is tiled to fill the border. The border pixmap tile origin is the same as the
background tile origin. A border pixmap and the window must have the same root and
depth. If the border i€opy, the parent’s border is copied and used; subsequent changes
to the parent’s border do not affect the window border.

window— A window.
border— Either apixel, apixmap, or:copy.

window-classwindow Function
Returns:
class— Either:input-output or :input-only.

Returns thelassof the specifiedvindow

window— A window.

window-colormap window Function
Returns:
colormap— Typecolormap or null.

Returns and (witketf) changes the value of the colormap attribute for the speuwiiied

dow A value of.copy is never returned, since the parent’s colormap attribute is actually
copied, but the attribute can be sefciapy in asetfform. Changing the colormap of a
window (defining a new map, not changing the contents of the existing map) generates a
:colormap-notify event. Changing the colormap of a visible window may have no im-
mediate effect on the screen (se#tall-colormap). The default colormap of a new win-

dow is:copy.

window— A window.

window-colormap-installed-pwindow Function
Returns:
colormap-installed-p— Typeboolean

Returns nomil if the colormap associated with tiighdowis installed. Otherwise, this
function returnsnil.

window— A window.

4-40 CLX Programmer’s Reference



Windows and Pixmaps

setf (window-cursor) window cursor Function

Returns:
cursor— Typecursor or :none.

Changes theursorattribute of thevindowto the specified value. Changing the cursor of
aroot window tononerestores the default cursor. Note that the cursor of window cannot
be returned from the X server. The default cursor of a new windmerns.

window— A window.

cursor— Eithercursor or :none.

window-display window Function

Returns:
display— Typedisplay.

Returns thealisplay object associated with the specifigohdow

window —A window.

window-do-not-propagate-maskwindow Function

Returns:
do-not-propagate-mask- Typemask32

Returns and (witlsetf) changes the do-not-propagate-mask attribute for the window.
The default do-not-propagate-mask of a new window is zero.

If a window receives an event from one of the user input devices, and if no client has
selected to receive the event, the event can instead be propagated up the window hierar-
chy to the first ancestor for which some client has selected it. However, any event type
selected by the do-not-propagate-mask is not be propagated. The types of events that can
be selected by the do-not-propagate-mask are those alayjee-event-mask-class

See paragraph 12.2, Selecting Events.

window— A window.

window-equal window-1window-2 Function

Returns:
boolean

Returns nomil if the two arguments are the same window, mihd they are not.

window-1 window-2— The windows to compare for equality.

window-event-maskwindow Function

Returns:
event-mask— Typemask32

Returns and (witlsetf) changes the value of the event-mask attribute fowthdow
The default event-mask of a new window is zero.

window— A window.

window-gravity window Function

Returns:
gravity— Typewin-gravity .

Returns and (witketf) changes the gravity attribute of thimdow If a parent window is
reconfigured without changing its inside width or height, then all child windows move
with the parent and are not changed. Otherwise, each child of the resized parent is
moved, depending on the child’s gravity attribute. The default gravity of a new window
is :north-west.

CLX Programmer’s Reference

4-41



Windows and Pixmaps

For example, suppose the size of the window’s parent is chand¥gixgls in width
andH pixels in height. The following table shows, for each possible gravity value, the
resulting change in the window’s position relative to its parent’s origin. When the win-
dow is moved, two events are generated-eemfigure-notify event followed by a
:gravity-notify event.

Gravity X Change Y Change
:center W12 H/2

:east W H2

:north W2 0
:north-east W 0
:north-west 0 0

:south W2 H
:south-east W H
:south-west 0 H

:west 0 H/2

A :static gravity indicates that the position of the window should not move relative to the
origin of the root window.

An :unmap gravity is like:north-west, except the window is also unmapped and an
:unmap-notify event is generated. Thisnmap-notify event is generated after the
:configure-notify event is generated for the parent.

window— A window.

window-id window Function

Returns:
Theresource-id of the window.

Returns the unique ID assigneditmdow

window— A window.

window-map-statewindow Function

Returns:
map-state— One of:unmapped, :unviewable, or :viewable.

Returns the map state window A window is:unviewable if it is mapped but some
ancestor is unmapped.

window— A window.

window-override-redirect window Function

Returns:
override-redirect— Either:on or :off.

Returns and (witketf) changes the value of the override-redirect attributeriiodow
The default override-redirect of a new windowad.

The override-redirect attribute determines whether or not attempts to change window
geometry or parent hierarchy carredirectedby a window manager or some other cli-

ent. The functions that might be affected by the override-redirect attribiecatate-
window-down, circulate-window-up, drawable-border-width, drawable-height,
drawable-width, drawable-x, drawable-y, map-window, andwindow-priority .

window— A window.

4-42

CLX Programmer’s Reference



Windows and Pixmaps

window-p object Function
Returns:
window-p— Typeboolean

Returns nomil if the objectargument is a window; otherwise, it returils

window-plist window Function
Returns:
plist— A property list.

Returns and (witketf) sets the property list for the specifigsthdow This function pro-
vides a hook where extensions can hang data.

window— A window.

setf (window-priority window) (&optionalsibling) mode Function
Returns:
mode— One of:above :below, :bottom-if , :opposite or :top-if .

Changes the stacking priority element ofitliedowto the specified value. Itis an error
if the siblingargument is specified and is not actually a sibling of the window. Note that
the priority of an existing window cannot be returned from the X server.

When changing the priority of a window, if the override-redirect attribute of the window

is :off and some other client has selected :substructure-redirect on the parent, a :config-
ure-request event is generated, and no further processing is performed. Otherwise, the
priority is changed.

window— A window.

sibling— An optional argument specifying thaindowis to be restacked relative to this
sibling window.

mode— One of:above, :below, :bottom-if, :opposite or :top-if .

window-save-under window Function
Returns:
save-under— Either:on or :off.

Returns and (witlsetf) changes the value of the save-under attribute for the specified
window Changing the save-under attribute of a mapped window may have no immedi-
ate effect.

window— A window.

window-visual window Function
Returns:
visual-type— Typecard29.

Returns thevisual-typeassociated with the specifiadndow

window— A window.
with-state drawable&body body Macro

Batches successive read and write accesses to window attributes and drawable geome-
try, in order to minimize the number of requests sent to the server. Batching occurs auto-
matically within the dynamic extent of thmdy Thebodyis not executed within a
with-display form.

CLX Programmer’s Reference 4-43



Windows and Pixmaps

Allwindow attributes can be returned or changed in a single request. Similarly, all draw-
able geometry values can be returned or changed in a single regtrestate com-

bines accesses to these values into the minimum number of server requests necessary to
guarantee that each read access returns the current server stadraivdide The

number of server requests sent depends on the sequence of calls to resetéfuad

tions within the dynamic extent of thwdy There are two groups of reader axedf
functions—the Window Attributes group and the Drawable Geometry group—as shown

in Table 4-1.

4-44

CLX Programmer’s Reference



Windows and Pixmaps

Table 4-1 Groups of Reader and Setf Functions

Group Reader Functions Setf Functions

Window window-all-event-masks window-background

Attributes  window-backing-pixel window-backing-pixel
window-backing-planes window-backing-planes
window-backing-store window-backing-store
window-bit-gravity window-bit-gravity
window-class window-border
window-colormap window-colormap
window-colormap- window-cursor
installed-p window-do-not-propagate-mask
window-do-not- window-event-mask
propagate-mask window-gravity
window-event-mask window-override-redirect
window-gravity window-save-under
window-map-state
window-override-redirect
window-save-under
window-visual

Drawable  drawable-border-width drawable-border-width

Geometry  drawable-depth drawable-height

drawable-height
drawable-root
drawable-width
drawable-x
drawable-y

drawable-width
drawable-x
drawable-y
window-priority

The results from a sequence of callsgtifunctions in a given group are cached and sent
in a single server request, either upon exit fronbtityor when a reader function from
the corresponding group is called.

with-state sends a single request to update all its cached values tlrathablebefore
the first call to a reader function within thedyand also before the first call to a reader
function following a sequence of callsdetf functions from the corresponding group.

drawable— A display.

body— The forms in which attributes accesses are batched.

Stacking Order 4.4 Sibling windows carstackon top of each other. Windows above ocliscureor
occludelower windows. This relationship between sibling windows is known as the
stacking order. Theindow-priority function can be used to change the stacking order
of a single window. CLX also provides functions to raise or lower children of a window.
Raising a mapped window can generaeposure events for the window and any
mapped subwindows that were formerly obscured. Lowering a mapped window can
generateexposureevents on any windows it formerly obscured.

circulate-window-down window Function

Lowers the highest mapped child of the specifi@adowthat partially or completely
occludes another child to the bottom of the stack. Completely unobscured children are
unaffected. Exposure processing is performed on formerly obscured windows.

4-45

CLX Programmer’s Reference



Windows and Pixmaps

If some other client has selectsedbstructure-redirect on thewindow a:circulate-re-
questevent is generated, and no further processing is performed. Otherwise, the child
window is lowered and &irculate-notify event is generated if tieindowis actually
restacked.

window— A window.

circulate-window-up window Function

Raises the lowest mapped child of the specifietiowthat is partially or completely
occluded by another child to the top of the stack. Completely unobscured children are
unaffected. Exposure processing is performed on formerly obscured windows.

If another client has selecteslibstructure-redirect on thewindow a:circulate-re-
questevent is generated, and no further processing is performed. Otherwise, the child
window is raised and:airculate-notify eventis generated if tténdowis actually re-
stacked.

window— A window.

V\/_indOW 4.5 All the windows in X are arranged in a strict hierarchy. At the top of
Hierarchy the hierarchy are the root windows, which cover the display screens. Each root window
is partially or completely covered by its child windows. All windows, except for root
windows, have parents. Child windows can have their own children. In this way, a tree of
arbitrary depth on each screen can be created. CLX provides several functions for ex-
amining and modifying the window hierarchy.
drawable-root drawable Function
Returns:
root-window— Typewindow.
Returns the root window of the specifigdhwable
drawable— A drawable.
query-tree window&key (:result-type ‘list) Function
Returns:
children— Typesequenceof window.
parent —Typewindow or null.
root— Typewindow.
Returns thehildrenwindows, theparentwindow, and theoot window for the specified
window The children are returned as a sequence of windows in current stacking order,
from bottom-most (first) to top-most (last). Tiesult-type specifies the type of chil-
dren sequence returned.
window— A window.
‘result-type — A valid type specifier for a sub-type séquenceThe default is #st.
reparent-window window parent »/ Function
Changes avindows parentwithin a single screen. There is no way to move a window
between screens.
The specifieadvindowis reparented by inserting it as a child of the speqifégdnt If the
windowis mapped, annmap-window operation is automatically performed on the
specifiedvindow Thewindowis then removed from its current position in the hierarchy
and inserted as the child of the specifiadent Thewindowis placed on top in the stack-
ing order with respect to sibling windows.
4-46 CLX Programmer’s Reference



Windows and Pixmaps

After reparenting the specifisdndow,a:reparent-notify eventis generated. The over-
ride-redirect attribute of th@indowis passed on in this event. Window manager clients
normally should ignore this event if this attributeois. See Section 12, Events and In-
put, for more information omeparent-notify event processing. Finally, if the specified
windowwas originally mapped, map-window operation is automatically performed
on it.

The X server performs normal exposure processing on formerly obscured windows. It
might not generatexposureevents for regions from the init@hmap-window opera-
tion if they are immediately obscured by the fimap-window operation.

It is an error if any of the following are true:
«  The newparentwindow is not on the same screen as the old parent window.

«  The newparentwindow is the specifiediindowor an inferior of the specifiasin-
dow

- The specifiedvindowhas aparent-relative background attribute and the npar-
entwindow is not the same depth as the specifiediow

window— A window.

parent— The new parenvindow.

X, y— The position (typ@ét16) of thewindowin its newparent These coordinates are
relative to thgarents origin, and specify the new position of the upper, left, outer
corner of thevindow

translate-coordinatessource source-x source-y destination Function
Returns:
destination-x— Typeint16 or null.
destination-y— Typeint16 or null.
destination-child— Typewindow or null.

Returns the position defined byurce-xandsource-y(relative to the origin of theource
window), expressed as coordinates relative to the origin afesnationwindow.
source— A window defining the source coordinate system.
source-xsource-y— Coordinatesifitl16) relative to the origin of theourcewindow.
destination— A window defining the destination coordinate system.

Mapping 4.6 A window is considered mapped ifreap-window call has been made

Windows on it. When windows are first created, they are not mapped because an application may
wish to create a window long before it is mapped to the screen. A mapped window may
not be visible on the screen for one of the following reasons:
« Itis obscured by another opaque sibling window.
- One of its ancestors is not mapped.

« ltis entirely clipped by an ancestor.

CLX Programmer’s Reference 4-47



Windows and Pixmaps

A subwindow will appear on the screen as long as all of its ancestors are mapped and not
obscured by a sibling or clipped by an ancestor. Mapping a window that has an un-
mapped ancestor does not display the window, but marks it as eligible for display when
the ancestor becomes mapped. Such a window is called unviewable. When all its ances-
tors are mapped, the window becomes viewable and remains visible on the screen if not
obscured by any sibling or ancestor.

Any output to a window not visible on the screen is discardgdosureevents are gen-
erated for the window when part or all of it becomes visible on the screen. A client only
receives theexposureevents if it has selected them. Mapping or unmapping a window
does not change its stacking order priority.

map-window window Function

Maps thewindow This function has no effect when thendowis already mapped.

If the override-redirect attribute of tleindowis :off and another client has selected
:substructure-redirect on the parent window, the X server generat@esag-request
event and theap-window function does not map théndow Otherwise, thevindowis
mapped, and the X server generatasap-notify event.

If thewindowbecomes visible and no earlier contents for it are rememImeagpdyin-

dow tiles the window with its background. If no background was defined for the win-
dow, the existing screen contents are not altered, and the X server generates one or more
:exposureevents. If a backing-store was maintained while the window was unmapped,
no:exposureevents are generated. If a backing-store will now be maintained, a full win-
dow exposure is always generated. Otherwise, only visible regions may be reported.
Similar tiling and exposure take place for any newly viewable inferiors.

map-window generatesexposureevents on eacimput-output window that it causes
to become visible.

window— A window.

4-48

CLX Programmer’s Reference



Windows and Pixmaps

map-subwindowswindow Function

Maps all child windows for a specifisdndowin top-to-bottom stacking order. The X
server generates aexposure event on each newly visible window. This function is
much more efficient than mapping each child individually.

window— A window.

unmap-window window Function

Unmaps the specifieadindowand causes the X server to generatauamap-notify

event. If the specifiedindowis already unmappednmap-window has no effect. Nor-

mal exposure processing on formerly obscured windows is performed. Any child win-
dow is no longer viewable. Unmapping tWwehdow generatesexposure events on
windows that were formerly obscured Wwindowand its children.

window— A window.

unmap-subwindowswindow Function

Unmaps all child windows for the specifi@thdowin bottom to top stacking order. The

X server generates ammap-notify event on each child anelxposureevents on for-
merly obscured windows. Using this function is much more efficient than unmapping
child windows individually.

window— A window.

Destroying
Windows

4.7 CLX provides functions to destroy a window or destroy all children of
awindow.Note that by default, windows are destroyed when a connection is closed. For
further information, see paragraph 2.4, Closing the Display, and paragraph 12.4, Client
Termination.

destroy-window window Function

Destroys the specifiadindowas well as all of its inferiors. The windows should never
again be referenced. If the specifigthdowis mapped, it is automatically unmapped.

The window and all of its inferiors are then destroyed, anléstroy-notify event is
generated for each window. The ordering of:tfestroy-notify events is such that for

any given window being destroyedestroy-notify is generated on the window’s infe-

riors before being generated on the window. The ordering among siblings and across
sub-hierarchies is not otherwise constrained. Ifamelowis a root window, no win-

dows are destroyed. Destroying a mapped window genegatessureevents on other
windows that the mapped window obscured.

window— A window.

destroy-subwindowswindow Function

Destroys all inferiors of the specifiedndow in bottom to top stacking order. The X
server generates.@estroy-notify event for each window. This is much more efficient
than deleting many windows individually. The inferiors should never be referenced

again.

window— A window.

CLX Programmer’s Reference

4-49



Windows and Pixmaps

Pixmaps 4.8 A pixmap is a three-dimensional array of bits. A pixmap is normally
thought of as a two-dimensional array of pixels, where each pixel can be a value from 0 to

2" — 1 wherenis the depth of the pixmap. A pixmap can also be thought of as a stack of
bitmaps. Abitmapis a single bit pixmap of depth 1. CLX provides functions to:

«  Create or free a pixmap

- Testif an object is a pixmap

. Test if two pixmap objects are equal

«  Return the pixmap resource ID fronpiamap object

Note that pixmaps can only be used on the screen where they were created. Pixmaps are
off-screen server resources that are used for a number of operations. These include de-
fining patterns for cursors or as the source for certain raster operations.

create-pixmap &key :width :height :depth :drawable Function
Returns:

pixmap— Typepixmap.

Creates a pixmap of the specifieddth , :height, and:depth. It is valid to pass a win-
dow whose class ifput-only as thedrawable argument. Thevidth and:height ar-
guments must be nonzero. Tdepth must be supported by the screen of the specified
:drawable.

:width, :height — The nonzero width and height (typard16).
:depth — The depth (typeard8) of the pixmap.
:drawable — A drawable which determines the screen where the pixmap will be used.

free-pixmap pixmap Function
Allows the X server to free the pixmap storage when no other server resources reference
it. The pixmap should never be referenced again.
pixmap— A pixmap.

pixmap-display pixmap Function
Returns:
display— Typedisplay.

Returns thalisplay object associated with the specifigdmap

pixmap —A pixmap.
pixmap-equal pixmap-1 pixmap-2 Function
Returns true if the two arguments refer to the same server resounci jtheéy do not.

pixmap-1 pixmap-2— A three-dimensional array of bits to be tested.

pixmap-id pixmap Function
Returns:
id — Typeresource-id

Returns the unique resource ID that has been assigned to the spéxifiag

pixmap— A pixmap.

4-50 CLX Programmer’s Reference



Windows and Pixmaps

pixmap-p object Function

Returns:
pixmap— Typeboolean

Returns true if the argument ip&xmap object andhil otherwise.

pixmap-plist pixmap Function

Returns:
plist— A property list.

Returns and (witketf) sets the property list for the specifiggmap This function pro-
vides a hook where extensions can add data.

pixmap— A pixmap.

CLX Programmer’s Reference

4-51



Windows and Pixmaps

4-52 CLX Programmer’s Reference



GRAPHICS CONTEXTS

Introduction

5.1 Clients of the X Window System specify the visual attributes of graphical output
primitives by usinggraphics contextsA graphics context is a set of graphical attribute
values such as foreground color, font, line style, and so forth. Like a window, a graphics
context is another kind of X server resource which is created and maintained at the re-
quest of a client program. The client program, which may use several different graphics
contexts at different times, is responsible for specifying a graphics context to use with
each graphical output function.

CLXrepresents a graphics context by an object ofggpatextand defines functions to
create, modify, and manipulajeontextobjects. By default, CLX also records the con-
tents of graphics contexts in a cache associated with each display. This local caching of
graphics contexts has two important advantages:

1. Communication efficiency — Changes to attribute valuesgooatextare first
made only in the local cache. Just befaye@ntextis actually used, CLX automati-
cally sends any changes to the X server, batching all changes into a single request.

2. Inquiringgcontextcontents — Accessor functions can be used to return the value of
any individualgcontextcomponent by reading the copy of tfmntextfrom the
cache. This kind of inquiry is not supported by the basic X protocol. There is no way
for a client program to request an X server to return the contenggcohéext

Caching graphics contexts can result in a synchronization problem if more than one cli-

ent program modifies a graphics context. However, this problem is unusual. Sharing a

graphics context among several clients, while possible, is not expected to be useful and is
not very easy to do. At any rate, a client program can choose to not cgabrtext

when it is created.

Each client program must determine its own policy for creating and using graphics con-
texts. Depending on the display hardware and the server implementation, creating a new
graphics context can be more or less expensive than modifying an existing one. In gener-
al, some amount of graphics context information can be cached in the display hardware,
in which case modifying the hardware cache is faster than replacing it. Typical display
hardware can cache only a small number of graphics contexts. Graphics output is fastest
when only a few graphics contexts are used without heavy modifications.

This section explains the CLX functions used to:

- Create a graphics context

- Return the contents of a graphics context

. Change the contents of a graphics context

- Copy a graphics context

- Free a graphics context

CLX Programmer’s Reference

5-53



Graphics Contexts

Creating 5.2 To create a graphics context, useate-gcontext.

Graphics
Contexts

create-gcontext&key :arc-mode :background (:cache-pt) :cap-style Function

:clip-mask :clip-ordering :clip-x :clip-y :dash-offset :dashes
:drawable :exposures :fill-rule :fill-style :font :foreground
:function :join-style :line-style :line-width :plane-mask :stipple
:subwindow-mode :tile :ts-x :ts-y
Returns:

gcontext— Typegcontext
Creates, initializes, and returns a graphics congexir(tex)). The graphics context can
only be used with destination drawables having the same root and depth as the specified
:drawable. If :cache-pis nonnil, the graphics context state is cached locally, and
changing a component has no effect unless the new value differs from the cached value.
Changes to a graphics conteseitf andwith-gcontext) are always deferred regardless
of the cache mode and sent to the server only when required by a local operation or by an
explicit call toforce-gcontext-changes

:cache-p— Specifies if this graphics context should be cached locally by CLH. If
then the state is not cached, otherwise a local cache is kept.

:drawable — Thedrawable whose root and depth are to be associated with this graph-
ics context. This is a required keyword argument.

:arc-mode, :background, :cap-style :clip-mask, :clip-ordering, :clip-x, :clip-y,
.dash-offset :dashes :exposures -fill-rule , :fill-style, :font, :foreground,
:function, :join-style, :line-style, :line-width , :plane-mask :stipple, :subwin-
dow-mode :tile, :ts-x, :ts-y — Initial attribute values for the graphics context.

CLX Programmer’s Reference

5-54



Graphics Contexts

All of the graphics context components are set to the values that are specified by the key-
word arguments, except that a valueibtauses the default value to be used. These de-
fault values are as follows:

Component Default Value
arc-mode :pie-slice

background 1

cap-style ‘butt

clip-mask ‘none

clip-ordering :unsorted

clip-x 0

clip-y 0

dash-offset 0

dashes 4 (that is, the list ’(4, 4))
exposures ;on

fill-rule ‘even-odd

fill-style :solid

font server dependent
foreground 0

function boole-1

join-style :miter

line-style :solid

line-width 0

plane-mask A bit mask of all ones
stipple Pixmap of unspecified size filled with ones
subwindow-mode :clip-by-children

tile Pixmap of an unspecified size filled with the

foreground pixel (that is, the client-specified pixel
if any, or else 0)

ts-x 0

ts-y 0

Note that foreground and background do not default to any values that are likely to be
useful on a color display. Since specifyinglavalue means use the default, this implies

for clip-mask that an empty rectangle sequence cannot be specified as an empty list;
:none must be used instead. Specifyingtiangable for font causes an implicitpen-

font call to occur.

Graphics 5.3 The following paragraphs describe the CLX functions used to return or
Cor_ltext change the attributes of gcontext Functions that return the contents of a
Attributes gcontext return nil if the last value stored is unknown (for example, if

thegcontextwas not cached or if tlgeontextwas not created by the inquiring client).

gcontext-arc-modegcontext Function
Returns:
arc-mode— Either:chord or :pie-slice

Returns and (witketf) changes the arc-mode attribute of the specified graphics context.

The arc-mode attribute of a graphics context controls the kind of filling, if any, to be done
by thedraw-arcs function. A value ofchord specifies that arcs are filled inward to the
chord between the end points of the grie-slicespecifies that arcs are filled inward to

the center point of the arc, creating a pie slice effect.

CLX Programmer’s Reference 5-55



Graphics Contexts

gcontext— A gcontext

gcontext-backgroundgcontext Function
Returns:
background— Typecard32.
Returns and (witketf) changes the background attribute of the specified graphics con-
text.

The background attribute specifies the pixel value drawn for pixels that are not set in a
bitmap and for pixels that are cleared by a graphics operation, such as the gaps in dashed
lines.

gcontext— A gcontext

gcontext-cache-pycontext Function
Returns:
cache-p— Typeboolean

Returns and (witketf) changes the local cache mode forgbentextlf true, the state of
thegcontexis cached by CLX and changes to its attributes have no effect unless the new
value differs from its cached value.

gcontext— A gcontext

gcontext-cap-stylegcontext Function
Returns:
cap-style— One of:butt, :not-last, :projecting, or:round.

Returns and (witketf) changes the cap-style attribute of the specified graphics context.

The cap-style attribute of a graphics context defines how the end points of a path are
drawn. The possible values and their interpretations are as follows:

Cap-Style Interpretation

-butt Square at the end point (perpendicular to the slope of the
line) with no projection beyond.

:not-last Equivalent tabutt, except that for a line-width of zero
or one the final end point is not drawn.

‘projecting Square at the end, but the path continues beyond the
end point for a distance equal to half the line-width.
This is equivalent tabutt for line-width zero or one.

:round A circular arc with the radius equal to 1/2 of the
line-width, centered on the end point. This is equivalent
to :butt for line-width zero or one.

The following table describes what happens when the end points of a line are identical.
The effect depends on both the cap style and line width.

5-56 CLX Programmer’s Reference



Graphics Contexts

Cap-Style Line-Width Effect

‘butt thin Device dependent, but the desired
effect is that a single pixel is drawn.

:butt wide Nothing is drawn.

:not-last thin Device dependent, but the desired

effect is that nothing is drawn.
‘projecting thin Same ashutt with thin line-width.

‘projecting wide The closed path is a square, aligned
with the coordinate axes, centered at
the end point, with sides equal to the
line-width.

:round wide The closed path is a circle, centered
at the end point, with diameter equal
to the line-width.

:round thin Same ashutt with thin line-width.

gcontext— A gcontext
gcontext-clip-maskgcontexi&optional ordering Function
Returns and (witlsetf) changes the clip-mask attribute of the graphics context.

When changing the clip-mask attribute, the new clip-mask can be specified as a pixmap
or arect-seqor as the valuesoneornil. The ordering argument can be specified only
with setfwhen the new clip-mask isract-seq

The clip-mask attribute of a graphics context affects all graphics operations and is used
to restrict output to the destination drawable. The clip-mask does not clip the source of a
graphics operation. A value afone for clip-mask indicates that no clipping is to be
done.

If a pixmap is specified as the clip-mask, it must have depth one and the same root as the
specified graphics context. Pixels where the clip-mask has a one bit are drawn. Pixels

outside the area covered by the clip-mask or where the clip-mask has a zero bit are not
drawn.

If a sequence of rectangles is specified as the clip-mask, the output is clipped to remain
contained within the rectangles. The rectangles should be non-intersecting, or the results
of graphics operations will be undefined. The rectangle coordinates are interpreted rela-

tive to the clip origin. Note that the sequence of rectangles can be empty, which effective-

ly disables output. This is the opposite of setting the clip-masiote.

CLX Programmer’s Reference 5-57



Graphics Contexts

If known by the client, the ordering of clip-mask rectangles can be specified to provide
faster operation by the server. A valuewsfsorted means the rectangles are in arbitrary
order. A value ofy-sorted means that the rectangles are non-decreasing in their Y ori-
gin. A:yx-sortedvalue is likey-sorted with the additional constraint that all rectangles
with an equal Y origin are non-decreasing in their X originyAbanded value addi-
tionally constrainsyx-sorted by requiring that, for every possible Y scan line, all rec-
tangles that include that scan line have an identical Y origins and Y extents. If incorrect
ordering is specified, the X server may generate an error, but it is not required to do so. If
no error is generated, the results of the graphics operations are undefined.

gcontext —A gcontext
ordering —One of:unsorted, :y-sorted, :yx-banded, :yx-sorted, ornil.

gcontext-clip-x gcontext Function

Returns:
clip-x— Typeint16.

Returns and (witlsetf) changes the clip-x attribute of the specified graphics context.

The clip-x and clip-y attributes specify the origin for the clip-mask, whether it is a pix-
map or a sequence of rectangles. These coordinates are interpreted relative to the origin
of whatever destination drawable is specified in a graphics operation.

gcontext— A gcontext

gcontext-clip-y gcontext Function

Returns:
clip-y— Typeint16.

Returns and (witlsetf) changes the clip-y attribute of the specified graphics context.

The clip-x and clip-y attributes specify the origin for the clip-mask, whether it is a pix-
map or a sequence of rectangles. These coordinates are interpreted relative to the origin
of whatever destination drawable is specified in a graphics operation.

gcontext— A gcontext

gcontext-dash-offsegcontext Function

Returns:
dash-offset— Typecard16.

Returns and (witlsetf) changes the dash-offset attribute of the specified graphics con-
text.

The dash-offset attribute of a graphics context defines the phase of the pattern contained
in the dashes attribute. This phase specifies how many elements (pixels) into the path the
pattern should actually begin in any single graphics operation. Dashing is continuous
through path elements combined with a join-style, but is reset to the dash-offset each
time a cap-style is applied at a line end point.

gcontext— A gcontext

gcontext-dashegcontext Function

Returns:
dashes— Typesequenceor card8.

Returns and (witlsetf) changes the dashes attribute of the specified graphics context.
The sequence must be non-empty and the elements must be noard@realues.

5-58

CLX Programmer’s Reference



Graphics Contexts

The dashes attribute in a graphics context specifies the pattern that is used for graphics
operations which use the dashed line styles. It is aniiaequence with each element
representing the length of a single dash or space. The initial and alternating elements of
the dashes are the even dashes, while the others are the odd dashes. An odd length se-
qguence is equivalent to the same sequence concatenated with itself to produce an even
length sequence. All of the elements of a dashes sequence must be non-zero.

Specifying a single integer valud, for the dashes attribute is an abbreviated way of
specifying a two element sequence with both elements equal to the specifiedNyalue [
N

The unit of measure for dashes is the same as in the ordinary coordinate system. Ideally, a
dash length is measured along the slope of the line, but server implementations are only
required to match this ideal for horizontal and vertical lines.

gcontext— A gcontext

gcontext-displaygcontext Function
Returns:
display— Typedisplay.

Returns thalisplay object associated with the specifigebntext

gcontext —A gcontext

gcontext-equalgcontext-lgcontext-2 Function
Returns:
equal-p— Typeboolean

Returns true if the two arguments refer to the same server resounai jthéy do not.

gcontext-1gcontext-2— A gcontext

gcontext-exposuregcontext Function
Returns:
exposures— Either:off or:on.

Returns and (withetf) changes the exposures attribute of the specified graphics context.
The exposures attribute in a graphics context controls the generatjoapdifics-expo-

sure events for calls to theopy-areaandcopy-planefunctions. If:on, :graphics-ex-
posure events will be reported when calling thepy-areaandcopy-planefunctions

with this graphics context. Otherwise;aff, the events will not be reported.

gcontext— A gcontext

gcontext-fill-rule gcontext Function
Returns:
fill-rule — Either:even-oddor :winding .

Returns and (witlsetf) changes the fill-rule attribute of the specified graphics context.

The fill-rule attribute in a graphics context specifies the rule used to determine the interi-
or of a filled area. It can be specified as eitkeen-oddor :winding.

The:even-oddrule defines a point to be inside if any infinite ray starting at the point
crosses the border an odd number of times. Tangencies do not count as a crossing.

CLX Programmer’s Reference 5-59



Graphics Contexts

The:winding rule defines a point to be inside if any infinite ray starting at the point
crosses an unequal number of clockwise and counterclockwise directed border seg-
ments. A clockwise directed border segment crosses the ray from leftto right as observed
from the point. A counterclockwise segment crosses the ray fromrightto left as observed
from the point. The case where a directed line segment is coincident with the ray is unin-

teresting because you can simply choose a different ray that is not coincident with a seg-
ment.

For both:even-oddand:winding, a point is infinitely small, and the border is an infi-
nitely thin line. A pixel is inside if the center point of the pixel is inside, and the center
point is not on the border. If the center point is on the border, the pixel is inside if, and
only if, the polygon interior is immediately to its right (x increasing direction). Pixels
with centers along a horizontal edge are a special case and are inside if, and only if, the
polygon interior is immediately below (y increasing direction).

gcontext— A gcontext

gcontext-fill-style gcontext Function

Returns:
fill-style— One of:opaque-stippled :solid, :stippled, or tiled.

Returns and (witketf) changes the fill-style attribute of the specified graphics context.
The fill-style attribute of a graphics context defines the contents of the source for line,

text, and fill graphics operations. It determines whether the source image is drawn with a
solid color, atile, or a stippled tile. The possible values and their meanings are as follows:

Fill-Style Meaning

:opaque-stippled Filled with a tile with the same width and height as
stipple, but with the background value used everywhere
stipple has a zero and the foreground pixel value used
everywhere stipple has a one.

:solid Filled with the foreground pixel value.

:stippled Filled with the foreground pixel value masked by
stipple.

tiled Filled with tile.

When drawing lines with line-stytedouble-dash the filling of the odd dashes are con-
trolled by the fill-style in the following manner:

Fill-Style Effect

:opaque-stippled Same as for even dashes.

:solid Filled with the background pixel value.

:stippled Filled with the background pixel value masked by
stipple.

tiled Filled the same as the even dashes.

5-60

CLX Programmer’s Reference



Graphics Contexts

gcontext— A gcontext

gcontext-fontgcontexi&optional metrics-p Function
Returns:
font— Typefont or null.

Returns and (witketf) changes thfontattribute of the specified graphics context. If the
stored font is known, it is returned. If it is not known andietrics-pargument isil,

thennil is returned. If the font is not known amtrics-pis true, then a pseudo-font is
constructed and returned. For a constructed pseudo-font, full metric and property infor-
mation can be obtained, but it does not have a name or aresource ID, and attempts to use
it where a resource ID is required results in an invalid-font error.

The font attribute in a graphics context defines the default text font used in text drawing
operations. When setting the value of the font attribute, eitf@rtaobject or a font
name can be used. If a font name is pasgeEah-fontis call automatically to get thient

object.

gcontext— A gcontext

metrics-p— Specifies whether a pseudo-font is returned when the real font stored in the
graphics context is not known. The defauttiiswhich means do not return a pseu-

do-font.
gcontext-foregroundgcontext Function
Returns:
foreground— Typecard32.
Returns and (witlsetf) changes the foreground attribute of the specified graphics con-
text.

The foreground attribute of a graphics context specifies the pixel value drawn for set bits
in a bitmap and for bits set by a graphics operation.

gcontext— A gcontext

gcontext-function gcontext Function
Returns:
function— Typeboole-constant

Returns théunctionof the specified graphics context.

In all graphic operations, given a source pixel and a corresponding destination pixel, the
resulting pixel drawn is computed bitwise on the bits of the source and destination pix-
els. Thatis, alogical operation is used to combine each bit plane of corresponding source
and destination pixels. The graphics context function attribute specifies the logical op-
eration used via one of the 16 operation codes defined by Common Lisp liootee
function.

The following table shows each of the logical operation codes that can be given by the
function attribute. For each operation code, its result is shown as a logical function of a
source pixeSand a destination pixél.

CLX Programmer’s Reference 5-61



Graphics Contexts

Symbol Result
boole-1 S
boole-2 D
boole-andcl (logandc1SD)
boole-andc2 (logandc2s D)
boole-and (logandS D)
boole-c1l (lognot 9
boole-c2 (lognot D)
boole-clr 0
boole-eqv (logeqvs D
boole-ior (logiorS D
boole-nand (lognands D
boole-nor (lognorS D)
boole-orcl (logorclS D
boole-orc2 (logorc2S D
boole-set 1
boole-xor (logxor S D
gcontext— A gcontext

gcontext-id gcontext Function

Returns:
id — Typeresource-id

Returns the unique ID that has been assigned to the specified graphics context.

gcontext— A gcontext

gcontext-join-stylegcontext Function
Returns:
join-style— One of:bevel, :miter, or:round.

Returns and (witketf) changes the join-style attribute of the specified graphics context.

5-62 CLX Programmer’s Reference



Graphics Contexts

The join-style attribute of a graphics context defines how the segment intersections are
drawn for wide polylines. The possible values and their interpretations are as follows:

Join-Style Interpretation

‘bevel Uses:butt end point styles with the triangular notch
filled.

:miter The outer edges of two lines extend to meet at an angle.

:round A circular arc with diameter equal to the line-width,

centered on the join point.

When the end points of a polyline segment are identical, the effect is as if the segment
was removed from the polyline. When a polyline is a single point, the effect is the same
as when the cap-style is applied at both end points.

gcontext— A gcontext

gcontext-line-stylegcontext Function
Returns:
line-style— One of:dash, :double-dash or:solid.

Returns and (witketf) changes the line-style attribute of the specified graphics context.

The line-style attribute of a graphics context specifies how (which sections of) lines are
drawn for a path in graphics operations. The possible values and their meanings are as

follows:

Line-Style Meaning

:solid The full path is drawn.

:double-dash The full path is drawn, but the even dashes are filled
differently than the odd dashes. Thett style is used
where even and odd dashes meet (see paragraph 5.4.7,
Fill-Rule and Fill-Style).

:on-off-dash Only the even dashes are drawn, with cap-style applied

to all internal ends of the individual dashes, except
:not-last is treated asutt.

gcontext— A gcontext

gcontext-line-width gcontext Function
Returns:
line-width— Typecard16.

Returns thdine-width of the specified graphics context.

The line-width is measured in pixels and can be greater than or equal to one (wide line) or
can be the special value zero (thin line).

CLX Programmer’s Reference 5-63



Graphics Contexts

Wide lines are drawn centered on the path described by the graphics operation. Unless
otherwise specified by the join-style or cap-style, the bounding box of a wide line with
end points [x1, y1], [x2, y2], and width w is a rectangle with vertices at the following real
coordinates:

[X1 — (w*sin/2), y1 + (w*tod2)], [x1+ (w*sin/2),y1l — (w*cod2)],
[x2 — (w*sin/2), y2 + (wco92)], [x2 + (w*sin/2),y2 — (w*c0o92)]

wheresinis the sine of the angle of the line aodis the cosine of the angle of the line. A
pixel is part of the line and, hence, is drawn if the center of the pixel is fully inside the
bounding box (which is viewed as having infinitely thin edges). If the center of the pixel
is exactly on the bounding box, it is part of the line if, and only if, the interior is immedi-
ately to its right (x increasing direction). Pixels with centers on a horizontal edge are a
special case and are part of the line if, and only if, the interior is immediately below (y
increasing direction).

Thin lines (zero line-width) are always one pixel wide lines drawn using an unspecified,
device dependent algorithm. There are only two constraints on this algorithm.

1. Ifalineis drawn unclipped from [x1,y1] to [x2,y2] and if another line is drawn un-
clipped from [x1+dx,y1+dy] to [x2+dx,y2+dy], a point [x,y] is touched by drawing
the first line if, and only if ,the point [x+dx,y+dy] is touched by drawing the second
line.

2. The effective set of points comprising a line cannot be affected by clipping. That s,
a point is touched in a clipped line if, and only if, the point lies inside the clipping
region and the point would be touched by the line when drawn unclipped.

A wide line drawn from [x1,y1] to [x2,y2] always draws the same pixels as a wide line
drawn from [x2,y2] to [x1,y1], not counting cap-style and join-style. Implementors are
encouraged to make this property true for thin lines, but it is not required. A line-width of
zero may differ from a line-width of one in which pixels are drawn. This permits the use
of many manufacturer’s line drawing hardware, which may run much faster than the
more precisely specified wide lines.

In general, drawing a thin line is faster than drawing a wide line of width one. However,
because of their different drawing algorithms, thin lines may not mix well, aesthetically
speaking, with wide lines. Ifitis desirable to obtain precise and uniform results across all
displays, a client should always use a line-width of one, rather than a line-width of zero.

gcontext— A gcontext

gcontext-pgcontext Function
Returns:
gcontext— Typeboolean

Returns nomil if the argument is a graphics context aildotherwise.
gcontext-plane-maskgcontext Function

Returns:
plane-mask— Typecard32.

Returns th@lane-maslof the specified graphics context.

5-64 CLX Programmer’s Reference



Graphics Contexts

The plane-mask attribute of a graphics context specifies which bit planes of the destina-
tion drawable are modified during a graphic operation. The plane-mask is a pixel value
in which a 1 bit means that the corresponding bit plane will be modified and a 0 bit means
that the corresponding bit plane will not be affected during a graphic operations. Thus,
the actual result of a graphic operation depends on both the function and plane-mask at-
tributes of the graphics context and is given by the following expression:

(logior (logand
(boole function source destination)
plane-mask)

(logandc2
destination
plane-mask))

gcontext— A gcontext

gcontext-plistgcontext Function
Returns:
gcontext-p— Typelist.

Returns and (withetf) sets the property list for the specifgabntext This function pro-
vides a hook where extensions can add data.

gcontext— A gcontext

gcontext-stipplegcontext Function
Returns:
stipple— Typepixmap.

Returns thestippleof the specified graphics context.

The stipple attribute of a graphics context is a bitmap used to prevent certain pixels in the
destination of graphics operations from being affected by tiling.

The stipple and tile have the same origin. This origin point is interpreted relative to the
origin of whatever destination drawable is specified in a graphics request. The stipple
pixmap must have depth one and must have the same root as the graphics context. The
tile pixmap must have the same root and depth as the graphics context. For stipple opera-
tions where the fill-style isstippled (but not:opaque-stippled, the stipple pattern is

tiled in a single plane and acts as an additional clip maskatodael with the clip-mask.

Any size pixmap can be used for stipple or tile, although some sizes may be faster to use
than others.

Specifying a pixmap for stipple or tile in a graphics context might or might not resultin a
copy being made. If the pixmap is later used as the destination for a graphics operation,
the change might or might not be reflected in the graphics context. If the pixmap is used
both as the destination for a graphics operation and as a stipple or tile, the results are not
defined.

Some displays have hardware support for tiling or stippling with patterns of specific
sizes. Tiling and stippling operations that restrict themselves to those sizes may run
much faster than such operations with arbitrary size patterns. CLX provides functions to
determine the best size for stipple or tile (geery-best-stippleandquery-best-tile).

gcontext— A gcontext

CLX Programmer’s Reference 5-65



Graphics Contexts

gcontext-subwindow-modegcontext Function
Returns:
subwindow-mode- One of:clip-by-children or:include-inferiors.

Returns and (witketf) changes the subwindow-mode attribute of the specified graphics
context.

The subwindow-mode attribute of a graphics context specifies whether subwindows ob-
scure the contents of their parent window during a graphics operation. For a value of
:clip-by-children , both source and destination windows are clipped by all viewable
put-output class children. This clipping is in addition to the clipping provided by the
clip-mode attribute. For a value:@iclude-inferiors, neither the source nor destination
window is clipped by its inferiors. This results in the inclusion of subwindow contents in
the source and the drawing through of subwindow boundaries of the destination. The use
of :include-inferiors on a window of one depth with mapped inferiors of differing depth

is not illegal, but the semantics are not defined by the core protocol.

gcontext— A gcontext

gcontext-tile gcontext Function
Returns:
tile — Typepixmap.

Returns théile of the specified graphics context.

The tile attribute is a pixmap used to fill in areas for graphics operations. It is so named
because copies of it are laid out side by side to fill the area.

The stipple and tile have the same origin. This origin point is interpreted relative to the
origin of whatever destination drawable is specified in a graphics request. The stipple
pixmap must have depth one and must have the same root as the graphics context. The
tile pixmap must have the same root and depth as the graphics context. For stipple opera-
tions where the fill-style isstippled (but not:opaque-stippled, the stipple pattern is

tiled in a single plane and acts as an additional clip maskaiadael with the clip-mask.

Any size pixmap can be used for stipple or tile, although some sizes may be faster to use
than others.

Specifying a pixmap for stipple or tile in a graphics context might or might not resultin a
copy being made. If the pixmap is later used as the destination for a graphics operation,
the change might or might not be reflected in the graphics context. If the pixmap is used
both as the destination for a graphics operation and as a stipple or tile, the results are not
defined.

Some displays have hardware support for tiling or stippling with patterns of specific
sizes. Tiling and stippling operations that restrict themselves to those sizes may run
much faster than such operations with arbitrary size patterns. CLX provides functions to
determine the best size for stipple or tile (geery-best-stippleandquery-best-tile).

gcontext— A gcontext

5-66 CLX Programmer’s Reference



Graphics Contexts

gcontext-ts-xgcontext Function

Returns:
ts-x— Typeint16.

Returns thes-xattribute of the specified graphics context.

The ts-x and ts-y attributes of a graphics context are the coordinates of the origin for tile
pixmaps and the stipple.

gcontext— A gcontext

gcontext-ts-ygcontext Function

Returns:
ts-y— Typeint16.

Returns thes-yattribute of the specified graphics context.

The ts-x and ts-y attributes of a graphics context are the coordinates of the origin for tile
pixmaps and the stipple.

gcontext— A gcontext

query-best-stipplewidth height drawable Function

Returns:
best-width best-height— Typecard16.

Returns thdvest-widthandbest-heighfor stipple pixmaps on thégrawable

Thedrawableindicates the screen and possibly the window class and depthpAf
only window cannot be specified as ttie@wable The size is returned as width and
height values.

width, height— Specifies the width and height of the desired stipple pattern.

drawable— A drawable.

query-best-tile width height drawable Function

Returns:
best-width best-height— Typecard16.

Returns thdest-widthandbest-heighfor tile pixmaps on thdrawable

Thedrawableindicates the screen and possibly the window class and depthpAf
only window cannot be specified as tti@wable The size is returned as width and
height values.

width, height— Specifies the width and height of the desired tile pattern.

drawable— A drawable.

Copying
Graphics
Contexts

5.3 CLX provides functions to copy some or all attribute values from
one graphics context to another. These functions are generally more efficient
than usingsetfto copygcontextattributes individually.

copy-gcontextsource destination Function

Copies all the values of the attributes of the source graphics context into the destination
graphics context. The source and destination graphics contexts must have the same root
and depth.

source— The sourcgcontext

CLX Programmer’s Reference

5-67



Graphics Contexts

destination— The destinatiolgcontext
copy-gcontext-componentsource destinatio&restkeys Function

Copiesthe values of the specified attributes of the source graphics context to the destina-
tion graphics context. The source and destination graphics contexts must have the same
root and depth.

source— The sourcgcontext
destination— The destinatiogcontext

keys— The remaining arguments are keywords, of typentext-key which specify
which attributes of the graphics context are to be copied.

Destroying 5.5 To destroy a graphics context, Usse-gcontext.
Graphics
Contexts
free-gcontextgcontext Function

Deletes the association between the assigned resource ID and the specified graphics con-
text, and then destroys the graphics context.

gcontext— A gcontext

Graphics 5.6 CLX provides a set of functions to control the automatic graphics
Context context caching mechanism.
Cache

force-gcontext-changegcontext Function

Forces any delayed changes to the specified graphics context to be sent out to the server.
Note thatforce-gcontext-changess called by all of the graphics functions.

gcontext— A gcontext

with-gcontext gcontexi&key :arc-mode :background :cap-style :clip-mask Macro
:clip-ordering :clip-x :clip-y :dashes :dash-offset :exposures
Aill-rule fill-style :font :foreground :function :join-style
Jline-style :line-width :plane-mask :stipple :subwindow-mode
tile :ts-x :ts-y &allow-other-keys &bodybody

Changes the indicated graphics context components to the specified values only within
the dynamic extent of the bodyith-gcontext works on a per-process basis in a multi-
processing environment. Thedyis not surrounded bywith-display form. If there is

no local cache for the specified graphics context, or if some of the component states are
unknown,with-gcontext does the save and restore by creating a temporary graphics
context and copying components to and from it usiojgy-gcontext-components

gcontext— A gcontext

:arc-mode, :background, :cap-style :clip-mask, :clip-ordering, :clip-x, :clip-y,
.dashes :dash-offset :exposures :fill-rule , :fill-style, :font, :foreground,
:function, :join-style, :line-style, :line-width , :plane-mask :stipple, :subwin-
dow-mode :tile, :ts-x, :ts-y —These keyword arguments and associated values
specify which graphics context components are to be changed. Any components not
specified are left unmodified. See paragraph 5.2, Creating Graphics Contexts, for
more information.

body— The body of code which will have access to the altered graphics context.

5-68 CLX Programmer’s Reference



GRAPHIC OPERATIONS

Introduction

6.1 Once connected to an X server, a client can use CLX functions to perform graphic
operations on drawables.

This section describes CLX functions to:
- Operate on areas and planes

- Draw points

. Draw lines

- Draw rectangles

« Draw arcs

. Draw text

Area and Plane

6.2 clear-area clears an area or an entire window to the background.

Operations Since pixmaps do not have backgrounds, they cannot be filled by using the functions de-
scribed in the following paragraphs. Instead, you shouldrase rectangle, which sets
the pixmap to a known value. See paragraph 6.5, Drawing Rectangles, for information
ondraw-rectangle.
clear-areawindow&key (:x 0) (y 0) :width :height :exposures-p Function

Draws a rectangular area in the specifiéaidowwith the background pixel or pixmap

of thewindow The:x and:y coordinates are relative to ttvndoworigin, and specify

the upper-left corner of the rectangular area that is to be cleanddor®zero value for

:height or:width clears the remaining area (height —y or width — x). Ifitimelowhas a
defined background tile, the rectangle is tiled by using a plane-mask of all ones and a
function of:copy. If thewindowhas backgrounthone, the contents of theindoware

not changed. In either case,axposures-pis nonnil, then one or moreexposure

events are generated for regions of the rectangle that are either visible or are being re-
tained in a backing store.

To clear the entire area in a specifigiddow use ¢lear-areawindow).

window— A window.

X,y — Upper-left corner of the area to be cleared. These coordinates are relative to the
windoworigin. Type isnt16.

:width — The width of the area to clearrl to clear to the remaining width of the win-
dow. Type iscard16 or null.

‘height — The height of the area to clearrok to clear to the remaining height of the
window. Type iscard16 or null.

.:exposures-p— Specifies if:exposure events should be generated for the affected
areas. Typéoolean

CLX Programmer’s Reference

6-69



Graphic Operations

copy-areasource gcontext source-x source-y width height Function

destination destination-x destination-y

Copies the specified rectangular area fronsthecedrawable to the specified rectan-
gular area of thelestinationdrawable, combining them as specified in the supplied
graphics contexgcontex}. Thexandy coordinates are relative to their respective draw-
able origin, with each pair specifying the upper left corner of the area.

If either regions of theourcearea are obscured and have not been retained in backing
store, or regions outside the boundaries osthacedrawable are specified, those re-
gions are not copied. Instead, the following occurs on all correspodelistigatiorre-

gions that are either visible or are retained in backing store:

- Ifthedestinatiorrectangle is a window with a background other tinane, these
corresponding regions of thestinatiorare tiled, using plane-mask of all ones and
function ofboole-1(copy source), with that background.

- If the exposures attribute of the graphics contexiristhen:graphics-exposure
events for all correspondirtgstinatiorregions are generated (regardless of tiling
or whether thelestinationis a window or a pixmap).

. If exposures ison but no regions are exposedna-exposureevent is generated.
Note that by default, exposures.@ for new graphics contexts. See Section 5,
Graphics Contexts, for further information.

source— Sourcedrawable.

gcontext— The graphics context to use during the copy operation.

source-xsource-y— The x and y coordinates of the upper-left corner of the area in the
sourcedrawable. These coordinates are relative to slearcedrawable origin.
Type isint16.

width, height— The width and height of the area being copied. These apply to both the
sourceanddestinationareas. Type isard16.

destination— The destinatiodrawable.

destination-xdestination-y— The x and y coordinates of the upper left corner of the
area in thelestinatiordrawable. These coordinates are relative todlestination
drawable origin. Type isSnt16.

copy-planesource gcontext plane source-x source-y width height Function

destination destination-x destination-y

Uses a single bit plane of the specified rectangular area sbtheedrawable along
with the specified graphics contegicontext to modify the specified rectangle area of
thedestinatiordrawable. The drawables specified by g®mirceanddestinatiorargu-
ments must have the same root but need not have the same depth.

Effectively, this operation forms a pixmap of the same deptlesisnationand with a

size specified by thsourcearea. It then uses the foreground and background from the
graphics context (foreground where the bit-plansdarcecontains a one bit, back-
ground where the bit-plane sourcecontains a zero bit), and the equivalent cbpy-

area operation is performed with all the same exposure semantics. This can also be
thought of as using the specified region ofgbarcebit-plane as a stipple with a fill-

style of:opaque-stippledfor filling a rectangular area of tliestination

source— The sourcerawable.
gcontext— The graphics context to use during the copy operation.

6-70

CLX Programmer’s Reference



Graphic Operations

plane— Specifies the bit-plane of tle®urcedrawable. Exactly one bit must be set.
Type ispixel.

source-xsource-y— Thex andy coordinates of the upper-left corner of the area in the
sourcedrawable. These coordinates are relative to sle@rcedrawable origin.
Type isintl6.

width, height— The width and height of the area being copied. These apply to both the
sourceanddestinationareas. Type isard16.

destination— The destinatiorawable.

destination-xdestination-y— The x and y coordinates of the upper-left corner of the
destination area in thdestinatiordrawable. These coordinates are relative to the
destinatiordrawable origin. Type isSnt16.

Drawing Points

6.3 Thedraw-point anddraw-points functions make use of the following graphics
context components: function, plane-mask, foreground, subwindow-mode, clip-x,
clip-y, clip-ordering, clip-region and clip-mask.

The draw-point function uses the foreground pixel and function components of the
graphics context to draw a single point into the specified drawable, dvhikepoints

draws multiple points into the specified drawable. These functions are not affected by
the tile or stipple in the graphics context.

draw-point drawable gcontext x y Function

Combines the foreground pixel in theontextwith the pixel in thelrawablespecified
by thex andy coordinates.

drawable— The destinationlrawable.

gcontext— The graphics context for drawing the point.

X, Yy — Thex andy coordinates of the point drawn. Typenitl6.

draw-points drawable gcontext poin&optional relative-p Function

Combines the foreground pixels in the graphics context with the pixels at each point in
thedrawable The points are drawn in the order listed.

draw-points requires a mode argumerglative-pthat indicates whether the points are
relative to the destination origin or to the previous point. In either case, the first point is
always relative to the destination origin. The rest of the points are relative either to the
drawablés origin or to the previous point, depending on the valuelafive-p

drawable— The destinationrawable.

gcontext— The graphics context for drawing the points.

points— A list of points to be drawn in the order listed. The first point is always relative
to thedrawablés origin; if relative-p the rest of the points are drawn relative to the
previous point, else they are drawn relative taltfagvablés origin. Type igoint-
seq

relative-p— Specifies the coordinate mode used for drawing the pixels either relative to
the origin or to the previous point. Typeolean

Drawing Lines

6.4 The draw-line, draw-lines, anddraw-segmentsfunctions use the following
graphics context components: background, cap-style, clip-x-origin, clip-y-origin, clip-
mask, dash-list, dash-offset, fill-style, foreground, function, plane-mask, line-width,
line-style, stipple, subwindow-mode, tile, ts-x-origin, and ts-y-origin.

CLX Programmer’s Reference

6-71



Graphic Operations

Thedraw-lines function also uses the join-style graphics context component.

draw-line drawable gcontext x1 y1 x2 gdptional relative-p Function

Draws a line from the pointl,y1to the pointx2,y2. Whenrelative-pis true, the first
point is relative to the destination origin but the second point is relative to the first point.
Whenrelative-pis nil, both points are relative to the destination origin.

drawable— The destinationlrawable.
gcontext— The graphics context for drawing the line.
x1, y1, x2, y2— The end points of the line.

relative-p— Specifies the coordinate mode used for drawing the line either relative to
the origin or the previous point. In either case, the first point is always drawn relative
to thedrawablés origin.

draw-lines drawable gcontext poin&key :relative-p :fill-p Function
(:shape :compley

Draws a line between each paipofntsin the points list. The lines are drawn in the order
listed and join correctly at all intermediate points. The join-style graphics context com-
ponent defines the type of joint to use. When the first and last points coincide, the first
and last lines also join correctly to produce a hollow polygon.

When:relative-p is true, the first pointis always relative to the destination origin, but the
rest are relative to the previous point. Wiretative-p isnil, the rest of the points are
drawn relative to the destination origin.

Whenfill-p is true, the polygon defined by theintslist is filled. The:shapekeyword
provides the server with a hint about how to fill the polygsimapecan be eithecom-
plex (by default),:convex or:non-convex

The:convexoperand is the simplest type of area and the fastest to fill. Afill area is con-
vex if every straight line connecting any two interior points is entirely inside the area. For
example, triangles and rectangles are convex polygons.

The:non-convexoperand is for filling an area that is not convex and is also not self-in-
tersecting. Filling this type of area is harder than filling a convex area, but easier than
filling one thatis self-intersecting. For example, the shape of the letter “T” is non-convex
and non-self-intersecting.

The:complexoperand is the most general (and therefore the hardest) type of fill area. A
complexfillarea can be non-convex and self-intersecting. For example, draw the outline
of a bow tie, without lifting your pencil or tracing over an edge twice. This shape is non-
convex and intersects itself at the knot in the middle.

NOTE: Unless you are sure that a shapedasivexor:non-convey it should always be
drawn as acomplex shape. If.convex or :non-convexis specified incorrectly, the
graphics result is undefined.

drawable— The destinationrawable.

gcontext— The graphics context for drawing the lines.
points— A list of points that define the lines. Typepisint-seq
‘relative-p — The coordinate mode of the points.

6-72 CLX Programmer’s Reference



Graphic Operations

fill-p — When true, a filled polygon is drawn instead of a polyline.

:shape— A hint that allows the server to use the most efficient area fill algorithm. Either
:convex, :non-convex or:complex.

draw-segmentsdrawable gcontext segments Function

Draws multiple lines, not necessarily connecsegiments a sequence of the form {x1

y1 x2 y2}*, in which each subsequence specifies the end points of a line segment. Line
segments are drawn in the order giversegmentsUnlike draw-lines, no joining is
performed at coincident end points.

drawable— The destinatiorawable to receive the line segments.

gcontext— Specifies the graphics context for drawing the lines.

segments— The points list for the segments to draw. Typseig

Drawing
Rectangles

6.5 The draw-rectangle and draw-rectangles functions draw hollow or
filled outlines of the specified rectangle or rectangles as if a five-point polyline were spe-
cified for each rectangle, as follows:

[x,y,] x+width,y] [x+width,y+height] [x,y+height] [x,y]

draw-rectangle anddraw-rectanglesuse the following graphics context components:
background, function, plane-mask, foreground, subwindow-mode, cap-style, clip-x,
clip-y, clip-ordering, clip-region and clip-mask, dash-list, dash-offset, fill-style, join-
style, line-width, line-style, stipple, tile, ts-x-origin, and ts-y-origin.

draw-rectangle drawable gcontext x y width heighbptionalfill-p Function

Draws a rectangle defined by they, width, andheightarguments.

drawable— The destinationlrawable.
gcontext— The graphics context for drawing the rectangle.

X, y— The x and y coordinates that define the upper left corner of the rectangle. The
coordinates are relative to the destination origin. Tyj@1s6.

width, height— Specifies the width and height that define the outline of the rectangle.
Type iscard16.

fill-p — Specifies whether the rectangle is filled or not. Tlypelean

draw-rectanglesdrawable gcontext rectanglé&optional fill-p Function

Draws the rectangles in the order listeceictanglesFor the specifietectangleor rec-

tangles no pixel is drawn more than once. The x and y coordinates of each rectangle are
relative to the destination origin and define the upper left corner of the rectangle. If rec-
tangles intersect, the intersecting pixels are drawn multiple times.

drawable— The destinatiodrawable.

gcontext— The graphics context.

rectangles— A list specifying the upper left corner x and y, width and height of the rec-
tangles. Type igect-seq

fill-p — Specified if the rectangles are filled or not. Typbkaslean

CLX Programmer’s Reference

6-73



Graphic Operations

Drawing Arcs

6.6 draw-arc draws a single circular or an elliptical arc, whitaw-arcs draws mul-

tiple circular or elliptical arcglraw-arc anddraw-arcs use the following graphics con-

text components: arc-mode, background, cap-style, clip-x, clip-y, clip-mask, dash-list,
dash-offset, fill-style, foreground, join-style, function, plane-mask, line-width, line-
style, stipple, subwindow-mode, tile, ts-x-origin, and ts-y-origin.

draw-arc drawable gcontext x y width height anglel angle@ptionalfill-p Function

Draws either a circular or an elliptical arc. Also, outlined or filled arcs can be drawn.
Each arc is specified by a rectanglgy( width, andheigh) and two anglesafgleland
angled. The angles are signed integers in radians, with positive indicating counter-
clockwise motion and negative indicating clockwise motion. The start of the arc is speci-
fied byanglel and the path and extent of the arc is specifiedngye2relative to the

start of the arc. If the magnitudeanigle2is greater than 360 degrees, it is truncated to
360 degrees. Theandy coordinates of the rectangle are relative tadttagvablés ori-

gin.
For example, an arc specified ag,widthheightanglelangled has the origin of the
major and minor axes at:

[x+(width/2) y+(height2)]

The infinitely thin path describing the entire circle/ellipse intersects the horizontal axis
at:

[x,y+(height2)] and k+width,y+(heighi2)]
The intersection of the vertical axis is at:
[x+(width/2) y] and k+(width/2),y+heighi

These coordinates can be fractional; that is, they are not truncated to discrete coordi-
nates. Note that the angle values are slightly differentin CLX than in the X protocol spec-
ification.

If fill-p isnil, then only the outline of the arc is drawn. Otherwidd|-ip is true draw-

arc fills the area bounded by the arc outline and one or two line segments, depending on
the arc-mode. If the arc-modedhord, the filled area is bounded by the arc outline and

the line segment joining the arc end points. If the arc-mageislice the filled area is
bounded by the arc outline and the two line segments joining each arc end point with the
center point.

drawable— The destinatiodrawable.

gcontext— The graphics context for drawing the arc.

X,y— The x and y coordinates of the arc rectangle relative to the origindretivable
Type isintl6.

width, height— Specifies the width and height of the rectangle. These are the major and
minor axes of the arc. Typedard16.

anglel— Specifies the start of the arc in radians. Typnige
angle2— Specifies the direction and end point of the arc. Typadte
fill-p — Specifies whether the arc is filled or not. Tyqm®lean

6-74

CLX Programmer’s Reference



Graphic Operations

draw-arcs drawable gcontext arc&optional fill-p Function

Draws circular or elliptical, outlined or filled arcs. Each arc is specified by a rectangle
and two angles. For a more detailed descriptiondsse-arc.

The arcs arefilled in the order listed. For any given arc, no pixel is drawn more than once.
If regions intersect, the intersecting pixels are drawn multiple times.

drawable— Specifies th@lrawable where you want the arcs drawn.

gcontext— Specifies the graphics context for drawing the arc.

arcs— A sequence containing the width, height, angle1, and angle2 arguments defining
the arcs. Sedraw-arc for more detail. Type iarc-seq

fill-p — Specifies whether the arcs are filled or not. Tygmislean

Drawing Text

6.7 CLX provides functions for drawing text using text fonts provided by the X server.
An X font is array of character bit maps indexed by integer codes. See Section 8 for a
complete discussion of the CLX functions used to manage fonts and characters.

Since Common Lisp programs typically represent text as sequences of characters (that
is, strings), CLX text functions must be prepared to convert a Common Lisp character
into the integer code used to index the appropriate character bitmap in a given font. The
‘translate argument to a text function is a function which performs this conversion. The
default:translate function handles all characters that satgfgphic-char-p by con-

verting each character into its ASCII code. Note that the assumption made by the default
:translate function—that is, that an X font indexes bitmaps by ASCII codes—is often
valid, but other encodings are possible. In generataaslate function can perform
complex transformations. It can be used to convert non-character input, to handle non-
ASCII character encodings, and to change the fonts used to access character bitmaps.
The complete behavior oftanslate function is given below by describing a prototyp-

ical translate-function.

CLX offers two different ways to draw text—filled text and block text. dieev-glyph
anddraw-glyphsfunctions create filled text, in which each characterimage is treated as
an areato be filled according to the fill-style of the given graphics context, without other-
wise disturbing the surrounding background. In addition, filled text sends a complex
type of server request which allows a series of font indices, font changes, and horizontal
position changes to be compiled into a single request. Filled text functions use
the following graphics context attributes: background, clip-mask, clip-x-origin, clip-y-
origin, fill-style, font, foreground, function, plane-mask, stipple, subwindow-mode,
tile, ts-x-origin, ts-y-origin.

Block text is a rendering style commonly used by display terminals, in which each char-
acter image appears in the foreground pixel inside a rectangular character cell drawn in
the graphics context background pixel. Tdh@w-image-glyph and draw-image-
glyphsfunctions create block text. Block text functions use the following graphics con-
text attributes: background, clip-mask, clip-x-origin, clip-y-origin, font, foreground,
plane-mask, stipple, subwindow-mode, tile, ts-x-origin, ts-y-origin.

CLX Programmer’s Reference

6-75



Graphic Operations

draw-glyph drawable gcontext x y elemeSikey :translate :width Function
(:size :defaulf
Returns:
output-p— Typeboolean
width— Typeint32 or null.

Draws a single character of filled text represented by the gleement The giverx and

y specify the left baseline position for the character. The first return value is true if the
character is successfully translated and drawmiloif the :translate function did

not translate it. The second return value gives the total pixel width of the character actu-
ally drawn, if known.

Specifying awidth is a hint to improve performance. Thadth is assumed to be the
total pixel width of the character actually drawn. Specifywigth permits appending
the output of subsequent calls to the same protocol request, prgem@eéxtas not
been modified in the interim. Mvidth is not specified, appending of subsequent output
might not occur (unles$ranslate returns the character width).

The:sizespecifies the element size of the destination buffer givérateslate (either 8,
16, or:default). If :default is specified, the size is based on the current font, if known;
otherwise, 16 is used.

drawable— The destinatiodrawable.

gcontext— The graphics context for drawing text.

X, Yy — The left baseline position for the character drawn.

element— A character or other object to be translated into a font index.
:translate — A function to translate text to font indexes. Defautiisanslate-default.
‘width — The total pixel width of the character actually drawn, if known.

:size— Specifies the element size of the destination buffer giverateslate (8, 16, or
:default).

draw-glyphs drawable gcontext x y sequengkey (:start 0) :end :translate Function
‘width (:size :defaul)
Returns:
new-start— Typearray-index or null.
width — Typeint32 or null.

Draws the filled text characters represented by the given sequetadeand:end de-

fine the elements of the sequence which are drawn. The ygedy specify the left
baseline position for the first character. The first return valud i§ all characters

are successfully translated and drawn; otherwise, the index of the first untranslated se-
guence element is returned. The second return value gives the total pixel width of the
characters actually drawn, if known.

Specifying awidth is a hint to improve performance. Thadth is assumed to be the
total pixel width of the character sequence actually drawn. Specifyidth permits
appending the output of subsequent calls to the same protocol request, pyowited
texthas not been modified in the interim:vfidth is not specified, appending of subse-
quent output might not occur (unlesmnslate returns the character width).

The:sizespecifies the element size of the destination buffer giveraiaslate (either

8, 16, ordefault). If :default is specified, the size is based on the current font, if known;
otherwise, 16 is used.

drawable— The destinatiodrawable.

gcontext— The graphics context for drawing text.

6-76 CLX Programmer’s Reference



Graphic Operations

X, Y — The left baseline position for the character drawn.

sequence— A sequence of characters or other objects to be translated into font indexes.
:start, :end — Start and end indexes defining the elements to draw.

:translate — A function to translate text to font indexes. Defauftiisanslate-default.

:width — The total total pixel width of the character actually drawn, if known.

:size— The element size of the destination buffer givertremslate (8, 16, or.de-
fault).

draw-image-glyph drawable gcontext x y elemesidkey :translate :width Function

(:size :defaul)

Returns:
output-p— Typeboolean
width — Typeint32 or null.

Draws a single character of block text represented by the gieerent The giverxand

y specify the left baseline position for the character. The first return value is true if the
character is successfully translated and drawmiloif the :translate function did

not translate it. Thdaranslate function is allowed to return an initial font change. The
second return value gives the total pixel width of the character actually drawn, if known.

The :translate function may not return a horizontal position change, stregv-
image-glyphdoes not generate complex output requests.

Specifying awidth is a hint to improve performance. Thedth is assumed to be the
total pixel width of the character actually drawn. Specifywigth permits appending
the output of subsequent calls to the same protocol request, prgem@extas not
been modified in the interim.:Mvidth is not specified, appending of subsequent output
might not occur (unles$ranslate returns the character width).

The:sizespecifies the element size of the destination buffer givérateslate (either 8,

16, or:default). If :default is specified, the size is based on the current font, if known;
otherwise, 16 is used.

drawable— The destinatiodrawable.

gcontext— The graphics context for drawing text.

X, Yy — The left baseline position for the character drawn.

element— A character or other object to be translated into a font index.

:translate — A function to translate text to font indexes. Defaultfisranslate-de-
fault.

:‘width — The total pixel width of the character actually drawn, if known.

:size— Specifies the element size of the destination buffer giverateslate (8, 16, or
:default).

CLX Programmer’s Reference

6-77



Graphic Operations

draw-image-glyphsdrawable gcontext x y sequentkey (:start 0) :end Function
‘translate :width (:size :defaull)
Returns:
new-start— Typearray-index or null.
width— Typeint32 or null.

Draws the block text characters represented by the gagurence:start and:end de-

fine the elements of theequencevhich are drawn. The givenandy specify the left
baseline position for the first character. The first return valuel i all characters

are successfully translated and drawn; otherwise, the index of the first untranslated se-
quence element is returned. Ttranslate function is allowed to return an initial font
change. The second return value gives the total pixel width of the characters actually
drawn, if known.

The :translate function may not return a horizontal position change, sdregv-
image-glyphsdoes not generate complex output requests.

Specifying awidth is a hint to improve performance. Thédth is assumed to be the
total pixel width of the character sequence actually drawn. Specifyidth permits
appending the output of subsequent calls to the same protocol request, pyowvited
texthas not been modified in the interim:Mfidth is not specified, appending of subse-
quent output might not occur (unleg®nslate returns the character width).

The:sizespecifies the element size of the destination buffer giveratuslate (either
8, 16, or.default). If :default is specified, the size will be based on the current font, if
known; otherwise, 16 is used.

drawable— The destinatiodrawable.

X, Yy — The left baseline position for the character drawn.

gcontext— The graphics context for drawing text.

sequence— A sequence of characters or other objects to be translated into font indexes.
:start, :end — Start and end indexes defining the elements to draw.

:translate — A function to translate text to font indexes. Default#figranslate-de-
fault.

:width — The total total pixel width of the character actually drawn, if known.

:size— The element size of the destination buffer giverramslate (8, 16, or.de-
fault).

translate-function source source-start source-end font destination Function
destination-start
Returns:
first-not-done— Typearray-index.
to-continue— Typeint16, font, ornull.
current-width— Typeint32 or null.

A function used as thé&anslate argument for text functions. Converts elements of the
source(sub)sequence into font indexes for the gifeeriand stores them into tlies-
tination vector.

6-78 CLX Programmer’s Reference



Graphic Operations

The destinationvector is created automatically by CL#estinationis guaranteed to
have room for (source-end source-stainteger elements, startingdsstination-start
Elements oflestinationcan be eithetard8 or card16 integers, depending on the con-
text. fontis the current font, if known, aril otherwise. Starting with the element at
source-starttranslate-function should translate as many elementsairceas pos-

sible (up to thsource-enelement) into indexes in the currémtt, and store them into
destinationThe first return value should be the source index of the first untranslated ele-
ment.

The second return value indicates the changes which should be made to the current text
output request before translating the remaisimgrceelements. If no further elements

need to be translated, the second return value shouolt ifea horizontal motion is re-

quired before further translation, the second return value should be the change in x posi-
tion. If a font change is required for further translation, the second return value should be
the new font.

If known, the pixel width of the translated text can be returned as the third value; this can
allow for appending of subsequent output to the same protocol request, if no overall
width has been specified at the higher level.

source— A sequence of characters or other objects to be translated.

source-start— An array-index specifying the firsburceelement to be translated.

source-end— An array-index specifying the end of smurcesubsequence to be trans-
lated.

font— The font indexed by translatedurceelements.
destination— A vector where translatesburceelements are stored.

destination-start— An array-index specifying the position to begin storing trans-
latedsourceelements.

CLX Programmer’s Reference

6-79



Graphic Operations

6-80 CLX Programmer’s Reference



IMAGES

Introduction 7.1 The X protocol provides for the transfer of images (two-dimensional arrays of pix-
el data) between a client program ardiavable. The format for image data can vary
considerably. In order to present a uniform data representation for the manipulation of a
variety ofimages, CLX defines a spedmhgedata type. Additionamagesubtypes —
image-xyandimage-z— allow for the representation of an image either as a sequence
of bit planes or as an array of pixels. CLX includes functions for accessagg ob-
jects; for transferring image data betweaageobjectsdrawables and files; and also
for direct transfer of raw image data.

Image Types 7.2 Theimagedata type is the base type forialhgeobjectsimage-xyandimage-z
are subtypes of thenagetype which furnish accessors specialized for different image
representations.

Basic Images 7.2.1 The following paragraphs describe the CLX functions that can be used to access
all types ofimageobjects.

image-blue-maskimage Function
Returns:
mask— Typepixel or null.

Returns (and witketf) changes thmaskhat selects the pixel subfield for blue intensity
values. Thanaskis nonnil only for images fordirect-color or :true-color visual

types.
image —An imageobject.

image-depthimage Function
Returns:
depth— Typecard8.

Returns thelepth(that is, the number of bits per pixel) for iheage

image —An imageobject.

image-green-maskmage Function
Returns:
mask— Typepixel or null.
Returns (and witketf) changes the mask that selects the pixel subfield for green intensi-
ty values. The mask is narit only for images fordirect-color or :true-color visual

types.

image —An image object.

CLX Programmer’s Reference 7-81



Images

image-heightimage Function
Returns:
height— Typecard16.

Returns thdeightof theimagein pixels.

image —An image object.

image-nameimage Function
Returns:
name— Typestringable or null.

Returns and (witlsetf) changes theamestring optionally associated with thmeage

image —An imageobject.

image-plistimage Function
Returns:
plist— Typelist.

Returns and (witlsetf) changes thamageproperty list. The property list is a hook for
added application extensions.

image —An image object.

image-red-maskimage Function
Returns:
mask— Typepixel or null.

Returns (and witketf) changes thmaskwhich selects the pixel subfield for red intensi-
ty values. Thenaskis nonnil only for images fordirect-color or :true-color visual

types.
image —An imageobject.

image-width image Function
Returns:
width— Typecard16.

Returns thevidth of theimagein pixels.

image —An image object.

image-x-hotimage Function
Returns:
x-position— Typecard16 or null.

Returns and (witketf) changes the x position of the hot spot for an image used as a cur-
sor glyph. The hot spot position is specified relative to the upper-left originiofaige

image —An imageobject.

image-y-hotimage Function
Returns:
y-position— Typecard16 or null.

Returns and (witketf) changes the y position of the hot spot for an image used as a cur-
sor glyph. The hot spot position is specified relative to the upper-left originioféige

image —An imageobject.

7-82

CLX Programmer’s Reference



Images

XY-Format 7.2.2 Theimage-xysubtype represents an image as a sequence of bitmaps,
Images one for each plane of the image, in most-significant to least-significant bit order. The
following paragraphs describe the additional CLX functions that can be used to access

image-xyobjects.
image-xy-bitmap-listimage Function
Returns:
bitmaps— Typelist of bitmap.

Returns and (witsetf) changes the list of bitmap planes for ilnage

image —An image-xy object.

Z-Format 7.2.3 Theimage-zsubtype represents an image as a two-dimensional array
Images of pixels, in scanline order. The following paragraphs describe the additional CLX func-
tions that can be used to accesage-zobjects.
image-z-bits-per-pixelimage Function
Returns:
pixel-data-size— One of 1, 4, 8, 16, 24, or 32.

Returns and (witketf) changes the number of bits per data unit used to contain a pixel
value for thamage Depending on the storage format for image data, this value can be
larger than the actuahagedepth.

image —An image-zobject.
image-z-pixarray image Function
Returns:
pixarray— Typepixarray.

Returns and (witlsetf) changes the two-dimensional array of pixel data fointage

image —An image-zobject.

Image Functions 7.3 The following paragraphs describe the CLX functions used to:
- Create aimageobject.
. Copy an image or a subimage.
+ Read an image fromdrawable.
- Display an image to drawable.

create-image&key :bit-Isb-first-p :bits-per-pixel :blue-mask Function
:byte-Isb-first-p :bytes-per-line :data :depth :format
:green-mask :height :name :plist :red-mask :width
:x-hot :y-hot
Returns:
image— Typeimage
Creates aimageobject from the giverdata and returns either amage, image-xy; or
animage-z depending on the type of imagdata. If the:datais a list, it is assumed to be
alist of bitmaps and arimage-xyis created. If thedata is apixarray, animage-zis
created. Otherwise, thdata must be an array of bytesafd8), in which case a basic
imageobject is created.

7-83

CLX Programmer’s Reference



Images

If the :data is a list, each element must be a bitmap of equal :sidth and:height
default to the bitmap width —afray-dimension bitmap 1) — and the bitmap height
— (array-dimension bitmap 0) — respectively.depth defaults to the number of bit-
maps.

If the :data is a pixarray, :width and :height default to the pixarray
width — (array-dimension pixarray 1), and the pixarray height —
(array-dimension pixarray 0), respectively.depth defaults to gixarray-depth
:data). The:bits-per-pixel is rounded to a valid size, if necessary. By default e
per-pixel is equal to thedepth.

If the :data is an array otard8, the:width and:height are required to interpret the
image data correctly. Thiits-per-pixel defaults to thedepth, and thedepth defaults
to 1.:bytes-per-line defaults to:

(floor (length :data) (* :bits-per-pixel :height))

The:format defines the storage format ofimage data bytes and can be one of the follow-
ing values:

« :Xy-pixmap — The:data is organized as a set of bitmaps representing image bit
planes, appearing in most-significant to least-significant bit order.

. :z-pixmap — The:data is organized as a set of pixel values in scanline order.

+ bitmap — Similar to:xy-pixmap, except that thedepth must be 1, and 1 and 0
bits represent the foreground and background pixels, respectively.

By default, theformat is :bitmap if :depth is 1; otherwise;z-pixmap.

:bit-Isb-first-p — For a returned image, true if the order of bits in edata byte is
least-significant bit first.

:bits-per-pixel — One of 1, 4, 8, 16, 24, or 32.

:blue-mask — For:true-color or :direct-color images, a pixel mask.

:byte-Isb-first-p — For a returnetinage true if thedata byte order is least-significant
byte first.

:bytes-per-line — For a returneimage the number ofdata bytes per scanline.
.data — Either alist of bitmaps, apixarray, or an array ofard8 bytes.
:depth — The number of bits per displayed pixel.

:format — One of:bitmap, :xy-format, or:z-format.

:green-mask— For:true-color or:direct-color images, a pixel mask.
‘height — A card16 for the image height in pixels.

:name — An optionalstringable for the image name.

:plist — An optional image property list.

:red-mask — For:true-color or:direct-color images, a pixel mask.
:width — A card16 for the image width in pixels.

:X-hot — For acursor image, the x position of the hot spot.

:y-hot — For a cursor image, the y position of the hot spot.

7-84

CLX Programmer’s Reference



Images

copy-imageimage&key (:x 0) (y 0):width :height :result-type Function
Returns:
new-image— Typeimage

Returns a new image, of the giveesult-type, containing a copy of the portion of the
imagedefined by.x, :y, :width, and:height. By default,:width is:

(= (image-width imags :x)

and:height is:

(- (image-heightimags :y)

If necessary, the new image is converted torgsilt-type, that can be one of the fol-
lowing values:

. ’image-x — A basicimage object is returned.
- ’image-xy — Animage-xyis returned.
« ’image-z— Animage-zis returned.

image— Animageobject.

X, 'y — card16 values defining the position of the upper-left corner of the subimage
copied.

:width, :height — card16 values defining the size of subimage copied.
:result-type — One ofimage-x, 'image-xy, or’'image-z

get-imagedrawable&key :x :y :width :height :plane-mask Function
(:format :z-format ) :result-type
Returns:
image— Typeimage

Returns aiimagecontaining pixel values from the region of tirawablegiven by:x,
'y, :width , and:height. The bits for all planes selected by 1 bits in:gi@ne-maskare
returned as zero; the defayllane-maskis all 1 bits. Theformat of the returned pixel
values may be eithexy-format or:z-format.

CLX Programmer’s Reference 7-85



Images

The:result-type defines the type of image object returned:
« ’image-x — A basicimage object is returned.
'image-xy — Animage-xyis returned.
'image-z— Animage-zis returned.

By default,result-type is'image-zif :format is:z-format andimage-xyif :format is
:xy-format.
drawable— A drawable.

X, 1y — card16 values defining the upper-leftawable pixel returned. These argu-
ments are required.

:width, :height — card16 values defining the size of tiraagereturned. These argu-
ments are required.

:plane-mask— A pixel mask.
:format — Either:xy-pixmap or :z-pixmap.
:result-type — One ofimage-X, 'image-xy, or'image-z.

put-image drawable gcontext imaggkey (:src-x 0) (src-y 0) :X 1y Function
:width :height :bitmap-p

Displays a region of thenagedefined bysrc-x, :src-y, :width , and:height on the des-
tination dawable with the upper-left pixel of thiemageregion displayed at thdraw-
ableposition given byx and:y. By default,:width is:

(- (image-width imagg :src-x)
and:height is:
(- (image-heightimagg :src-y)

The following attributes of thgcontextre used to display tireage clip-mask, clip-x,
clip-y, function, plane-mask, and subwindow-mode.

The:bitmap-p argument applies only to images of depth 1. In this cagénifap-p is

true or if theimageis a basiémage object created wittformat :bitmap , theimageis
combined with the foreground and background pixels ofgttuntext 1 bits of the
imageare displayed in the foreground pixel and 0 bits are displayed in the background
pixel.

drawable— The destinatiodrawable.

gcontext— The graphics context used to displayithage

image— Animage object.

'sre-x, :src-y — card16 values defining the upper-left position of theageregion to
display.

X, :y — The position in thdrawablewhere themageregion is displayed. These argu-
ments are required.

:width, :height — card16 values defining the size of tirageregion displayed.

:bitmap-p — If imageis depth 1, then if true, foreground and background pixels are
used to display 1 and 0 bits of tineage

7-86 CLX Programmer’s Reference



Images

Image Files 7.4 CLX provides functions that allow images to be written to a file in a standard X
format. The following paragraphs describe the CLX functions used to:

- Read an image from a file.
- Write an image to a file.

read-bitmap-file pathname Function
Returns:
image— Typeimage

Reads an image file in standard X format and returrimmage object. The returned
imagecan have depth greater than one.
pathname— An image file pathname.

write-bitmap-file pathname imagé&optionalname Function

Writes theémageto an image file in standard X format. Tiagecan have depth greater
than one. Th@mameis an image identifier written to the file; the defaudimeis (or
(image-nameimage 'image).

pathname— An image file pathname.

image— Animage object.

name— A stringable image name.

Direct Image 7.5 For cases where thmagerepresentation is not needed, CLX provides
Transfer functions to read and display image data directly.
get-raw-imagedrawable&key :data (:start 0) :x :y :width :height Function

:plane-mask(:format :z-format) (:result-type ’ (vector card8))

Returns:
data— Typesequenceor card8.
depth— Typecard8.
visual— Typecard?29.

Returns a sequence of image data from the region alrdweablegiven by:x, :y,
:width, and:height. If :data is given, it is modified beginning with the element at the
:start index and returned. Thiepthandvisud type ID of thedrawableare also re-
turned.

The bits for all planes selected by 1 bits in:fil@ane-maskare returned as zero; the de-
fault :plane-maskis all 1 bits. Theformat of the returned pixel values may be either
:xy-format or:z-format. The:result-type defines the type of image data returned.

The calling program is responsible for handling the byte-order and bit-order returned by
the server for thdrawablés display (seelisplay-byte-order anddisplay-image-Isb-
first-p).

drawable— A drawable.

:data — An optionalsequenceof card8.

:start — The index of the firstdata element modified.

X, 1y — card16 values defining the size of tirmage returned. These arguments are
required.

CLX Programmer’s Reference 7-87



Images

:width, :height — card16 values defining the size of the image returned.These argu-
ments are required.

:plane-mask— A pixel mask.
:format — Either:xy—pixmap or :z—pixmap. This argument is required.
:result-type — The type of image data sequence to return.

put-raw-image drawable gcontext datékey (:start 0) :depth :x :y Function
:width :height (:left-pad 0) :format

Displays a region of the image data definedstgrt, :left-pad, :width, and:height on
the destinationlrawable with the upper-left pixel of the image region displayed at the
drawableposition given byx and:y.

The :format can be eitherxy-pixmap, :z-pixmap, or :bitmap. If :xy-pixmap or
:z-pixmap formats are useddepth must match the depth of the destinatioawable
For:xy-pixmap, the data must be in XY format. Farpixmap, the data must be in Z
format for the givendepth.

If the:format is:bitmap, the:depth must be 1. In this case, the image is combined with
the foreground and background pixels ofglentext 1 bits of the image are displayed
in the foreground pixel and 0 bits are displayed in the background pixel.

The:left-pad must be zero forz-pixmap format. For:bitmap and:xy-pixmap for-
mats, theleft-pad must be less than the bitmap-scanline-pad fatittneablés display
(seedisplay-bitmap-format). The first:left-pad bits in every scanline are to be ig-
nored by the server; the actual image begins that many bits into the data.

The following attributes of thgcontextre used to display tireage clip-mask, clip-x,
clip-y, function, plane-mask, and subwindow-mode.

The calling program is responsible for handling the byte-order and bit-order required by
the server for thdrawablés display (seelisplay-byte-order anddisplay-image-Isb-
first-p).

drawable— The destinatiodrawable.

gcontext— The graphics context used to display the image.

data— A sequence of integers.

:start — The index of the first element déatadisplayed.

:depth — The number of bits per pixel displayed. This argument is required.

:X, .y — The position in thdrawablewhere the image region is displayed. These argu-
ments are required.

:width, :height — card16values defining the size of the image region displayed. These
arguments are required.

:left-pad — A card8 specifying the number of leading bits to discard for each image
scanline.

:format — One of:bitmap, :xy-pixmap, or:z-pixmap.

7-88 CLX Programmer’s Reference



FONTS AND CHARACTERS

Introduction

8.1 An Xserver maintains a set of fonts used in the text operations requested by client
programs. An X font is an array of character bit mapglgehg indexed by integer

codes. In fact, font glyphs can also represent cursor shapes or other images and are not
limited to character images. X supports both linear and matrix encoding of font indexes.
With linear encoding, a font index is interpreted as a single 16-bit integer index into a
one-dimensional array of glyphs. With matrix encoding, a font index is interpreted as a
pair of 8-bit integer indexes into a two-dimensional array of glyphs. The type of index
encoding used is font-dependent.

In order to access or use a font, a client program must first open it usiogetiéont
function, sending a font name string as an identifipen-font creates a CLXont ob-
ject used to refer to the font in subsequent functions. Afterward, capiergy-fontwith

the same font name returns the séonéobject. When a fontis no longer in use, a client
program can caltlose-fontto destroy théont object.

A font has several attributes which describe its geometry and its glyphs. CLX provides
functions to return the attributes of a font, as well functions for accessing the attributes of
individual font glyphs. Glyph attributes are referred talaracter attributessince
characters are the most common type of font glyphs. A font also has a property list of
values recorded by the X server. However, the set of possible font properties and their
values are not standardized and are implementation-dependent. Typically, CLX main-
tains a cache of font and character attributes, in order to minimize server requests. How-
ever, the font cache mechanism is implementation-dependent and cannot be controlled
by the client. In some cases, CLX may cregiseudo-fonbbject solely for the purpose

of accessing font attributes. A pseudo-font is represented by a specialftypeobiect

that cannot be used irgaontext If necessary, CLX can automatically convert a pseu-
do-font into a true font, if the name of the pseudo-font is known.

The set of available fonts is server-dependent; that is, font names are not guaranteed to
be portable from one server to the next. However, the public X implementation from
MIT includes a set of fonts that are typically available with most X servers.

The following paragraphs describe CLX functions to:

«  Open and close fonts.

- List available fonts.

«  Access font attributes.

- Access character attributes.

+  Return the size of a text string.

Opening Fonts

8.2 The following paragraphs discuss the CLX functions for opening and closing
fonts.

CLX Programmer’s Reference

8-89



Fonts and Characters

open-fontdisplay name Function
Returns:
font— Typefont.

Opens the font with the giverameand returns #ont object. The name string should
contain only ISO Latin-1 characters; case is not significant.
display— A display object.
name— A font name string.
close-fontfont Function

Deletes the association between the resource 1D afanth&hefontis freed when no

other server resource references it. foimecan be unloaded by the X server if this is the

last reference to tHentby any client. In any case, tfentshould never again be refer-
enced because its resource ID is destroyed. This might not generate a protocol request if
thefontis reference-counted locally or if it is a pseudo-font.

font— A font object.

discard-font-info fonts Function

Discards any state that can be re-obtainedap#n-font This is simply a performance
hint for memory-limited systems.

font— A font object.

Listing Fonts 8.3 The following paragraphs describe CLX functions that return fonts or font names
that match a given pattern string. Such pattern strings should contain only ISO Latin-1
characters; case is not significant. The following pattern characters can be usket for
card matching:

#\* — Matches any sequence of zero or more characters.
#\? — Matches any single character.

For example, the pattern “T?mes Roman” matches the name “Times Roman” but not the
name “Thames Roman”. However, the pattern “T*mes Roman” matches both names.

font-path display&key (:result-type ’list) Function
Returns:
paths— Typesequenceof eitherstring or pathname

Returns dist (by default) of names containing the current search path for fonts. With
setf, this function sets the search path for font lookup. There is only one search path per
server, not one per client. The interpretation of the names is server-dependent, but they
are intended to specify directories to be searched in the order listed.

Setting the path to the empty list restores the default path defined for the server. Note that
as a side-effect of executing this request, the server is guaranteed to flush all cached in-
formation about fonts for which there are currently no explicit resource IDs allocated.

display— A display object.
:result-type — Specifies the type of resulting sequence.

list-font-namesdisplay patterr&key (:max-fonts 65535) (result-type ’list) Function
Returns:
font-name— Typesequenceof string.

Returns a sequence of strings containing the font names that matati¢ine The fonts
available are determined by the font search pathpség@ath). The maximum number
of font names returned is determined ioyax-fonts.

8-90 CLX Programmer’s Reference



Fonts and Characters

display —A display object.

pattern —A string used to match font names. Only font names that match the pattern are
returned.

:max-fonts — The maximum number of font names returned. Default is 65535.
:result-type —The type of sequence to return. Defaullist.

list-fonts display pattern&key (:max-fonts 65535) (result-type ’list) Function
Returns:
font— Typesequenceof font.

Returns a sequence of pseudo-fonts corresponding to the available fonts whose names
match thepattern The fonts available are determined by the font search pafonsee
path). The maximum number dént objects returned is determined :byax-fonts.
display —A display object.

pattern —A string used to match font names. Only fonts whose name matches the pat-
tern are returned.

:max-fonts — The maximum number of fonts returned. Default is 65535.

:result-type —The type of sequence to return. Defaultiss .

Font Attributes 8.4 The following paragraphs describe the CLX functions used to access font attrib-
utes.
font-all-chars-exist-p font Function
Returns:

exists-p— Typeboolean

Returns true if glyphs exist for all indexes in the range returnéahiymin-char and
font-max-char. Returnanil if an index in the range corresponds to empty glyph.

font— A font object.

font-ascentfont Function
Returns:
ascent— Typeintl6.

Returns the verticalscenof thefontused for interline spacing. Thecendefines the
nominal distance in pixels from the baseline to the bottom of the previous line of text.
Some font glyphs may actually extend beyond thedsoént

font —A font object.

font-default-char font Function
Returns:
index— Typecard16.

Returns théndexof the glyph drawn when an invalid or empty glyph index is specified.
If the default index specifies an invalid or empty glyph, an invalid or empty index has no
effect.

font— A font object.

CLX Programmer’s Reference 8-91



Fonts and Characters

font-descentfont Function
Returns:
descent— Typeintl16.

Returns the verticalescenof thefontused for interline spacing. Thiescentlefines
the nominal distance in pixels from the baseline to the top of the next line of text. Some
font glyphs may actually extend beyond the fd@scent

font— A font object.

font-direction font Function
Returns:
direction— Typedraw-direction.

Returns the nominal drawirrectionfor thefont The font drawing direction is only a
hint that indicates whether thbar-widthof most font glyphs is positiveléft-to-right
direction) or negative:fght-to-left direction). Note that X does not provide any di-
rect support for vertical text.

font— A font object.

font-display font Function
Returns:
display— Typedisplay.

Returns thelisplay object associated with the speciffedt

font— A font object.
font-equal font-1 font-2 Function
Returns true if the two arguments refer to the same server resourtkitiey do not.

font-1, font-2— Thefont objects.

font-id font Function
Returns:
id — Typeresource-id

Returns the unique resource ID assigned to the spefrfied

font— A font object.

font-max-bytel font Function
Returns:
max-bytel —Fypecard8.

Returns zero if théontuses linear index encoding. Otherwise, if foat uses matrix
index encoding, a value between 1 and 255 is returned that specifies the maximum value
for the most significant byte of font indexes.

font— A font object.

font-max-byte2 font Function
Returns:
max-byte2 —Fypecard8.

Returns zero if théontuses linear index encoding. Otherwise, if foat uses matrix
index encoding, a value between 1 and 255 is returned that specifies the maximum value
for the least significant byte of font indexes.

font— A font object.

8-92 CLX Programmer’s Reference



font-max-char font

font-min-bytel font

font-min-byte2 font

font-min-char font

Fonts and Characters

Function
Returns:
index— Typecard16.

Returns the maximum valid value used for linear encoded indexes. This function is not
meaningful for fonts that use matrix index encoding.

font— A font object.

Function
Returns:
min-bytel— Typecard8.

Returns zero if théontuses linear index encoding. Otherwise, if foat uses matrix
index encoding, a value between 1 and 255 is returned that specifies the minimum value
for the most significant byte of font indexes.

font— A font object.

Function
Returns:
min-byte2— Typecard8.

Returns zero if théont uses linear index encoding. Otherwise, if foat uses matrix
index encoding, a value between 1 and 255 is returned that specifies the minimum value
for the least significant byte of font indexes.

font— A font object.

Function
Returns:
index— Typecard16.

Returns the minimum valid value used for linear encoded indexes. This function is not
meaningful for fonts that use matrix index encoding.

font— A font object.

font-name font Function

font-p font

font-plist font

Returns:
name— Typestring or null.

Returns the name of thient, ornil if fontis a pseudo-font.

font— A font object.

Function
Returns:
font-p— Typeboolean
Returns true if the argument igant object andhil otherwise.
Function
Returns:
plist— Typelist.

Returns and (witketf) sets the property list for the speciffedt This function provides
a hook where extensions can add data.

font— A font object.

CLX Programmer’s Reference

8-93



Fonts and Characters

font-properties font Function
Returns:
properties— Typelist.

Returns the list of forgropertiesecorded by the X server. The returned listis a property
list of keyword/value pairs. The set of possible font property keywords is implementa-
tion-dependent.

font— A font object.

font-property font name Function
Returns:
property— Typeint32 or null.

Returns the value of the fomtopertyspecified by theamekeyword. The property val-
ue, if it exists, is returned as an uninterpreted 32-bit integer.

font— A font object.

name— A font property keyword.

max-char-ascentfont Function
Returns:
ascent— Typeintl6.

Returns the maximurchar-ascentvalue for all characters font

font— A font object.

max-char-attributes font Function
Returns:
attributes— Typeint16.

Returns the maximumhar-attributes value for all characters fiont

font— A font object.

max-char-descentfont Function
Returns:
descent— Typeintl16.

Returns the maximurhar-descentvalue for all characters font

font— A font object.

max-char-left-bearing font Function
Returns:
left-bearing— Typeint16.

Returns the maximurchar-left-bearing value for all characters fiont

font— A font object.

max-char-right-bearing font Function
Returns:
right-bearing— Typeint16.

Returns the maximurchar-right-bearing value for all characters fiont

font— A font object.

max-char-width font Function
Returns:
width— Typeint16.

Returns the maximumhar-width value for all characters fiont

8-94 CLX Programmer’s Reference



Fonts and Characters

font— A font object.

min-char-ascentfont Function
Returns:
ascent— Typeintl6.

Returns the minimurohar-ascentfor all characters ifont

font— A font object.

min-char-attributes font Function
Returns:
attributes— Typeint16.

Returns the minimurnhar-attributes for all characters ifont

font— A font object.

min-char-descentfont Function
Returns:
descent— Typeintl16.

Returns the minimurnhar-descentfor all characters ifont

font— A font object.

min-char-left-bearing font Function
Returns:
left-bearing— Typeint16.

Returns the minimurahar-left-bearing for all characters ifont

font— A font object.

min-char-right-bearing font Function
Returns:
right-bearing— Typeint16.

Returns the minimurahar-right-bearing for all characters ifont

font— A font object.

min-char-width font Function
Returns:
width— Typeint16.

Returns the minimurmhar-width for all characters ifont

font— A font object.

CLX Programmer’s Reference 8-95



Fonts and Characters

Character 8.5 The following paragraphs describe the CLX functions used to access
Attributes the attributes of individual font glyphs.

char-ascentfont index Function

Returns:
ascent— Typeint16 ornull.
Returnsthe vertical distance in pixels from the baseline to the top of the given font glyph.
Returnail if the index is invalid or specifies an empty glyph, or iffire is a pseudo-
font.

font— A font object.

index— An int16 font index.

char-attributes font index Function

Returns:

attributes— Typeint16 or null.
Returns font-specifiattributesof the given glyph. The interpretation of such attributes
is server-dependent. Retumikif theindexis invalid or specifies an empty glyph, or if
thefontis a pseudo-font.

font— A font object.

index— An int16 font index.

char-descentfont index Function

Returns:

descent— Typeint16 or null.
Returns the vertical distance in pixels from the baseline to the bottom of the given font
glyph. Returnsil if theindexis invalid or specifies an empty glyph, or if tleaitis a
pseudo-font.

font— A font object.

index— An int16 font index.

char-left-bearing font index Function

Returns:
left-bearing— Typeint16 or null.

Returns the left side bearing of the given font glypdréiv-glyph is called with hori-
zontal positiorx, the leftmost pixel of the glyph is drawn at the position [gft-bear-
ing). Returnanil if the indexis invalid or specifies an empty glyph, or if theatis a

pseudo-font.

font— A font object.

index— An int16 font index.

char-right-bearing font index Function

Returns:
right-bearing— Typeint16 or null.

Returns the right side bearing of the given font glyptirdiv-glyph is called with hori-
zontal positiorx, the rightmost pixel of the glyph is drawn at the positiaar{ght-bear-
ing). Returnail if theindexis invalid or specifies an empty glyph, or if toatis a
pseudo-font.

font— A font object.

8-96 CLX Programmer’s Reference



Fonts and Characters

index— An int16 font index.

char-width font index Function

Returns:
width— Typeint16 or null.

Returns thevidth of the given font glyph. Theidthis defined to be equal to (ight-
bearing left-beariny Returnsil if theindexis invalid or specifies an empty glyph, or if
thefontis a pseudo-font.

font— A font object.

index— An int16 font index.

Querying 8.6 CLX defines functions to return the size of text drawn in a specified
Text Size font. See paragraph 6.7, Drawing Text, for a description ofréreslate function used
by the functions in the following paragraphs.
text-extentsfont sequencé&key (:start 0) :end :translate Function

Returns:
width — Typeint32.
ascent— Typeint16.
descent— Typeintl16.
left — Typeint32.
right — Typeint32.
font-ascent— Typeint16.
direction— Typedraw-direction.
first-not-done— Typearray-index or null.

Returns the complete geometry of the gisequencghen drawn in the giveiont. The
fontcan be gcontext in which case the font attribute of the given graphics context is
used.start and:end define the elements of tisequencevhich are used.

The returnedvidthis the total pixel width of the translated character sequence. The re-
turnedascentinddescengive the vertical ascent and descent for characters in the trans-
latedsequenceThe returnedeft gives the left bearing of the leftmost character. The
returnedright gives the right bearing of the rightmost character. The retuiorgeas-
centandfont-descengive the maximum vertical ascent and descent for all characters in
thefont. If :translate causes font changes, tHent-ascenandfont-descentill be the
maximums over all fonts used. THeectionreturns the preferred draw direction for
the font. If:translate causes font changes, then directionwill be nil. Thefirst-not-
donevalue returned igil if all elements of theequencevere successfully translated;
otherwise the index of the first untranslated element is returned.

font— The font (orgcontex) used for measuring characters.
sequence— A sequence of characters or other objects to be translated into font indexes.

:start, :end — Start and end indexes defining the elements to draw.
:translate — A function to translate text to fontindexes. Defaufftisanslate-default.

CLX Programmer’s Reference

8-97



Fonts and Characters

text-width font sequencékey (:start 0) :end :translate Function
Returns:
width— Typeint32.
first-not-done— Typearray-index or null.

Returns the total pixel width of the giveaquencevhen drawn in the givefont The
fontcan be gcontext in which case the font attribute of the given graphics context is
used.:start and:end define the elements of tlsequencevhich are used. The second
value returned iil if all elements of theequencevere successfully translated; other-
wise the index of the first untranslated element is returned.

font — The font (orgcontex) used for measuring characters.

sequence— A sequence of characters or other objects to be translated into font indexes.
:start, :end — Start and end indexes defining the elements to draw.

:translate — A function to translate text to fontindexes. Defautttisanslate-default.

8-98 CLX Programmer’s Reference



COLORS

Colormaps
and Colors

9.1 In X, a color is defined by a set of three numeric values, representing
intensities of red, green, and blue. Red, green, and blue are referred tprandhe

hues. Acolormapis a list of colors, each indexed by an intqmeelvalue. Each entry in

a colormap is called a coleell. Raster graphics displays store pixel values in a special
screen hardware memory. As the screen hardware scans this memory, it reads each pixel
value, looks up the color in the corresponding cell of a colormap, and displays the color
on its screen.

The colormap abstraction applies to all classes of visual types supported by X, including
those for screens which are actually monochrome. For exagmalg.scalescreens use
colormaps in which colors actually specify the monochrome intensity. A typical black-
and-white monochrome display hastatic-gray screen with a two-cell colormap.

The following list describes how pixel values and colormaps are handled for each visual
class.

- :direct-color — A pixel value is decomposed into separate red, green, and blue sub-
fields. Each subfield indexes a separate colormap. Entries in all colormaps can be
changed.

« :gray-scale— A pixel value indexes a single colormap that contains monochrome
intensities. Colormap entries can be changed.

«  :pseudo-color— A pixel value indexes a single colormap that contains color inten-
sities. Colormap entries can be changed.

. :static-color — Same agpseudo-color except that the colormap entries are prede-
fined by the hardware and cannot be changed.

. :static-gray — Same asgray-scale except that the colormap entries are prede-
fined by the hardware and cannot be changed.

. :true-color — Same adirect-color, except that the colormap entries are prede-
fined by the hardware and cannot be changed. Typically, each of the red, green, and
blue colormaps provides a (near) linear ramp of intensity.

CLX provides functions to create colormaps, access and modify colors and color cells,
and install colormaps in screen hardware.

Color Functions

9.2 Acoloris represented by a CLX color object, in which each of the red, green, and
blue values is specified by agb-val — a floating point number between 0.0 and 1.0.
(see paragraph 1.6, Data Types). The value 0.0 represents the minimum intensity, while
1.0 represents the maximum intensity. CLX automatically conkgistsal values into

16-bit integers when sending colors to an X server. The X server, in turn, scales 16-bit
color values to match the actual intensity range supported by the screen.

Colors used orgray-scalescreens must have the same value for each of red, green, and
blue. Only one of these values is used by screen hardware to determine intensity; howev-
er, CLX does not define which of red, green, or blue is actually used.

CLX Programmer’s Reference

9-99



Colors

The following paragraphs describe the CLX functions used to create, access, and modify
colors.

make-color &key (:blue 1.0) (green 1.0) (red 1.0) &allow-other-keys Function
Returns:
color— Typecolor.

Creates, initializes, and returns a neslor object with the specified values for red,
green, and blue.
:blue, :green, :red — rgb-val values that specify the saturation for each primary.

color-blue color Function
Returns:
blue-intensity— Typergb-val.

Returns and (witsetf) sets the value for blue in tieelor.

color— A color object.

color-greencolor Function
Returns:
green-intensity— Typergb-val.

Returns and (witlsetf) sets the value for green in tbelor.

color— A color object.

color-p color Function
Returns:
color-p— Typeboolean

Returns nomil if the argument is aolor object andil otherwise.
color-red color Function

Returns:
red-intensity— Typergb-val.

Returns and (witlsetf) sets the value for red in tigelor.

color— A color object.

color-rgb colorFunction
Returns:
red green blue— Typergb-val.

Returns the values for red, green, and blue ircahar.

color— A color object.

9-100 CLX Programmer’s Reference



Colors

Colormap
Functions

Creating
Colormaps

9.3 A colormap is represented in CLX by eolormap object. A CLX
program can create and manipulate sewalarmap objects. However, the colors con-
tained in acolormap are made visible only when thelormap is installed Each win-
dow is associated with@lormap that is used to translate window pixels into colors
(seewindow-colormap). However, a window will appear in its true colors only if its
associatedolormap is installed.

The total number of colormaps that can be installed depends on the screen hardware.
Most hardware devices allow exactly amormap to be installed at any time. That s,
screen-min-installed-mapsand screen-max-installed-mapsare both equal to 1.
Installing a neveolormap can cause a previously installmdormap to be uninstalled.

Itis important to remember that the set of instatieidrmapsis a hardware resource
shared cooperatively among all client programs connected to an X server.

A CLX program can control the contentsoformapsby allocating color cells in one of

two ways: read-only or read-write. Allocating a read-only color cell establishes a color
value for a specified pixel value that cannot be changed. However, read-only color cells
can be shared among all client programs. Read-only allocation is the best strategy for
making use of limited¢olormap hardware in a multi-client environment.

Alternatively, allocating a read-write color cell allows a client the exclusive right to set
the color value stored in the cell. A cell allocated read-write by one client cannot be allo-
cated by another client, not even as a read-only cell. Note that read-write allocation is
not allowed for screens whose visual type belongs to one:sfatie-gray, :static-col-

or, or:true-color classes. For screens of these classds;map cells cannot be modi-

fied.

Two entries of the default colormap, typically containing the colors black and white, are
automatically allocated read-only. The pixel values for these entries can be returned by
the functionscreen-black-pixelandscreen-white-pixel Applications that need only

two colors and also need to operate on both monochrome and color screens should al-
ways use these pixel values. The nablaskandwhiteare intended to reflect relative
intensity levels and need not reflect the actual colors displayed for these pixel values.

Each screen has a defaadtormap, which is initially installed. By conventions, clients
should allocate only read-only cells from the defadtormap.

9.3.1 CLX provides functions for creating and freeing newolormap
objects.

create-colormapvisual window&optional alloc-p Function

Returns:
colormap— Typecolormap.

Creates and returngalormapof the specifiedisualtype for the screen containing the
window Thevisualtype must be one of those supported by the screen.

Initial color cell values are undefined for visual types belonging to:gnay-scale
:pseudo-color and:.direct-color classes. Color cell values for visual types belonging to
the:static-gray, :static-color, and:true-color classes have initial values defined by the
visual type. However, X does not define the set of possible visual types or their initial
color cell values.

If alloc-pis true, all colormap cells are permanently allocated read-write and cannot be
freed byfree-colors Itis an error foalloc-p to be true when the visual type belongs to
the:static-gray, :static-color, or:true-color classes.

CLX Programmer’s Reference

9-101



Colors

visual— A visual type ID.
window— A window.

alloc-p— Specifies whetherolormap cells are permanently allocated read-write.

copy-colormap-and-freecolormap Function

Returns:
new-colormap— Typecolormap.

Creates and returns a nealormap by copying, then freeing, allocated cells from the
specifiedcolormap

All color cells allocated read-only or read-write in the origodbrmap have the same
color values and the same allocation status iméfrecolormapThe values of unallo-
cated color cells in theew-colormagare undefined. After copying, all allocated color
cells in the originatolormap are freed, as firee-colorswas called. The unallocated
cells of the originatolormap are not affected.

If alloc-pwas true when the origineblormap was created, then all color cells of the
new-colormagre permanently allocated read-write, and all the color cells of the origi-
nal colormap are freed.

colormap— A colormap.

free-colormap colormap Function

Installing
Colormaps

Destroys thecolormapand frees its server resource. If twdormapis installed, it is
uninstalled. For any window associated withdblrmap the window is assignecd
colormap, and acolormap-notify eventis generated. The colors displayed for a win-
dow with anil colormap are undefined.

However, this function has no effect if tbelormapis a screen defaultolormap.

colormap— A colormap.

9.3.2 The following paragraphs describe the CLX functions to install and
uninstall colormaps and to return the set of installed colormaps.

Initially, the defaultcolormap for a screen is installed (but is not in the required list).

install-colormap colormap Function

Installs thecolormap.All windows associated with thlormapimmediately display
with true colors. As a side-effect, additional colormaps might be implicitly uninstalled
by the server.

If the specifieccolormapis not already installed ;eolormap-notify event is generated
on every window associated with tleislormap In addition, for every other colormap
that is implicitly uninstalled, a&olormap-notify eventis generated on every associated
window.

colormap— A colormap.

installed-colormapswindow&key (:result-type 'list) Function

Returns:
colormap— Typesequenceof colormap.

Returns a sequence containing the instaitddrmapsfor the screen of the specified
window The order of the colormaps is not significant.

window— A window.

9-102

CLX Programmer’s Reference



Colors

:result-type — A sub-type okequencehatindicates the type of sequence to return.

uninstall-colormap colormap Function

Allocating Colors

Uninstalls theolormap However, theolormapis not actually uninstalled if this would
reduce the set of installed colormaps below the valsem@en-min-installed-mapsif
thecolormapis actually uninstalled,:@olormap-notify eventis generated on every as-
sociated window.

colormap— A colormap.

9.3.3 The following paragraphs describe the functions for allocating read-only and
read-write color cells, allocating color planes, and freeing color cells.

alloc-color colormap color Function

Returns:
pixel— Typepixel.
screen-colorexact-colo— Typecolor.

Returns gixelfor a read-only color cellin thelormap The color in the allocated cellis

the closest approximation to the requestaldr possible for the screen hardware. The
other values returned give both the approximate color stored in the cell and the exact col-
or requested.

The requestecblor can be eithereolor object or atringable containing a color name.

If a color name is given, a corresponding color value is looked upo@agp-color)

and used. Color name strings must contain only ISO Latin-1 characters; case is not sig-
nificant.

colormap— A colormap.
color — A color object or sstringable containing a color name.

alloc-color-cellscolormap colorsgkey (:planes0) :contiguous-p Function

(:result-type 'list)
Returns:
pixels, mask— Typesequenceof pixels.

Returns aequenceof pixelsfor read-write color cells in theolormap The allocated
cells contain undefined color values. The visual type class abtbemap must be ei-
ther:gray-scalg :pseudo-color or :direct-color.

Thecolorsargument and thelanesargument define the number of pixels and the num-
ber of masks returned, respectively. The number of colors must be positive, and the num-
ber of planes must be non-negative. A total afqfors (expt 2 planeg) color cells are
allocated. The pixel values for the allocated cells can be computed by combining the re-
turned pixels and masks.

The length of the returned masks sequence is eqgpédtes Each mask of the returned
masks sequence defines a single bitplane. None of the masks have any 1 bits in common.
Thus, by selectively combining masks widigior, (expt 2 plane$ distinct combined

plane masks can be computed.

The length of the returnguilxelssequence is equaldolors None of the pixels have any

1 bits in common with each other or with any of the returned masks. By combining pixels
and plane masks withgior, (* colors(expt 2 planeg) distinct pixel values can be pro-
duced.

CLX Programmer’s Reference

9-103



Colors

If the colormapclass isgray-scaleor :pseudo-color eachmaskwill have exactly one

bit set. If thecolormap class isdirect-color, eachmaskwill have exactly three bits set.

If :contiguous-pis true, combining all masks witbgior produces a plane mask with
either one set of contiguous bits (fgray-scaleand:pseudo-colo) or three sets of
contiguous bits (fordirect-color).

colormap— A colormap.

colors— A positive number defining the length of the pixels sequence returned.
:planes— A non-negative number defining the length of the masks sequence returned.
:contiguous-p— If true, the masks form contiguous sets of bits.

‘result-type — A subtype okequencehat indicates the type of sequences returned.

alloc-color-planescolormap colorskey (:reds 0) (:greensO0) (blues0) Function

:contiguous-p (:result-type 'list)

Returns:
pixels— Typesequenceof pixel.
red-maskgreen-maskblue-mask— Typepixel.

Returns aequenceof pixelsfor read-write color cells in theolormap The allocated
cells contain undefined color values. The visual type class ebthemapmust be ei-
ther:gray-scalg :pseudo-color or :direct-color.

The colors argument defines the number of pixels returned. fiéds, :greens and

‘blues arguments define the number of bits set in the returned red, green, and blue
masks, respectively. The number of colors must be positive, and the number of bits for
each mask must be non-negative. A total aiofbrs(expt 2 (+reds greens blugy col-

or cells are allocated. The pixel values for the allocated cells can be computed by com-
bining the returnegixelsand masks.

Each mask of the returned masks defines a pixel subfield for the corresponding primary.
None of the masks have any 1 bits in common. By selectively combining subsets of the
red, green, and blue masks with logior, (expt 2

(+ reds greens blugslistinct combined plane masks can be computed.

The length of the returnguikelssequences equal t@olors None of the pixels have any

1 bits in common with each other or with any of the returned masks. By combining pixels
and plane masks withgior, (* colors(expt2 (+reds greens blugsdistinct pixel values

can be produced.

If :contiguous-pis true, each of returned masks consists of a set of contiguous bits. If the
colormap class isdirect-color, each returned mask lies within the pixel subfield for its
primary.

colormap— A colormap.

colors— A positive number defining the length of the pixels sequence returned.
:planes— A non-negative number defining the length of the masks sequence returned.
:contiguous-p— If true, then the masks form contiguous sets of bits.

:result-type — A subtype o6equencehat indicates the type of sequences returned.

free-colorscolormap pixelsoptional (plane-maslo) Function

Frees a set of allocated color cells fromabermap The pixel values for the freed cells
are computed by combining the giyeirelssequence anglane-mask The total num-
ber of cells freed is:

(* (length pixelg (expt 2 (ogcountplane-masy)

9-104

CLX Programmer’s Reference



Finding Colors

Colors

The:plane-maskmust not have any bits in common with any of the gpigals The
pixel values for the freed cells are produced by usigigr to combine each of the given
pixels with all subsets of thplane-mask

Note that freeing an individual pixel allocatedddpc-color-planesmay not allow it to
be reused until all related pixels computed from the same plane mask are also freed.

A single error is generated if any computed pixel is invalid or if its color cell is not allo-
cated by the client. Even if an error is generated, all valid pixel values are freed.
colormap— A colormap.

pixels— A sequenceof pixel values.

plane-mask— A pixel value with no bits in common with any of thigels

9.3.4 ACLXprogram can ask the X server to return the colors stored in allocated color
cells. The server also maintains a dictionary of color names and their associated color
values. CLX provides a function to look up the values for common colors by names such
as “red”, “purple”, and so forth. The following paragraphs describe the CLX functions
for returning the color values associated with color cells or with color names.

lookup-color colormap name Function

Returns:
screen-colgrexact-color— Typecolor.

Returns the color associated by the X server with the givenrenioe Thenamemust

contain only ISO Latin-1 characters; case is not significant. The first value returned is
the closest approximation to the requested color possible on the screen hardware. The
second value returned is the true color value for the requested color.

colormap— A colormap.
name— A stringable color name.

query-colors colormap pixelkey (:result-type ’list) Function

Changing Colors

Returns:
colors— Typesequenceof color.

Returns aequencef the colors contained in the allocated cells otthlermapspeci-
fied by the giverpixels The values returned for unallocated cells are undefined.
colormap— A colormap.

pixels— A sequenceof pixel values.

-result-type — A subtype okequencehat indicates the type of sequences returned.

9.3.5 The following paragraphs describe the CLX functions to change the colors in
colormap cells.

store-color colormap pixel colo&key (:red-p t) (:green-pt) (:blue-p t) Function

Changes the contents of t@ormapcell indexed by thpixel. Components of the given
colorare stored in the cell. Theed-p, :green-p, and:blue-p arguments indicate which
components of the givesolor are stored.

Thecolor can be eithereolor object or atringable containing a color name. If a color
name is given, a corresponding color value is looked ugddekep-color) and used.
Color name strings must contain only ISO Latin-1 characters; case is not significant.

CLX Programmer’s Reference

9-105



Colors

colormap— A colormap.
pixel — A pixel.
color — A colorobject or astringable containing a color name.

‘red-p, :green-p, :blue-p — booleanvalues indicating which color components to
store.

store-colorscolormap pixel-colorgkey (:red-p t) (:green-pt) (:blue-p t) Function

Changes the contents of multiptdormapcells.pixel-colorsis a list of the form (gixel
color}*), indicating a set of pixel values and the colors to store in the corresponding
cells. Thered-p, :green-p, and:blue-p arguments indicate which components of the
given colors are stored.

Each color can be eithecalor object or atringable containing a color name. If a color
name is given, a corresponding color value is looked ugddekep-color) and used.
Color name strings must contain only ISO Latin-1 characters; case is not significant.
colormap— A colormap.

pixel-colors— A list of the form (fixel colo}*).

:red-p, :green-p, :blue-p — booleanvalues indicating which color components to
store.

9-106

CLX Programmer’s Reference



Colors

Colormap 9.3.6 The complete set of colormap attributes is discussed in the following
Attributes  paragraphs.

colormap-display colormap Function
Returns:
display— Typedisplay.

Returns thalisplay object associated with the specifisaormap

colormap —A colormap.
colormap-equalcolormap-1colormap-2 Function
Returns true if the two arguments refer to the same server resourgkittiey do not.

colormap-1 colormap-2— A colormap.

colormap-id colormap Function
Returns:
id — Typeresource-id

Returns the unique ID assigned to the specd@drmap

colormap— A colormap.

colormap-p colormap Function
Returns:
map-p— Typeboolean

Returns nomil if the argument is aolormap andnil otherwise.
colormap-plist colormap Function

Returns:
colormap-p— Typeboolean

Returns and (witlsetf) sets the property list for the specifiealormap This function
provides a hook where extensions can add data.

colormap— A colormap.

CLX Programmer’s Reference 9-107



Colors

9-108 CLX Programmer’s Reference



CURSORS

Introduction

10.1 A cursoris a visible shape that appears at the current position of the pointer de-
vice. The cursor shape moves with the pointer to provide continuous feedback to the user
about the current location of the pointer. Each window can have a cursor attribute that
defines the appearance of the pointer cursor when the pointer position lies within the
window. Seeavindow-cursor.

A cursor image is composed of a source bitmap, a mask bitiapsjaot a foreground

color, and a background color. Either 1-bit pixmaps or font glyphs can be used to specify
source and mask bitmaps. The source bitmap identifies the foreground and background
pixels of the cursor image; the mask bitmap identifies which source pixels are actually
drawn. The mask bitmap thus allows a cursor to assume any shape. The hot spot defines
the position within the cursor image that is displayed at the pointer position.

In CLX, a cursor is represented bguasor object. This section describes the CLX func-
tions to:

. Create and free cursor objects
«  Change cursor colors
« Inquire the best cursor size

- Access cursor attributes

Creating
Cursors

10.2 The following paragraphs describe the CLX functions used to create
and freecursor objects.

create-cursor&key :source :mask :x :y :foreground :background Function

Returns:
cursor —Typecursor.

Creates and returns a cursarand:y define the position of the hot spot relative to the
origin of the:source. :foregroundand:background colors must be specified, even if
the server only has:atatic-gray or :gray-scalescreen. Thesource :x, and:y argu-
ments must also be specified.

The cursor image is drawn by drawing a pixel fromso@rcebitmap at every position
where the corresponding bit in tneask bitmap is 1. If the correspondirgpurcebit is
1, a pixel is drawn in theoreground color; otherwise, a pixel is drawn in theack-
ground color. If the:mask is omitted, altsourcepixels are drawn. If given, themask
must be the same size as thaeurce

An X server may not be able to support every cursor size. A server is free to modify any
component of the cursor to satisfy hardware or software limitations.

The:sourceand:mask can be freed immediately after the cursor is created. Subsequent
drawing in thesource or :mask pixmap has an undefined effect on the cursor.

:source— The source pixmap. This argument is required.

CLX Programmer’s Reference

10-107



Cursors

‘mask — The mask pixmap.
X, 'y — The hot spot position in theource This argument is required.

:foreground — A color object specifying the foreground color. This argument is re-

quired.
:background — A color object specifying the background color. This argument is re-
quired.
create-glyph-cursor &key :source-font :source-char :mask-font Function
(:mask-char 0) :foreground :background
Returns:

cursor —Typecursor.

Creates and returns a cursor defined by font glyphs. The source bitmap is defined by the
:source-font and:source-char The mask bitmap is defined by thmask-font and
:mask-char. Itis an error if thesource-charand:mask-char are not valid indexes for
the:source-fontand:mask-font, respectively. The hot spot position is defined by the
“character origin” of the source glyph, thatis, the positiarhg#-left-bearingchar-as-

cen] relative to the upper left corner of the source glyph bitmap.

Source and mask bits are compared after aligning the character origins of the source and
mask glyphs. The source and mask glyphs need not have the same size or character ori-
gin position. If themask-font is omitted, all source pixels are drawn.

An X server may not be able to support every cursor size. A server is free to modify any
component of the cursor to satisfy hardware or software limitations.

Either of thesource-font or :mask-font can be closed after the cursor is created.

:source-font— The source font. This is a required argument.

:source-char— An index specifying a glyph in the source font. This is a required argu-
ment.

:mask-font — The mask font.
:mask-char — An index specifying a glyph in the mask font.

:foreground — A color object specifying the foreground color. This is a required argu-

ment.
:background — A color object specifying the background color. This is a required ar-
gument.
free-cursor cursor Function

Destroys theursor object. Cursor server resources are freed when no other references
remain.

cursor— A cursor object.

Curso_r 10.3 The following paragraphs describe the CLX functions used to operate
Functions oncursor objects.
10-108

CLX Programmer’s Reference



Cursors

query-best-cursorwidth height display Function
Returns:
width, height —Typecard16.

Returns the cursor size closest to the requegtiiti andheightthat is best suited to the
display. Thewidthandheightreturned define the largest cursor size supported by the X
server. Clients should always be prepared to limit cursor sizes to those supported by the
server.
display— A display object.
width, height— The requested cursor size.

recolor-cursor cursor foreground background Function
Changes the color of the specifiedrsor. If the cursor is displayed on a screen, the
change is visible immediately.
cursor— A cursor object.
foreground— A color object specifying the new foreground color.

background— A color object specifying the new background color.

Cur_sor 10.4 The complete set of cursor attributes is discussed in the following
Attributes paragraphs.
cursor-display cursor Function
Returns:

display— Typedisplay.
Returns thalisplay object associated with the specifiadsor

cursor —A cursor object.
cursor-equal cursor-1cursor-2 Function
Returns true if the two arguments refer to the same server resourgkittiey do not.

cursor-1, cursor-2— cursor objects.

cursor-id cursor Function
Returns:
id — Typeresource-id.

Returns the unique resource ID that has been assigned to the specgad

cursor— A cursor object.

cursor-p cursorFunction
Returns:
cursor-p— Typeboolean

Returns true if the argument iarsor object andhil otherwise.
cursor-plist cursor Function

Returns:
plist— A property list.

Returns and (witketf) sets the property list for the specifadsor This function pro-
vides a hook where extensions can add data.

cursor— A cursor object.

CLX Programmer’s Reference 10-109



Cursors

10-110 CLX Programmer’s Reference



ATOMS, PROPERTIES,
AND SELECTIONS

Atoms 11.1 In X, anatomis a unique ID used as the name for certain server resources — prop-
erties and selections.

In CLX, an atom is represented by a keyword symbol. For convenience, CLX functions
also allow atoms to be specified by strings and non-keyword symhaisn is a CLX

data type that permits either string or symbol values. A string is equivalenktidhe

given by (ntern string’keyword). A symbol is equivalent to thetom given by (n-

tern (symbol-namesymbo) '’keyword). The symbol name string of a@atom must
consistonly of ISO Latin characters. Note that the casgtom strings is important; the
xatom “Atom” is not the same as thatom “ATOM".

Certain atoms are already predefined by every X server. Predefined atoms are designed
to represent common names that are likely to be useful for many client applications. Note
that these atoms are predefined only in the sense of hatiomg andcard29values, not

in the sense of having required semantics. No interpretation is placed on the meaning or
use of an atom by the server. Ttedom objects predefined by CLX are listed below.

.arc sitalic_angle :string

:atom ‘max_space :subscript_x
:bitmap :min_space :subscript_y
:cap_height :norm_space :superscript_x
:cardinal ‘notice ‘superscript_y
:colormap :pixmap :underline_position
:copyright ‘point :underline_thickness
.cursor :point_size :visualid
:cut_buffer0 ‘primary ‘weight

:cut_bufferl :quad_width :window
:cut_buffer2 ‘rectangle ‘wm_class
:cut_buffer3 :resolution :wm_client_machine
:cut_buffer4 ‘resource_manager ‘wm_command
:cut_buffers 'rgb_best_map :wm_hints
:cut_buffer6 :rgb_blue_map :wm_icon_name
:cut_buffer7 rgb_color_map :wm_icon_size
:drawable :rgb_default_map ‘wm_name
:end_space :rgb_gray_map ‘wm_normal_hints
:family_name :rgb_green_map :wm_size_hints

:font :rgb_red_map ‘wm_transient_for
:font_name :secondary :wm_zoom_hints
:full_name :strikeout_ascent :x_height

.integer :strikeout_descent

CLX Programmer’s Reference

11-111



Atoms, Properties, and Selections

When creating a new atom, the following conventions should be obeyed in order to mini-
mize the conflict between atom names:

- Symbol names beginning with an underscore should be used for atoms that are pri-
vate to a particular vendor or organization. An additional prefix should identify the
organization.

«  Symbol names beginning with two underscores should be used for atoms that are
private to a single application or end user.

CLX provides functions to convert betweerxatom and its corresponding ID integer.
The data type of an atom IDdard29. Thexatom representation is usually sufficient for
most CLX programs. However, it is occasionally useful to be able to convert an atom ID
returned in events or properties into its correspongaigm.

atom-namedisplay atom-id Function
Returns:
atom-name— Typekeyword.

Returns the atom keyword for theom-idon the giverdisplayserver.

display —A display object.
atom-id —A card29.

find-atom display atom-name Function
Returns:
atom-id— Typecard29 or null.

Returns the atom ID for the givatom-nare, if it exists. If no atom of that name exists
for the display servenil is returned.

display —A display object.

atom-name —An xatom.

intern-atom display atom-name Function
Returns:
atom-id— Typecard29 or null.

Creates an atom with the given name and returns its atom ID. The atom can survive the
interning client; it exists until the last server connection has been closed and the server
resets itself.

display —A display object.

atom-name —An xatom.

Properties 11.2 For eachwindow, an X server can record a sgtagferties Properties are a gen-

eral mechanism for clients to associate arbitrary data with a window, and for clients to
communicate window data to each other via the server. No interpretation is placed on
property data by the server itself.

A property consists of a name, a type, a data format, and data. The name of a property is
given by an atom. The property type is another atom used to denote the intended inter-
pretation of the property data. The property formats specifies whether the property data

should be treated as a set of 8-, 16-, or 32-bit elements. The property format must be spe-
cified so that the X server can communicate property data with the correct byte order.

CLX provides functions to:

11-112

CLX Programmer’s Reference



Atoms, Properties, and Selections

«  Create or change a property
«  Return property data
«  List window properties
« Delete a property
change-propertywindow property data type formé&key (:mode :replace) Function
(:start 0) :end :transform
Creates a new window property or changes an existing propegyopgerty-notify

event is generated for théndow

If the:modeis:replace, the newdata type andformatreplace any previous values. The
subsequence of previous data elements that are replaced is definedsbgrthend
:end indexes.

If the :mode is :prepend or :append, no previous data is changed, but
the newdatais added at the beginning or the end, respectively. For these modes, if the
propertyalready exists, the netypeandformatmust match the previous values.

The:transform, if given, is a function used to compute the actual property data stored.
The :transform, which must accept a single data element and return a single trans-
formed data element, is called for each data element. dfetags a string, the default
:transform function transforms each character into its ASCII code; otherwise, the de-
fault is to store thdataunchanged.

window —A window.

property— A property nameatom.

data —A sequence of property data elements.

type —The property typaatom.

format —One of 8, 16, or 32.

:mode —One of:replace, :append, or:prepend.

:start, :end — Specify the subsequence of previous data replaced witete is :re-
place

:transform —A function that transforms each data element into a data value to store.
delete-property window property Function

Deletes thevindow propertylf the propertyalready exists, groperty-notify eventis

generated for thevindow

window —A window.

property —A property nameatom.

CLX Programmer’s Reference 11-113



Atoms, Properties, and Selections

get-property window property&key :type (:start 0) :end :delete-p Function
(:result-type ’list) :transform
Returns:
data— Typesequence
type— Typexatom.
format— Type fnember 8 16 32
bytes-after— Typecard32.

Returns a subsequence of the data for the window propertytaiteand:end indexes
specify the propertglataelements returned. Thigansform function is called for ele-
ments of the specified subsequence to computatiasequence returned. The proper-

ty typeandformatare also returned. The final return value gives the actual number of
data bytes (not elements) following the last data element returned.

If the propertydoes not exist, the returnddtaandtypearenil and the returnefrmat
andbytes-afterare zero.

If the given:type is nonsil but does not match the actual property type, thedatee
returned isnil, thetypeandformatreturned give the actual property values, andbyhe
tes-afterreturned gives the total number of bytes (not elements) in the property data.

If the given:type is nil or if it matches the actual property type, then:
- Thedatareturned is the transformed subsequence of the property data.
- Thetypeandformatreturned give the actual property values.

- Thebytes-aftereturned gives the actual number of data bytes (not elements) fol-
lowing the last data element returned.

In this case, thelelete-pargument is also examined:delete-pis true andbytes-after

is zero, the property is deleted angr@perty-notify eventis generated for thendow
window —A window.

property —A property nameatom.

:type — The requested typeatom or nil.

:start, :end — Specify the subsequence of propet@fareturned.

:transform —A function that transforms each data element into a data value to return.
.delete-p—If true, the existingpropertycan be deleted.

:result-type — The ypeof data sequence to return. Defaultig .

list-properties window&key (:result-type ’list) Function
Returns:
properties— Typesequenceof keyword.

Returns a sequence containing the names wafimtlowproperties

window —A window.
‘result-type — The type of sequence to return. Defaultiss .
rotate-properties window propertie&optional (deltal) Function

Rotates the values of the giveindow propertiesThe value of propertyin the given
sequence is changed to the value of the property at intak(¢ i delta) (length prop-
ertieg). This function operates much like tfeatef macro in Common Lisp.

11-114 CLX Programmer’s Reference



Atoms, Properties, and Selections

If (mod delta(length propertieg) is non-zero, groperty-notify eventis generated on
the window for each property, in the same order as they appearprofiertiesse-
guence.

window —A window.

properties —A sequence afatom values.

delta —The index interval between source and destination elemeptspsrties

Selections

11.3 A selection is an atom used to identify data that can be shared among all client
programs connected to an X server. Unlike properties, the data represented by a selec-
tion is stored by some client program, not by the server.

The data named by a selection is associated with a client window, which is referred to as
theselection owneiThe server always knows which window is the owner of a selection.
Selections can be created freely by clients usitegn-atom to create an atom. CLX
provides functions to inquire or change the owner of a selection andverta selec-

tion.

Conversion is the key to the use of selections for inter-client communication. Suppose
Client A wants to paste the contents of the data named by sel8atimnhis window

WA Client A callsconvert-selectionon selection ator§, sending a conversion request
tothe server. The server, inturn, sendekection-requesevent to the current owner of

S which is windowWB belonging to Client B. Theselection-requestevent contains
therequestomwindow WA), the selection atong), an atom identifying a requested data
type, and the name of a property@h into which the value ddwill be stored.

SinceWBis the owner 0§, it must be associated with the data defined by Client B as the
value ofS. WhenWBgets theselection-requeskvent, Client B is expected to convert

the value of5to the requested data type (if possible) and store the converted value in the
given requestor property. Client B is then expected to sesedextion-notify event to

the requestor windowVA informing the requestor that the converted valueSfar

ready. Upon receiving theelection-notifyevent, Client A can cajjet-property to re-

trieve the converted value and to paste it iv&

NOTE: Clients using selections must always be prepared to haettetion-request
events and/aselection-notify events. There is no way for a client to ask not to receive
these types of events.

Type atoms used in selection conversion can represent arbitrary client-defined inter-
pretations of the selection data. For example, if the value of sel&itantext string,

Client A might request its typeface by requesting conversion tdahietype. A type

atom can also represent a request to the selection owner to perform some action as a
side-effect of conversion (for examplédelete). Some of the predefined atoms of an

X server are intended to be used as selection types (for exacofemnap, :bitmap,

:string, and so forth) However, X does not impose any requirements on the interpreta-
tion of type atoms.

CLX Programmer’s Reference

11-115



Atoms, Properties, and Selections

When multiple clients negotiate for ownership of a selection, certain race conditions
might be possible. For example, two clients might each receive a user command to assert
ownership of theprimary selection, but the order in which the server processes these
clientrequests is unpredictable. As a result, the ownership request initiated most recent-
ly by the user might be incorrectly overridden by the other earlier ownership request. To
prevent such anomalies, the server recotdstachangedimestamp for each change

of selection ownership.

Although inter-client communication via selections is rather complex, it offers impor-
tant benefits. Since selection communication is mediated by an X server, clients can
share data even though they are running on different hosts and using different network-
ing protocols. Data storage and conversion is distributed among clients so that the server
is not required to provide all possible data types or to store multiple forms of selection
data.

Certain predefined atoms are used as standard selections, as described in the X11 Inter-
client Communications Conventions Manual. Some of the standard selections covered
by these conventions are:

- :primary —Theprimary selectionThe main vehicle for inter-client cut and paste
operations.

- :secondary—Thesecondary selectiofin some environments, clients can use this
as an auxiliary toprimary .

- :clipboard — Analogous to akill ring. Represents the most recently deleted data
item.

convert-selectionselection type requesté&optional property time Function

Requests that the value of teectiorbe converted to the specifiggheand stored in
the givenpropertyof therequestomwindow.

If the selectiorhas an owner, the X server sendsedection-requesevent to the owner
window. Otherwise, if no owner exists, the server generates on the requesieca
tion-notify event containing ail propertyatom.

The givenpropertyspecifies the requestor property that will receive the converted val-
ue. If thepropertyis omitted, theselectiorowner will define a property to use. Tiae
furnishes a timestamp representing the time of the conversion request; by default, the
current server time is used.

NOTE: Standard conventions for inter-client communication require that both the re-
questor property and the time must be specified. If possible, the time should be the time
of a user event which initiated the conversion. Alternatively, a timestamp can be ob-
tained by callingchange-property to append zero-length data to some property; the
timestamp in the resultingroperty-notify event can then be used.

selection —Thexatom for the selection name.

type —Thexatom for the requested data type.

requestor —Thewindow to receive the convertestlectionvalue.

property —Thexatom for the requestor property to receive the converted value.

time —A timestamp.

11-116

CLX Programmer’s Reference



Atoms, Properties, and Selections

selection-ownerdisplay selectio&optionaltime Function

Returns:
owner— Typewindow or null.

Returns and (witketf) changes the owner and the last-charigeeifor theselection If
the owner igil, no owner for theelectiorexists. When the owner window foselec-
tionis destroyed, theelectiorowner is set tail without affecting the last-changthe

Thetimeargument is used only when changingdtlectiorowner. If theimeisnil, the

current server time is used. If timeis earlier than the current last-changed time of the
selection or if the time is later

than the current server time, the owner is not changed. Therefore, a client should always
confirm successful change of ownership by immediately callihection-ownerlf the

change in ownership is successful, the last-changed timesafl#wtioris set to the spe-

cified time

If the change in ownership is successful and the new owner is different from the previous
owner, and if the previous owner is milt a:selection-clearevent is generated for the
previous owner window.

NOTE: Standard conventions for inter-client communication require that a non-nil
time must be specified. If possible, the time should be the time
of a user event which initiated the change of ownership. Alternatively, a
timestamp can be obtained by calling change-property to append zero-length data to
some property; the timestamp in the resultprgperty-notify event can then be used.

display— A display.
selection— Thexatom for the selection name.

time— A timestamp.

CLX Programmer’s Reference

11-117



Atoms, Properties, and Selections

11-118 CLX Programmer’s Reference



EVENTS AND INPUT

Introduction 12.1 A client application uses CLX functions to serduestdo an X server over a
display connection returned by thpen-displayfunction. In return, the X server sends
backrepliesandevents Replies are synchronized with specific requests and return re-
quested server information. Events typically occur asynchronously. Device events are
generated by user input from both the keyboard and pointer devices. Other events are
side-effects of the requests sent by CLX functions. The types of events returned by an X
server are summarized below.

Device Events Events Returned
Keyboard :key-press
‘key-release
Pointer :button-press
:button-release
-enter-notify
‘leave-notify
motion-notify
Side-Effect Events Events Returned
Client communication .client-message

‘property-notify
:selection-clear
:selection-notify
:selection-request

Color map state :colormap-notify

Exposure .exposure
:graphics-exposure
‘no-exposure

Input focus .focus-in
:focus-out

Keyboard and pointer state :keymap-notify
‘mapping-notify

Structure control .circulate-request

:configure-request
:map-request
‘resize-request
Window state :circulate-notify
:configure-notify
:create-notify
:destroy-notify
:gravity-notify
:map-notify
‘reparent-notify
:unmap-notify
visibility-notify

CLX Programmer’s Reference 12-119



Events and Input

Client programs can override the server’s normal distribution of evegigbpingthe

pointer or the keyboard. Grabbing causes events from the pointer or keyboard device to
be reported to a single specified window, rather than to their ordinary destinations. It can
also cause the serverfteezethe grabbed device, sending queued events only when ex-
plicitly requested by the grabbing client. Two kinds of grabs are possible:

« Active — Events are immediately grabbed.

. Passive — Events are grabbed later, as soon as a specified device event occurs.

Grabbing aninput device is performed rarely and usually only by special clients, such as
window managers.

This section describes the CLX functions used to:
«  Select events

- Process an event on the event queue

«  Manage the event queue

- Send events to other applications

« Read and change the pointer position

- Manage the keyboard input focus

«  Grab pointer and keyboard events

+ Release queued events

This section also contains a detailed description of the content of each type of event.

Selecting Events

12.2 A client selectswhich types of events it receives from a specific window. The
window event-mask attribute, set by the client, determines which event types are se-
lected (seavindow-event-maskin paragraph 4.3, Window Attributes). Most types of
events are received by a client only if they are selected for some window.

In the X protocol, an event-mask is represented as a bit string. CLX also allows an event
mask to be defined by a list@fent-mask-claskeywords. The functionmake-event-

keys andmake-event-maskcan be used to convert between these two forms of an
event-mask. In general, including ament-mask-classkeyword in an event-mask
causes one or more related event types to be selected. The following table describes the
event types selected by eamlent-mask-claskeyword.

12-120

CLX Programmer’s Reference



Events and Input

Event Mask Keyword

Event Types Selected

:button-1-motion
:button-2-motion
:button-3-motion
:button-4-motion
:button-5-motion
:button-motion

:button-press
:button-release
:colormap-change
:enter-window
:exposure
:focus-change
:key-press
:key-release
‘keymap-state
:leave-window
:owner-grab-button
:pointer-motion
‘pointer-motion-hint
:property-change
‘resize-redirect
:structure-notify

:substructure-redirect

:visibility-change

‘motion-notify when:button-1 is down
:motion-notify when:button-2 is down
:motion-notify when:button-3 is down
:motion-notify when:button-4 is down
:motion-notify when:button-5 is down

:motion-notify when any pointer

button is down
:button-press
‘button-release
:colormap-notify
.enter-notify
:exposure
:focus-in, :focus-out
‘key-press
:key-release
‘keymap-notify
:leave-notify
Pointer events while button is grabbed

:motion-notify

Single:motion-notify only
:property-notify
‘resize-request

:circulate-notify, :configure-notify,

:destroy-notify, : gravity-notify,
:map-notify, :reparent-notify,
:unmap-notify

:circulate-request, :configure-request,
:map-request

:visibility-notify

Some types of events do not have to be selected to be received and therefore are not rep-
resented in an event-mask. For examplestipg-planeandcopy-areafunctions cause
:graphics-exposureand :no-exposure events to be reported, unless exposures are
turned:off in the graphics context (seepy-areaandcopy-planein paragraph 6.2,

Area and Plane Operations, agabntext-exposuresn paragraph 5.4.6, Exposures).

Also, :selection-clear :selection-request :selection-notify and :client-message

events can be received at any time, but they are generally sent only to clients using selec-
tions (see paragraph 12.12.7, Client Communications Evaneg)ping-notify is al-

ways sent to clients when the keyboard mapping is changed.

Any client can select events for any window. A window maintains a separate event-mask
for each interested client. In general, multiple clients can select for the same events on a
window. After the X server generates an event, it sends it to all clients which selected it.
However, the following restrictions apply to sharing window events among multiple cli-
ents. For a given window:

- Only one client at a time can includibstructure-redirect in its event-mask

+  Only one client at a time can can inclubatton-pressin its event-mask

«  Only one client at a time can includesize-redirectin its event-mask

CLX Programmer’s Reference

12-121



Events and Input

Processing
Events

12.3 Events received by a CLX client are stored in ewent queueuntil
they are read and processed. Events are processemdier functions

handler-function &restevent-slotfkey :display :event-key :send-event-p Function

&allow-other-keys
Returns:
handled-p— Typeboolean

The arguments to a handler function are keyword-value pairs that describe the contents
of an event. The actuaVent-slotpassed depend on the event type, exceptlisatay,
:event-key, and:send-event-pare given for all event types. The keyword symbols used

for each event type are event slot names defined liethiare-eventmacro and are de-
scribed in paragraph 12.12.8, Declaring Event Types.

If a handler returns nonil, the event is considerpdocessednd can be removed from
the event queue. Otherwise, if a handler function retilnthe event can remain in the
event queue for later processing.

:display — A display for the connection that returned the event.
:event-key— An event-keykeyword specifying the event type.

:send-event-p— If true, the event was sent from another application usingethe-
eventfunction.

process-eventisplay&key :handler :timeout :peek-p :discard-p Function

(:force-output-p t)
Returns:
handled-p— Typeboolean

Invokes:handler on each queued event untiandler returns nomil. Then, the non-

nil :handler value is returned byrocess-eventlf :handler returnail for each eventin

the event queug@rocess-eventvaits for another event to arrive. If timeout is noh-
and no event arrives within the specified timeout interval (given in sec@ndsgss-
eventreturnanil; if timeout isnil, process-evenwill not return until:handler returns
non-il. process-eventnay wait only once on network data, and therefore timeout pre-
maturely.

If :force-output-p is true,process-evenfirst invokesdisplay-force-output to send

any buffered requests. Jbeek-p is true, a processed event is not removed from the
queue. lfdiscard-p is true, unprocessed events are removed from the queue; otherwise,
unprocessed events are left in place.

If :handler is a sequence, itis expected to contain handler functions for each event type.
The sequence index of the handler function for a particular event type is giyashy (
tion event-key *event-key-vector?.

display —A display.
:handler — A handler function or a sequence of handler functions.

:timeout — Specifies the timeout delay in seconds.
:peek-p— If nil, events are removed from the event queue after processing.
:discard-p — If true, unprocessed events are discarded.

:force-output-p — If true, buffered output requests are sent.

12-122

CLX Programmer’s Reference



Events and Input

event-casalisplay&key :timeout :peek-p :discard-p (:force-output-p t) Macro

&body clauses
Returns:
handled-p— Typeboolean

Executes the matching clause for each queued event until a clause retuniis Tloa-
non-il clause value is then returned. Each of the clauses is a list of theefggnt-(
match[event-slots&rest formg, where:

event-match— Either arevent-key a list ofevent-keys otherwise, ot. Itis an error for
the same key to appear in more than one clause.

event-slots— If given, a list of (non-keyword) event slot symbols defined for the speci-
fied event type(s). See paragraph 12.12.8, Declaring Event Types.

forms— A list of forms that process the specified event type(s). The value of the last
form is the value returned by the clause.

A clause matches an event if thent-keyis equal to or a member of tbeent-matchor

if theevent-matclst orotherwise If not orotherwiseclause appears, itis equivalent to
having a final clause that retumi$. If event-slotss given, these symbols are bound to
the value of the corresponding event slot in the clause forms. Each elemantteslots
can also be a list of the forravent-slot-keyword variablgin which case theariable
symbol is bound to the value of the event slot specified bgwaet-slot-keyword

If every clause returmsl for each event in the event queenent-casevaits for another

event to arrive. Iftimeout is nonnil and no event arrives within the specified timeout
interval (given in secondsyyent-caseeturnanil; if :timeout isnil, event-casevill not

return until a clause returns naii- event-casenay wait only once on network data and
therefore timeout prematurely.

If :force-output-p is true,event-casdirst invokesdisplay-force-output to send any
buffered requests. ipeek-pis true, a processed event is not removed from the queue. If
.discard-p is true, unprocessed events are removed from the queue; otherwise, unpro-
cessed events are left in place.

display— A display.
:handler — A handler function or a sequence of handler functions.

:timeout — Specifies the timeout delay, in seconds.

:peek-p— If nil, events are removed from the event queue after processing.
:discard-p — If true, unprocessed events are discarded.

:force-output-p — If true, buffered output requests are sent.

clauses— Code to process specified event types.

event-conddisplay&key :timeout :peek-p :discard-p (:force-output-p t) Macro

&body clauses
Returns:
handled-p— Typeboolean

Similar toevent-caseexcept that each of the clauses is a list of the ferart-match
[event-slotktest-form&restformg. Executes th&est-formof the clause that matches
each queued event untilest-fornreturns nomil. The bodyormsof the clause are then
executed. The values returned by the last clause body form are then retuemedtby
cond.

CLX Programmer’s Reference

12-123



Events and Input

When aest-fornreturns true angbeek-pisnil, or when dest-fornreturnail and:dis-
card-p is true, the matching event is removed from the event queue before the body
formsare executed.

display —A display.
:handler — A handler function or a sequence of handler functions.

:timeout — Specifies the timeout delay in seconds.

:peek-p— If nil, events are removed from the event queue after processing.
:discard-p — If true, unprocessed events are discarded.

:force-output-p — If true, buffered output requests are sent.

clauses— Code to process specified event types.

Managing the
Event Queue

12.4 The following paragraphs describe CLX functions and macros used to:
- Put a new event on the event queue

- Discard the current event

« Return the current length of the event queue

- Gain exclusive access to the event queue for a client process

queue-eventisplayevent-kewkrest event-slotfkey :append-p Function

&allow-other-keys

Places an event of the type giverglygnt-keynto the event queue. Wheappend-pis

true, the event is placed at the tail of the queue; otherwise, the event is placed at the head
of the queue. The actualent-slotpassed depend on the event type. The keyword sym-
bols used for each event type are event slot names defineddscthee-eventmacro

and are described in paragraph 12.12.8, Declaring Event Types.

display— A display.
event-key— Specifies the type of event placed in the queue.

event-slots— Keyword-value pairs that describe the contents of an event.

:append-p— If true, the event is placed at the tail of the queue; otherwise, the event is
placed at the head of the queue.

discard-current-eventdisplay Function

Returns:
discarded-p— Typeboolean

Discards the current event for tisplay Returnail when the event queue is empty;
otherwise, returnts This function provides extra flexibility for discarding events, but it
should be used carefully; usgent-condinstead, if possible. Typicallgiscard-cur-
rent-eventis called inside a handler function or a clause ah\ant-casdorm and is
followed by another call tprocess-eventevent-caseor event-cond

display —A display.

12-124

CLX Programmer’s Reference



Events and Input

event-listendisplay&optional (timeout 0) Function

Returns:
event-count— Type(or null integer).

Returns the number of events queued locally. If the event queue is ewaptiylisten
waits for an event to arrive. If timeout is noi-and no event arrives within the specified
timeout interval (given in seconds)ent-listenreturnsnil ; if timeout isnil, event-lis-
ten will not return until an event arrives.

display— A display.
timeout— The number of seconds to wait for events.

with-event-queuedisplay&body body Macro

Executes thbodyin a critical region in which the executing client process has exclusive
access to the event queue.

display —A display.
body— Forms to execute.

Sending Events

12.5 Aclient can send an event to a window. Clients selecting this window event will
receive it just like any other event sent by the X server.

send-evenwindowevent-key event-mag&kest event-slot&key Function

:propagate-p :display &allow-other-keys

Sends an event specified by theent-keyandevent-slotdo the given destinationin-
dow Any active grabs are ignored. Téneent-slotpassed depend on the event type. The
keyword symbols used for each event type are event slot names defineddxjdne-
eventmacro and are described in paragraph 12.12.8, Declaring Event Types.

If thewindowis :pointer-window, the destinatiowindowis replaced with the window
containing the pointer. If theindowis :input-focus, the destinatiowindowis replaced

with the descendant of the focus window that contains the pointer or (if no such descen-
dant exists) the focus window. Ttdisplay keyword is only required if th@indowis
‘pointer-window or :input-focus.

Theevent-keynust be one of the core events, or one of the events defined by an exten-
sion, so the server can send the event with the correct byte-order. The contents of the
event are otherwise unaltered and unchecked by the server, exceptdbatitegent-p

event slot is set to true.

If the event-maslsnil, the eventis sent to the client that created the destineitidlow

with anevent-maskf 0; if that client no longer exists, no event is sent. Otherwise, the
event is sent to every client selecting any of the event types specifidiitymaskn

the destinationvindow

If :propagate-pis true and no clients have selected any of the event typesribmask

on the destinatiowindow the destination is replaced with the closest ancesteinef
dowfor which some client has selected a typavient-masknd no intervening window

has that type in its do-not-propagate mask. If no such window exists, owifith@wvis

an ancestor of the focus window amput-focus was originally specified as the des-
tination, the event is not sent to any clients. Otherwise, the event is reported to every cli-
ent selecting on the final destination any of the types specifiedeint-mask

window— The destinatiomvindow for the event.

event-key— An event-keydefining the type of event to send.

CLX Programmer’s Reference

12-125



Events and Input

event-mask— Specifies the event types that receiving clients must select.

event-slots— Keyword-value pairs that describe the contents of an event.

:propagate-p— If true, the event can be propagated to ancestors of the destination win-
dow.

.display — A display.

Pointer Position 12.6 The CLX functions affecting pointer position are discussed in the following para-
graphs.

query-pointer window Function
Returns:
x — Typeint16.
y — Typeint16.
same-screen-p- Typeboolean
child — Typewindow or null.
state-mask— Typecard16.
root-x — Typeint16.
root-y — Typeint16.
root — Typewindow.

Returns the current pointer coordinates relative to the gwrstow If query-pointer
returnanil for same-screens;phe pointer is not on the same screen awith@ow In this
caseguery-pointer returns a value afil for child and a value of zero forandy. If
query-pointer returns true fosame-screen;phe returned andy are relative to the ori-

gin of window. Thechild is the child of the window containing the pointer, if any. The
state-masketurned gives the current state of the modifier keys and pointer buttons. The
returnedroot is the root window currently containing the pointer. The returoetix
androot-y specify the pointer coordinates relativedot.

window— A window specifying the coordinate system for the returned position.

global-pointer-position display Function
Returns:
root-x —Typeint16.
root-y — Typeint16.
root — Typewindow.

Returns theoot window currently containing théisplaypointer and the current posi-
tion of the pointer relative to threot.

display— A display.

pointer-position window Function
Returns:
x — Typeint16.
y — Typeint16.
same-screen-p- Typeboolean
child — Typewindow or null.

Returns the current pointer coordinates relative to the giiredow If pointer-position
returnanil for same-screen;phe pointer is not on the same screen awitheow In this
casepointer-position returns a value afil for child and a value of zero forandy. If
pointer-position returns true fosame-screens;ghe returnea andy are relative to the
origin of window

window— A window specifying the coordinate system for the returned position.

12-126 CLX Programmer’s Reference



Events and Input

motion-eventswindow &key :start :stop (:result-type ’list) Function
Returns:
motion-events— Type (repeat-seq (intl6 x) (intl6 y) (timestamp
time))

Many X server implementations maintain a more precise history of pointer motion be-

tween event notifications. The pointer position at each pointer hardware interrupt can be

stored into a buffer for later retrieval. This is calledtiagion history bufferA paint pro-
gram, for example, may want to have a precise history of where the pointer traveled,
even though for most other applications this amount of detail is grossly excessive.

Themotion-eventsfunction returns all events in the motion history buffer that fall be-
tween the specifiedtart and:stop timestamps (inclusive) and have coordinates that lie
within the specifiedvindow(including borders) at its present placement. If: ftart

time is later than thstop time or if thestart time is in the future, no events are returned.
window— Thewindow containing the returned motion events.

'start, :stop — timestamp values for the time interval for returned motion events.

:result-type — The form of the returned motion events.

warp-pointer destinationdestination-x destination-y Function

Moves the pointer to the given coordinates relative taldstinationwindow. warp-
pointer should be rarely be used since the user should normally be in control of the
pointer positionwarp-pointer generates events just as if the user had instantaneously
moved the pointer from one position to another.

warp-pointer cannot move the pointer outside the confine-to window of an active
pointer grab; an attempt to do so only moves the pointer as far as the closest edge of the
confine-to window.

destination— Thewindow into which the pointer is moved.

destination-x, destination-y- The new position of the pointer relative to the destina-
tion.

warp-pointer-relative display x-offset y-offset Function

Moves the pointer by the given offsets. This function should rarely be used since the user
should normally be in control of the pointer positisarp-pointer-relative generates
events just as if the user had instantaneously moved the pointer from one position to
another.

warp-pointer-relative cannot move the pointer outside the confine-to window of an ac-
tive pointer grab; an attempt to do so only moves the pointer as far as the closest edge of
the confine-to window.

display— A display.
x-offset, y-offset— The offsets used to adjust the pointer position.

warp-pointer-if-inside destination destination-x destination-y Function

source source-x source@optional (source-width0)
(source-heigh0)

Moves the pointer to the given position relative takbstinatiorwindow. However, the
move can only take place if the pointer is currently contained in a visible portion of the
specified rectangle of trewurcewindow. Ifsource-heighis zero, it is replaced with the
current height ofourcewindow minussource-y If source-widths zero, it is replaced

with the current width o§ourcewindow minussource-x

CLX Programmer’s Reference

12-127



Events and Input

warp-pointer-if-inside generates events just as if the user had instantaneously moved
the pointer from one position to anothearp-pointer-if-inside cannot move the point-

er outside the confine-to window of an active pointer grab; an attempt to do so only
moves the pointer as far as the closest edge of the confine-to window.

destination— Thewindow into which the pointer is moved.

destination-x, destination-+ The new position of the pointer relative to thestina-
tion.

source— Thewindow that must currently contain the pointer.

source-x, source-y, source-width, source-heigfthe source rectangle that must cur-
rently contain the pointer.

warp-pointer-relative-if-inside x-offset y-offset source source-x source-y Function

&optional (source-widthD) (source-heigh0)

Moves the pointer by the given offsets. However, the move can only take place if the
pointer is currently contained in a visible portion of the specified rectanglesufuiee
window. If source-heighis zero, it is replaced with the current heighgairce-window
minussource-y If source-widths zero, it is replaced with the current widthsofirce-
windowminussource-x

warp-pointer-relative-if-inside generates events just as if the user had instantaneously
moved the pointer from one position to anotihvarp-pointer-relative-if-inside cannot

move the pointer outside the confine-to window of an active pointer grab; an attempt to
do so only moves the pointer as far as the closest edge of the confine-to window.

x-offset, y-offset— The offsets used to adjust the pointer position.

source— Thewindow that must currently contain the pointer.

source-x, source-y, source-width, source-heighthe source rectangle that must cur-
rently contain the pointer.

Managing Input
Focus

12.7 CLX provides the set-focus-input and focus-input functions to set
and get the keyboard input focus window.

set-input-focusdisplayfocus revert-t&optional time Function

Changes the keyboard input focus and the last-focus-change time. The function has no
effect if the specifiedimeis earlier than the current last-focus-change time or is later
than the current server time; otherwise, the last-focus-change time is set to the specified
time Theset-input-focusfunction causes the X server to geneffaieus-in and:focus-

out events.

If :noneis specified as thiocus all keyboard events are discarded until a new focus
window is set. In this case, thevert-toargument is ignored.

If awindow is specified as tliecusargument, it becomes the keyboard'’s focus window.

If a generated keyboard event would normally be reported to this window or one of its
inferiors, the event is reported normally; otherwise, the event is reported with respect to
the focus window.

If :pointer-root is specified as th@cusargument, the input focus window is set to the
root window of the screen containing the pointer when each keyboard event occurs. In
this case, theevert-toargument is ignored.

12-128

CLX Programmer’s Reference



Events and Input

The specifiedocuswindow must be viewable at the time of the request. fotteswin-
dow later becomes not viewable, the new focus window depends @vénetoargu-
ment. Ifrevert-tois specified agparent, thefocusreverts to the parent (or the closest
viewable ancestor) and the nevert-tovalue is take to b@one. If revert-tois :point-
er-root or :none, thefocusreverts to that value. When tfeeusreverts,focus-in and
:focus-outevents are generated, but the last-focus-change time is not affected.

display— A display.
focus— The new input focug/indow.

revert-to— The focusvindow when focus is no longer viewable.

time— A timestamp.

input-focus display Function

Returns:
focus— Type(or window (member :none :pointer-root)).
revert-to— Type ©r window (member :none :pointer-root :parent)).

Returns théocuswindow,:pointer-root, or:none, depending on the current state of the
focus windowrevert-toreturns the current focus revert-to state.

display— A display.

CLX Programmer’s Reference

12-129



Events and Input

Grabbing 12.8 CLX provides the grab-pointer and ungrab-pointer functions for
the Pointer grabbing and releasing pointer control.
grab-pointer window event-mas&key :owner-p :sync-pointer-p Function
:sync-keyboard-p :confine-to :cursor :time
Returns:

grab-status —One of:already-grabbed, :frozen, :invalid-time,,
:not-viewable, or:success

Actively grabs control of the pointer. Further pointer events are only reported to the
grabbing client. The request overrides any active pointer grab by this client.

If :owner-p isnil, all generated pointer events are reported with respaattiow and

are only reported if selected byent-masKf :owner-p is true, and if a generated pointer
event would normally be reported to this client, it is reported normally; otherwise the
event is reported with respect to thimdow and is only reported if selected &yent-
mask For either value afbowner-p, unreported events are simply discarded.

If :sync-pointer-p is nil, pointer event processing continues normally (asynchronous-

ly); if the pointer is currently frozen by this client, then processing of pointer events is
resumed. Ifsync-pointer-p is true(indicating a synchronous action), the pointer (as
seen via the protocol) appears to freeze, and no further pointer events are generated by
the server until the grabbing client issues a releadiog-eventsrequest. Actual point-

er changes are not lost while the pointer is frozen; they are simply queued for later proc-
essing.

If :sync-keyboard-pisnil, keyboard event processing is unaffected by activation of the
grab. If:sync-keyboard-pis true, the keyboard (as seen via the protocol) appears to
freeze, and no further keyboard events are generated by the server until the grabbing cli-
entissues a releasiafjow-eventsrequest. Actual keyboard changes are not lost while
the keyboard is frozen; they are simply queued for later processing.

If :cursor is specified, it is displayed regardless of what window the pointer is in. Other-
wise, the normal cursor for th@ndowis displayed.

If a:confine-to window is specified, the pointer is restricted to stay within that window.
The confine-to window does not need to have any relationship tavihdow If the
pointer is notinitially in theconfine-towindow, it is warped automatically to the closest
edge (with:enter/:leave-eventggenerated normally) just before the grab activates. If
the:confine-to window is subsequently reconfigured, the pointer is warped automati-
cally as necessary to keep it contained in the window.

grab-pointer generatesenter-notify and:leave-notify eventsgrab-pointer can fail
with a status of:

- :already-grabbedif the pointer is actively grabbed by some other client
- :frozen if the pointer is frozen by an active grab of another client

- :not-viewable if the windowor the:confine-to window is not viewable, or if the
:confine-to window lies completely outside the boundaries of the root window.

- :invalid-time if the specified time is earlier than the last-pointer-grab time or later
than the current server time. Otherwise, the last-pointer-grab time is set to the speci-
fied time, with current-time replaced by the current server time, and a vadue-of
cessis returned bygrab-pointer.

12-130 CLX Programmer’s Reference



Events and Input

window— Thewindow grabbing the pointer.
event-mask— A pointer-event-mask

:owner-p — If true, all client windows receive pointer events normally.

:sync-pointer-p — Indicates whether the pointer is in synchronous or asynchronous
mode.

:sync-keyboard-p— Indicates whether the keyboard is in synchronous or asynchro-
nous mode.

:confine-to — A window to which the pointer is confined.
:cursor — A cursor.

:time — A timestamp. A nil value means the current server time is used.

ungrab-pointer display&key :time Function

Releases the pointer if this client has it actively grabbed (from ejthbrpointer,
grab-button, or from a normal button press), and releases any queued events. The re-
quest has no effect if the specifigidne is earlier than the last-pointer-grab time or is
later than the current server time. Amgrabpointer is performed automatically if the
event window orconfine-to window for an active pointer grab becomes not viewable.

This request generatemnter-notify and:leave-notify events.

display— A display.

:time — A timestamp.

change-active-pointer-grabdisplay event-maskoptional cursor time Function

Changes the specified dynamic parameters if the pointer is actively grabbed by the client
and the specifieimeis no earlier than the last-pointer-grab time and no later than the
current server time. The interpretatioresént-maskndcursorare as igrab-pointer.
change-active-pointer-grabhas no effect on the passive parametergodla-button.
display— A display.

event-mask— A pointer-event-mask

cursor— A cursor or nil.

time— A timestamp.

CLX Programmer’s Reference

12-131



Events and Input

Grabbing 12.9 CLX provides the grab-button and ungrab-button functions for
a Button passively grabbing and releasing pointer control.
grab-button window button event-magikey (:modifiers 0) :owner-p Function

:sync-pointer-p :sync-keyboard-p:confine-to :cursor

This request establishes a passive grab. If the spegiftamhis pressed when the speci-
fied modifier keys are down (and no other buttons or modifier keys are down), and:

- windowcontains the pointer

«  The:confine-to window (if any) is viewable

«  These constraints are not satisfied for any ancestemafow
then:

«  The pointer is actively grabbed as described gi#tb-pointer

- The last-pointer-grab time is set to the time that the button was pressed (as trans-
mitted in the:button-press event)

«  The:button-press event is reported

The interpretation of the remaining arguments is the same agnafitpointer. The
active grab is terminated automatically when all buttons are released (independent of the
state of modifier keys).

A zeromodifiermask is equivalent to issuing the request for all possible modifier-key
combinations (including the combination of no modifiers). Itis not required that all spe-
cified modifiers have currently assigned keycodelsutonof :any is equivalent to is-

suing the request for all possible buttons. Otherwise, it is not required that the specified
buttoncurrently be assigned to a physical button.

window— A window.
button— The button (typeard8) pressed orany.
event-mask— A pointer-event-mask

:modifiers — A modifier-mask.
:owner-p — If true, all client windows receive pointer events normally.

:sync-pointer-p — Indicates whether the pointer is handled in a synchronous or asyn-
chronous fashion.

:sync-keyboard-p— Indicates whether the keyboard is in synchronous or asynchro-
nous mode.

:confine-to — A window to which the pointer is confined.

:cursor — A cursor.

12-132 CLX Programmer’s Reference



Events and Input

ungrab-button window buttor&key (:modifiers 0) Function

Releases the passive button/key combination on the spewifiddwif it was grabbed

by this client. A zeranodifiermask is equivalent to issuing the request for all possible
modifier combinations including the combination of no modifierbuftonof :any is
equivalent to issuing the request for all possible buttons. This has no effect on an active
grab.

window— A window.
button— The button (typeard8) that is released ocany.
:modifiers — A modifier-mask.

Grabbing 12.10 CLX provides the grab-keyboard and ungrab-keyboard functions
the Keyboard for actively grabbing and releasing control of the keyboard.
grab-keyboard window&key :owner-p :sync-pointer-p :sync-keyboard-p Function
‘time
Returns:

grab-status —One of:already-grabbed, :frozen, :invalid-time ,
:not-viewable, or:success

Actively grabs control of the keyboard. Further key events are reported only to the grab-
bing client. The request overrides any active keyboard grab by this gliebtkey-
board generatesfocus-in and:focus-out events.

If :owner-pisnil, all generated key events are reported with respeghtiow If :own-

er-p is true, then a generated key event that would normally be reported to this client is
reported normally; otherwise the event is reported with respect witidew Both
:key-pressand:key-releasesvents are always reported, independent of any event selec-
tion made by the client.

If :sync-keyboard-pis nil, keyboard event processing continues normally (asynchro-
nously); if the keyboard is currently frozen by this client, then processing of keyboard
events is resumed.:Bync-keyboard-pis true, the keyboard (as seen via the protocol)
appears to freeze, and no further keyboard events are generated by the server until the
grabbing clientissues a releasatigpw-eventsrequest. Actual keyboard changes are not

lost while the keyboard is frozen; they are simply queued for later processing.

If :sync-pointer-pisnil, pointer event processing is unaffected by activation of the grab.

If :sync-pointer-pis true, the pointer (as seen via the protocol) appears to freeze, and no
further pointer events are generated by the server until the grabbing clientissues a releas-
ingallow-eventsrequest. Actual pointer changes are not lost while the pointer is frozen;
they are simply queued for later processing.

The grab can fail with a status of:

- :already-grabbedif the keyboard is actively grabbed by some other client

- :frozen if the keyboard is frozen by an active grab from another client

- :not-viewable if windowis not viewable

- :invalid-time if the specified time is earlier than the last-keyboard-grab time or lat-
er than the current server time. Otherwigab-keyboard returns a status cuc-

cessand last-keyboard-grab time is set to the specified time, with current-time
replaced by current server time.

CLX Programmer’s Reference 12-133



Events and Input

window— A window.

:owner-p — If true, all client windows receive keyboard input normally.

:sync-pointer-p — Indicates whether the pointer is in synchronous or asynchronous
mode.

:sync-keyboard-p— Indicates whether the keyboard is in synchronous or asynchro-
nous mode.

:time — A timestamp.

ungrab-keyboard display&key :time Function

Releases the keyboard if this client has it actively grabbed (from ertiekeyboard

or grab-key), and releases any queued events. The request has no effect if the specified
time is earlier than the last-keyboard-grab time or is later than the current server time. An
ungrab-keyboard is performed automatically if the event window for an active key-
board grab becomes not viewable.

display— A display.

:time — A timestamp.

Grabbing a Key

12.11 The following paragraphs describe the functions used for passively grabbing
and releasing the keyboard.

grab-key window key&key (:modifiers 0) :owner-p :sync-pointer-p Function

:sync-keyboard-p :time

This request establishes a passive grab on the keyboard. If the sp@gifigdich can
also be a modifier key) is pressed (whether or not any specified modifier keys are down),
and either of the following is true:

- windowis an ancestor of (or is) the focus window
« windowis a descendant of the focus window and contains the pointer

«  These constraints are not satisfied for any ancesteinofow then the following
occurs:

. The keyboard is actively grabbed as describagtab-keyboard

«  The last-keyboard-grab time is set to the time thdtel@as pressed (as trans-
mitted in thekey-pressevent)

«  The:key-pressevent is reported

The interpretation of the remaining arguments is agrids-keyboard. The active grab
is terminated automatically when the specikeghas been released, independent of the
state of the modifier keys.

A zero modifier mask is equivalent to issuing the request for all possible modifier com-
binations (including the combination of no modifiers). Itis not required that all specified
modifiers have currently assigned keycodegesof :any is equivalent to issuing the
request for all possible keycodes. Otherwisek#enust be in the range specified by
display-min-keycodeanddisplay-max-keycodein the connection setup.

12-134

CLX Programmer’s Reference



Events and Input

window— A window.
key— The key (typecard8) to be grabbed amny.
:modifiers — A modifier-mask.

:owner-p — If true, all client windows receive keyboard input normally.

:sync-pointer-p — Indicates whether the pointer is in synchronous or asynchronous
mode.

:sync-keyboard-p— Indicates whether the keyboard is in synchronous or asynchro-
nous mode.

‘time — A timestamp.

ungrab-key window key&key (:modifiers 0) Function

Releases thieeycombination on the specifi@dndowif it was grabbed by this client. A
zero modifier mask afiny is equivalent to issuing the request for all possible modifier
combinations (including the combination of no modifierdiefof :any is equivalent to
issuing the request for all possible keycodagrab-key has no effect on an active grab.
window— A window.

key— The key (typecard8) to be released oany.

:modifiers — A modifier-mask.

Event Types

Keyboard and
Pointer Events

12.12 The following paragraphs contain detailed descriptions of the contents of each
event type. In CLX, events are not actually represented by structures, but rather by lists
of keyword values passed to handler functions or by values bound to symbols within the
clauses oévent-caseandevent-condforms. Nevertheless, it is convenient to describe
event contents in terms of slots and to identify the components of events with slot name
symbols. In fact, CLX uses tlgeclare-eventmacro to define event slot symbols and to

map these symbols to specific event data items returned by the X server (see paragraph
12.12.8, Declaring Event Types).

The following paragraphs describe each event type, listiegétst-keykeyword sym-

bol and its slot name symbols. An event keyword symbol identifies a specific event type.
An event keyword symbol can be given as an argumeetid-evenbr to an event han-

dler function; it can also appear in theent-matcHorm of anevent-caseclause. An

event slot name symbol identifies a specific event data item. Event slot names appear as
keywords with associated values among the arguments passatiteventor to an

event handler function; as non-keyword symbols, they can also beirethies|otéorm

of anevent-caseclause.

In certain cases, more than one name symbol is defined for the same event slot. For ex-
ample, in:key-pressevents, the symboisindowandevent-windowboth refer to the
same event data item.

12.12.1 The keyboard and pointer events are&key-press, :key-release,
‘button-press, :button-releasg:motion-notify, :enter-notify, and:leave-notify.

:key-press, :key-release, :button-press, :button-release Event Type

Selected hy— :key-press :key-release :button-press, or :button-release

CLX Programmer’s Reference

12-135



Events and Input

:key-press and:key-releaseevents are generated when a key or pointer button changes
state. Note thatkey-pressand :key-releaseare generated for all keys, even those
mapped to modifiers. All of these event types have the same slots. The window contain-
ing the pointer at the time of the event is referred to asdbeewindow. Theevent
windowis the window to which the event is actually reported. The event window is
found by starting with the source window and looking up the hierarchy for the first win-
dow on which any client has selected interest in the event (provided no intervening win-
dow prohibits event generation by including the event type in its
do-not-propagate-mask). The actual window used for reporting can be modified by ac-
tive grabs and, in the case of keyboard events, can be modified by the focus window.

A :button-pressevent has the effect of a temporgrgb-button. When a pointer but-

ton is pressed and no active pointer grab is in progress, the ancestors of the source win-
dow are searched from tmeot down, looking for a passive grab to activate. If no
matching passive grab on the button exists, then an active grab is started automatically
for the client receiving théutton-press event, and the last-pointer-grab time is set to

the current server time. The effect is essentially equivalent to cgitiogbutton with

the following arguments:

Argument Description

window The event window.

button The button that was pressed.

event-mask The client’s selected pointer events on the event
window.

:modifiers 0

:owner-p t if the client hasowner-grab-button selected
on the event window; otherwisd .

:sync-pointer-p nil

:sync-keyboard-p nil

:confine-to nil

:cursor nil

The:button-pressgrab is terminated automatically when all buttons are released. The
functionsungrab-pointer andchange-active-pointer-grabcan both be used to modify
the:button-press grab.

window, event-window— Typewindow.

The window receiving the event.

code— Typecards.

The codeargument varies with the event type. Hay-pressand:key-re-
lease codeis the keycode (see paragraph 14.4, Keyboard Encodings). For
:button-press and:button-release codeis the pointer button number.

12-136

CLX Programmer’s Reference



Events and Input

x — Typeint16.
If event-windovis on the same screen as root, thandy are the pointer coor-
dinates relative to thevent-windowotherwisex andy are zero.

y — Typeint16.
If event-windovis on the same screen as root, thandy are the pointer coor-
dinates relative to thevent-windowotherwisex andy are zero.

state— Typecard16.
A mask that gives the state of the buttons and modifier keys just before the
event.

time— Typecard32
A timestamp for the moment when the event occurred.

root — Typewindow.

The root window of the source window.

root-x — Typeint16.
The x coordinate of the pointer position relative to root at the time of the event.

root-y — Typeintl16.
The y coordinate of the pointer position relative to root at the time of the event

child — Type @r null window).

If the source window is an inferior of tegent-windowchild is set to the child
of event-windowhat is an ancestor of (or is) the source window; otherwise, itis
set tonil.

same-screen-p- Typeboolean

True if event-windowand root are on the same screen.

:motion-notify Event Type

Selected by:— :button-1-motion, :button-2-motion, :button-3-motion,
:button-4-motion, :button-5-motion, :button-motion, or :pointer-motion.

The:motion-notify eventis generated when the pointer movemdation-notify event

has the same slots dsutton-press, :button-release :key-press and:key-release
events, with the exception that ttadeslot is replaced by thHent-pslot. As with these
other events, the event window farotion-notify is found by starting with the source
window and looking up the hierarchy for the first window on which any client has se-
lected interest in the event (provided no intervening window prohibits event generation
by including:motion-notify in its do-not-propagate-mask).The actual window used for
reporting can be modified by active grabs.

CLX Programmer’s Reference 12-137



Events and Input

:motion-notify events are generated only when the motion begins and ends in the win-
dow. The granularity of motion events is not guaranteed, but a client selecting for motion
events is guaranteed to get at least one event when the pointer moves and comes to rest.
Selecting:pointer-motion generatesmotion-notify events regardless of the state of

the pointer buttons. By selecting some subsitdfon[1-5]-motion instead;motion-

notify events are only received when one or more of the specified buttons are pressed.
By selectingbutton-motion, :motion-notify events are only received when at least

one button is pressed.:fointer-motion-hint is also selected, the server is free to send

only one:motion-notify, until either the key or button state changes, the pointer leaves
the event window, or the client cafisery-pointer or motion-events

hint-p— Typeboolean
True if the event is a hint generated by selectiognter-motion-hint .

:enter-notify, :leave-notify Event Type
Selected by:— :enter-window or :leave-window

If pointer motion or a window hierarchy change causes the pointer to be in a different
window than beforegnter-notify and:leave-notify events are generated instead of a
:motion-notify event. All:enter-notify and:leave-notify events caused by a hierarchy
change are generated after any hierarchy ewsmh@p-notify, :map-notify, :config-
ure-notify, :gravity-notify , or :circulate-notify ) caused by that change, but the order-
ing of :enter-notify and :leave-notify events with respect tafocus-out,
:visibility-notify , and:exposureevents is not constrained by the X protocol:éuter-

notify or :leave-notify event can also be generated when a client application calls
change-active-pointer-gral grab-pointer, or ungrab-pointer.

window, event-window- Typewindow.

The window receiving the event.

X — Typeint16.

The final pointer position. Event-windovis on the same screen as root, then
andy are the pointer coordinates relative todtient-windoywotherwisexandy
are zero.

y — Typeint16.

The final pointer position. Event-windovis on the same screen as root, then
andy are the pointer coordinates relative todtient-windoywotherwisexandy
are zero.

mode— Type (member :normal :grab :ungrab).

Events caused when the pointer is actively grabbed have :grade Events
caused when an active pointer grab deactivates have umggtab. In all other
cases, mode isormal.

12-138 CLX Programmer’s Reference



Events and Input

kind — Type (nember :ancestor :virtual :inferior :nonlinear
:nonlinear-virtual ).

When the pointer moves from window A to window B, and A is an inferior of B:
- :leave-notify with kind :ancestoris generated on A

- :leave-notify with kind :virtual is generated on each window between A
and B exclusive (in that order)

. :enter-notify with kind :inferior is generated on B
When the pointer moves from window A to window B, and B is an inferior of A:
- :leave-notify with kind :inferior is generated on A

- :enter-notify with kind:virtual is generated on each window between A
and B exclusive (in that order)

. :enter-notify with kind:ancestoris generated on B

When the pointer moves from window A to window B, with window C being
their least common ancestor:

+ leave-notify with kind :nonlinear is generated on A

- :leave-notify with kind :nonlinear-virtual is generated on each window
between A and C exclusive (in that order)

- :enter-notify with kind :nonlinear-virtual is generated on each window
between C and B exclusive (in that order)

- :enter-notify with kind :nonlinear is generated on B
When the pointer moves from window A to window B, on different screens:
« leave-notify with kind :nonlinear is generated on A

- If Alis not a root window;leave-notify with kind :nonlinear-virtual is
generated on each window above A up to and including its root (in order)

- If B is not a root window;enter-notify with kind :nonlinear-virtual is
generated on each window from B’s root down to but not including B (in
order)

- :enter-notify with kind :nonlinear is generated on B

When a pointer grab activates (but after any initial warp into a confine-to win-
dow, and before generating any actiaitton-press event that activates the
grab), withG thegrab-window for the grab an& the window the pointer s in,
then:enter-notify and:leave-notify events with modegrab are generated (as
for :normal above) as if the pointer were to suddenly warp from its current
position inP to some position iG. However, the pointer does not warp, and the
pointer position is used as both thiial andfinal positions for the events.

CLX Programmer’s Reference 12-139



Events and Input

When a pointer grab deactivates (but after generating any dmtttah-re-
leaseevent that deactivates the grab), v@ttihegrab-window for the grab and
P the window the pointer is in, theanter-notify and:leave-notify events
with modeungrab are generated (as fooormal above) as if the pointer were
to suddenly warp from from some positionGrto its current position .
However, the pointer does not warp, and the current pointer position is used as
both theinitial andfinal positions for the events.

focus-p— Typeboolean
If event-windows the focus window or an inferior of the focus window, then
focus-pist; otherwisefocus-pis nil.

state— Typecard16.

A mask that gives the state of the buttons and modifier keys just before the
event.

time— Typecard32

A timestamp for the moment when the event occurred.

root — Typewindow.

The root window containing the final pointer position.

root-x — Typeint16.

The x coordinate of the pointer position relative to root at the time of the event.

root-y — Typeint16.

The y coordinate of the pointer position relative to root at the time of the event.

child — Type @r null window).

In a:leave-notify event, if a child of thevent-windoveontains the initial posi-
tion of the pointer, thehild slot is set to that child; otherwise, ttt@ld slot is
nil. For anenter-notify event, if a child of thevent-windowveontains the final
pointer position, thehild slot is set to that child; otherwise, ttteld slot isnil.

same-screen-p- Typeboolean

True if event-windovand root are on the same screen.

Input Focus  12.12.2 The input focus events affecus-in and:focus-out
Events

:focus-in, :focus-out Event Type

Selected by— :focus-change

:focus-inand:focus-outevents are generated when the input focus changefmis-
out events caused by a windomnmap are generated after amjnmap-notify event,
but the ordering offocus-out with respect to generateenter-notify, :leave-notify,
:visibility-notify , and:exposeevents is not constrained.

window, event-window- Typewindow.

For:focus-in, the new input focus window. Fdocus-out,the previous input
focus window.

CLX Programmer’s Reference



Events and Input

mode— Type(member :normal :while-grabbed :grab :ungrab).

Events generated Iset-input-focuswhen the keyboard is not grabbed have
mode:normal. Events generated tset-input-focuswhen the keyboard is
grabbed have modehile-grabbed. Events generated when a keyboard grab
activates have modgrab, and events generated when a keyboard grab deacti-
vates have modeingrab.

— Type (member :ancestor virtual :inferior :nonlinear

:nonlinear-virtual :pointer :pointer-root :none ).

When the focus moves from window A to window B, and A is an inferior of B,
with the pointer in window P:

. :focus-outwith kind :ancestoris generated on A

. :focus-outwithkind:virtual is generated on each window between A and
B exclusive (in that order)

. :focus-in with kind :inferior is generated on B

- IfPisaninferior of B, but P is not A or an inferior of A or an ancestor of A,
:focus-in with kind :pointer is generated on each window below B down
to and including P (in order)

When the focus moves from window A to window B, and B is an inferior of A,
with the pointer in window P:

- IfPisaninferior of A, but P is not A or an inferior of B or an ancestor of B,
:focus-outwith kind :pointer is generated on each window from P up to
but not including A (in order)

- :focus-outwith kind:inferior is generated on A

. :focus-inwith kind:virtual is generated on each window between A and
B exclusive (in that order)

. :focus-in with kind :ancestoris generated on B

CLX Programmer’s Reference

12-141



Events and Input

When the focus moves from window A to window B, with window C being
their least common ancestor, and with the pointer in window P:

If P is an inferior of A;focus-outwith kind:pointer is generated on each
window from P up to but not including A (in order)

:focus-out with kind :nonlinear is generated on A

:focus-outwith kind:nonlinear-virtual is generated on each window be-
tween A and C exclusive (in that order)

:focus-in with kind :nonlinear-virtual is generated on each window be-
tween C and B exclusive (in that order)

:focus-in withkind :nonlinear is generated on B

If P is an inferior of B;focus-in with kind :pointer is generated on each
window below B down to and including P (in order)

When the focus moves from window A to window B, on different screens, with
the pointer in window P:

If P is an inferior of A;focus-outwith kind:pointer is generated on each
window from P up to but not including A (in order)

:focus-out with kind :nonlinear is generated on A

If Ais not a root window;focus-outwith kind:nonlinear-virtual is gen-
erated on each window above A up to and including its root (in order)

If B is not a root windowfocus-inwith kind:nonlinear-virtual is gener-
ated on each window from B’s root down to but not including B (in order)

:focus-in with kind :nonlinear is generated on B

If P is an inferior of B;focus-in with kind :pointer is generated on each
window below B down to and including P (in order)

When the focus moves from window A:fminter-root (or:none), with the
pointer in window P:

If P is an inferior of A;focus-outwith kind:pointer is generated on each
window from P up to but not including A (in order)

:focus-out with kind :nonlinear is generated on A

If Ais not a root window;focus-outwith kind:nonlinear-virtual is gen-
erated on each window above A up to and including its root (in order)

:focus-in with kind :pointer-root (or:none) is generated on all root win-
dows

If the new focus ispointer-root, :focus-in with kind :pointer is gener-
ated on each window from P’s root down to and including P (in order)

When the focus moves fromointer-root (or :none) to window A, with the
pointer in window P:

12-142

CLX Programmer’s Reference



Events and Input

- If the old focus ispointer-root, :focus-out with kind :pointer is gener-
ated on each window from P up to and including P’s root (in order)

. :focus-outwithkind:pointer-root (or:none) is generated on all root win-
dows

- If Ais not aroot window;focus-in with kind:nonlinear-virtual is gener-
ated on each window from A's root down to but not including A (in order)

«  :focus-in with kind :nonlinear is generated on A

« If Pis an inferior of A;focus-in with kind :pointer is generated on each
window below A down to and including P (in order)

When the focus moves frormointer-root to :none (or vice versa), with the
pointer in window P:

- If the old focus ispointer-root, :focus-out with kind :pointer is gener-
ated on each window from P up to and including P’s root (in order)

. :focus-outwithkind:pointer-root (or:none) is generated on all root win-
dows

. :focus-inwith kind:none (or :pointer-root) is generated on all root win-
dows

- If the new focus ispointer-root, :focus-in with kind :pointer is gener-
ated on each window from P’s root down to and including P (in order)

When a keyboard grab activates (but before generating any &etyrgress
event that activates the grab), widtthegrab-window for the grab ané& the
current focus, therfocus-inand:focus-outevents with modegrab are gener-
ated (as fornormal above) as if the focus were to change ffoio G.

When a keyboard grab deactivates (but after generating any &etyrae-
leaseevent that deactivates the grab), v@tthegrab-window for the grab and
F the current focus, thefocus-in and:focus-outevents with modeungrab
are generated (as forormal above) as if the focus were to change ffetoF.

CLX Programmer’s Reference

12-143



Events and Input

Keyboard and 12.12.3 The keyboard and pointer state events akeymap-notify and
Pointer State  :mapping-notify.
Events

:keymap-notify Event Type

Selected by:=— :keymap-state
The:keymap-notify event returns the current state of the keybokegmap-notify is
generated immediately after eveenter-notify and:focus-in.

window, event-window- Typewindow.

The window receiving arenter-notify or:focus-in event.

keymap— Type (pit-vector 256).
A bit-vector containing the logical state of the keyboard. Each bit setto 1 indi-
cates that the corresponding key is currently pressed. The vector is represented
as 32 bytes. Farfrom 0 to 7, byten (from 0) contains the bits for keya &
8n+7, with the least significant bit in the byte representing key 8
‘mapping-notify Event Type

The X server reportsnapping-notify events to all clients. There is no mechanism to
express disinterestin this event. The X server generates this event type whenever a client
application calls one of the following:

- set-modifier-mapping to indicate which keycodes to use as modifiers (the status
reply must bemapping-succesy

- change-keyboard-mappingto change the keyboard mapping

«  set-pointer-mapping to set the pointer mapping (the status reply musiriag-

ping-succesy

request— Type (member :modifier :keyboard :pointer).
Indicates the kind of change that occurrediedifier for a successfudet-
modifier-mapping, :keyboard for a successfuhange-keyboard-mapping
and:pointer for a successfudet-pointer-mapping

start— Typecard8.
If request iskeyboard, thenstartandcountindicate the range of altered key-
codes.

count— Typecard8.

If request iskeyboard, thenstartandcountindicate the range of altered key-
codes.

12-144 CLX Programmer’s Reference



Exposure Events

:exposure

Events and Input

12.12.4 The X server cannot guarantee that a window’s content is preserved when the
window is obscured or reconfigured. X requires client applications to be capable of re-
storing the contents of a previously-invisible window region whenever it is exposed.
Therefore, the X server sends events describing the exposed window and its exposed re-
gion. For a simple window, a client can choose to redraw the entire content whenever any
region is exposed. For a complex window, a client can redraw only the exposed region.

Event Type

Selected by+— :exposure

An :exposureeventis sentwhen redisplay is needed for a window region whose content

has been lost. Redisplay is needed when one of the following occurs:

- Aregionis exposed for a window and the X server has no backing store for the re-
gion

- Aregion of a viewable window is obscured and the X server begins to honor the
window’s backing-store attribute adlways or :when-mapped

« The X server begins to honor an unviewable window’s backing-store attribute of
:always or when-mapped

The regions needing redisplay are decomposed into an arbitrary set of rectangles, and an
:exposureevent is generated for each rectangle. For a given action cagigiogure
events, the set of events for a given window are guaranteed to be reported contiguously.

:exposureevents are never generated:foput-only windows.

All :exposureevents caused by a hierarchy change are generated after any hierarchy
event (unmap-notify, :map-notify, :configure-notify,:gravity-notify , or:circulate-
notify) caused by that change. Adixposureevents on a given window are generated
after anyvisibility-notify event on that window, but it is not required thatedposure
events on all windows be generated after all visibility events on all windows. The order-
ing of :exposureevents with respect tdocus-out, :enter-notify, and:leave-notify
events is not constrained.

window, event-window- Typewindow.

The window needing redisplay.

x— Typecard16.
The position of the left edge of the region to redisplay, relative tvéra-win-
dow

y — Typecardl6.
The position of the top edge of the region to redisplay, relative éwérg-win-
dow

width — Typecard16.
The width of the region to redisplay.

CLX Programmer’s Reference

12-145



Events and Input

height— Typecard16.
The height of the region to redisplay.

count— Typecard16.

If count is zero, then no momxposureevents for this window follow. If count
is nonzero, then at least that many mexg@osureevents for this window fol-
low (and possibly more).

:graphics-exposure Event Type

A :graphics-exposureevent is generated by a calttpy-areaorcopy-planewhen the
exposures attribute of the graphics contexins A :graphics-exposureevent reports a
destination region whose content cannot be computed because the content of the corre-
sponding source region has been lost. For example, the missing source region may be
obscured or may lie outside the current source drawable size. For a given action causing
:graphics-exposureevents, the set of events for a given destination are guaranteed to be
reported contiguously.

drawable, event-window- Typedrawable.

The destination drawable for thepy-areaor copy-planefunction.

x— Typecard16.
The position of the left edge of the destination region, relative trélveable

y — Typecardl6.
The position of the top edge of the destination region, relative tidlaeable

width— Typecard16.
The width of the destination region.

height— Typecard16.
The height of the destination region.

count— Typecard16.
If count is zero then no morgraphics-exposureevents for therawablefol-
low. If count is nonzero then at least that many mgraphics-exposure
events for thelrawablefollow (and possibly more).

major — Typecard8.
The major opcode for the graphics request generating the event
(62 forcopy-area 63 forcopy-plane.

minor— Typecard16.
The minor opcode for the graphics request generating the event
(O for bothcopy-areaandcopy-plané.

‘no-exposure Event Type

A :no-exposureevent is generated by a calttmpy-areaor copy-planewhen the expo-
sures attribute of the graphics contexoérs If no:graphics-exposureevents are gener-
ated, then a singl@o-exposureevent is sent.

drawable, event-window- Typedrawable.

12-146 CLX Programmer’s Reference



Events and Input

The destination drawable for thepy-areaor copy-planefunction.

major — Typecard8.
The major opcode for the graphics
(62 forcopy-area 63 forcopy-plane.
minor— Typecard16.

The minor opcode for the graphics
(O for bothcopy-areaandcopy-plané.

request generating the event

request generating the event

Window State 12.12.5 The following paragraphs describe the events that can be received

Events when a window becomes:

:circulate-notify

Selected by:— :structure-notify on a window orsubstructure-notify
on its parent.

Created
Destroyed
Invisible
Mapped
Moved
Reparented
Resized
Restacked
Unmapped
Visible

Event Type

A :circulate-notify eventis generated whenever a window is actually restacked as a re-
sult of a client application callingirculate-window-up or circulate-window-down.

event-window— Typewindow.

The window receiving the event.

window— Typewindow.
The window that was restacked.

place— Type fnember :top :bottom).

If place is:top, thewindowis now on top of all siblings. Otherwise, it is below

all siblings.

CLX Programmer’s Reference

12-147



Events and Input

:configure-notify Event Type
Selected by:— :structure-notify on a windowor :substructure-notify
on its parent.

The:configure-notify eventis generated when the position or size of a window actually
changes as a result of a client application setting ytswidth, height orborder-width
attributes.

event-window— Typewindow.

The window receiving the event.

window— Typewindow.

The window that was moved or resized.

x — Typeint16.
x andy specify the new upper-left corner position ofwWirdowrelative to its
parent.

y — Typeint16.

x andy specify the new upper-left corner position ofwirdowrelative to its
parent.

width— Typecard16.
width andheightspecify the new size of tiveindowinterior.

height— Typecard16.
width andheightspecify the new size of tiveindowinterior.

border-width— Typecard16.
The newwindowborder width.

above-sibling— Type ©r null window).

The sibling immediately below theindow If above-sibling isil, then the
windowis below all of its siblings.

override-redirect-p— Typeboolean

override-redirect-pis true if the override-redirect attribute of thendowis
:on; otherwise, itisil. Seevindow-override-redirect in paragraph 4.3, Win-
dow Attributes.

The X server can reparreate-notify events to clients wanting information about cre-
ation of windows. The X server generates this event whenever a client application
creates a window by callinggeate-window

Toreceive this eventtype in a client application,setfithe:substructure-notify as the
event-mask in the parent window’s event-mask slot.

12-148 CLX Programmer’s Reference



Events and Input

.create-notify Event Type

Selected by:substructure-notify.
The:create-notify event is generated whewadowis created and is sent to {rerent
window.

parent, event-window- Typewindow.

The parent window receiving the event.

window— Typewindow.

The new window created.

x — Typeint16.
xandy specify the initial upper-left corner position of thiemdowrelative to the
parent.

y — Typeint16.

xandy specify the initial upper-left corner position of thiedowrelative to the
parent.

width— Typecard16.
width andheightspecify the initial size of theindowinterior.

height— Typecard16.
width andheightspecify the initial size of the@indowinterior.

border-width— Typecard16.
The initialwindowborder width.

override-redirect-p— Typeboolean

override-redirect-pis true if the override-redirect attribute of thandowis
:on; otherwise, itigil. Seavindow-override-redirect in paragraph 4.3, Win-
dow Attributes.

:destroy-notify Event Type
Selected by :structure-notify on a window or.substructure-notify

on its parent.

The:destroy-notify event is generated whewadowis destroyed. The ordering of the

:destroy-notify events is such that for any given windodestroy-notify is generated

on all inferiors of a window befordestroy-notify is generated on thveindow The or-

dering among siblings and across subhierarchies is not otherwise constrained.
event-window— Typewindow.

The window receiving the event.

window— Typewindow.
The window that was destroyed.

CLX Programmer’s Reference 12-149



Events and Input

:gravity-notify Event Type
Selected by:— :structure-notify on a window orsubstructure-notify
on its parent.

The X server can repomgravity-notify events to clients wanting information about

when avindowis moved because of a change in the size of its parent. The X server gener-

ates this event whenever a client application actually moves a child window as a result of

resizing its parent by callingith-state with the appropriate arguments set.
event-window— Typewindow.

The window receiving the event.

window— Typewindow.

The window that was moved.

x — Typeint16.
x and y specify the new upper-left corner position ofthelowrelative to its
parent.
y — Typeint16.
x and y specify the new upper-left corner position ofthelowrelative to its
parent.
:map-notify Event Type

Selected by :structure-notify on a window orsubstructure-notify
on its parent.

The X server can reparhap-notify events to clients wanting information about which
windows are mapped. The X server generates this event type whenever a client applica-
tion changes th&indows state from unmapped to mapped by calfimap-window or
map-subwindow

Toreceive this event type, ysatf:structure-notify asthe event-mask on thandows
event-maskslot. You can also receive this event typesbtfing the:substructure-
notify event-mask on the parent window.

event-window— Typewindow.

The window receiving the event.

window— Typewindow.

The window that was mapped.

override-redirect-p— Typeboolean

override-redirect-pis true if the override-redirect attribute of thendowis
:on; otherwise, itisil . Seevindow-override-redirect in paragraph 4.3, Win-
dow Attributes.

12-150 CLX Programmer’s Reference



Events and Input

‘reparent-notify Event Type

Selected by:— :structure-notify on a window orsubstructure-notify
on its old or new parent.

The:reparent-notify event is generated whemindowis reparented.

event-window— Typewindow.

The window receiving the event.

window— Typewindow.

The window that was reparented.

parent— Typewindow.
The new parent of th@indow

X — Typeintl6.
x and y specify the upper-left corner position ofiiliedowrelative to its new
parent

y — Typeint16.

x and y specify the upper-left corner position ofihedowrelative to its new
parent
override-redirect-p— Typeboolean

override-redirect-pis true if the override-redirect attribute of thandowis
:on; otherwise, it igil . Seevindow-override-redirect in paragraph 4.3, Win-
dow Attributes.

:unmap-notify Event Type

Selected by=— :structure-notify on a window orsubstructure-notify
on its parent.

The:unmap-notify event is generated when a mapp&adowis unmapped.

event-window— Typewindow.

The window receiving the event.

window— Typewindow.

The window that was unmapped.

configure-p— Typeboolean

configure-ps true if thavindowhas a win-gravity attribute ainmap, and the
event was generated becausedows parent was resized.

CLX Programmer’s Reference 12-151



Events and Input

:visibility-notify Event Type

Structure
Control Events

Selected by :visibility-change.

The:visibility-notify event is sent when the visibility ohandowchangesuvisibility-
notify events are never generated:mput-only windows. For the purposes of this
event, the visibility of thevindowis not affected by its subwindows.

All :visibility-notify events caused by a hierarchy change are generated after any hierar-
chy event caused by that change (for exampfenap-notify, :map-notify, :config-
ure-notify, :gravity-notify , or :circulate-notify). Any :visibility-notify event on a

given window is generated before aayposureevents on that window, but it is not re-
quired that altvisibility-notify events on all windows be generated beforeealbo-

sure events on all windows. The ordering:efsibility-notify events with respect to
:focus-out, :enter-notify, and:leave-notify events is not constrained.

window, event-window- Typewindow.

The window that changed in visibility.

state— Type fnember :unobscured :partially-obscured
:fully-obscuredl

When thevindowwas either unviewable or it was viewable and at least partial-
ly obscured, and theindowchanged to viewable and completely unobscured,
thenstateis :unobscured

When thevindowwas either unviewable or it was viewable and completely ob-
scured, and th@indowchanged to viewable and partially obscured, ttate
is :partially-obscured.

When thevindowwas either unviewable or it was at least partially visible, and
thewindowchanged to viewable and completely obscured,staais :fully-
obscured

12.12.6 The following paragraphs describe events used radirect client
requests that reconfigure, restack, or map a window. Structure control events are typical-
ly used only by window managers and not by ordinary client applications. Structure con-
trol events report redirected requests, allowing a window manager to modify the
requests before they are actually performed. However, if the override-redirect attribute
of a window is.on, then no requests are redirected and no structure control events are
generated.

.circulate-request Event Type

The:circulate-requesteventis generated when a client application calislate-win-
dow-up orcirculate-window-down with a window that has the override-redirect attrib-
ute:off. Thewindowargument specifies the window to be restackedpkuespecifies
what the new position in the stacking order should be (eithyeror :bottom).
Selected by— :substructure-redirect on parent
parent, event-window- Typewindow.
The window receiving the event. The receiving client must have selsated
structure-redirect on this window.
window— Typewindow.

The window to be restacked.

12-152

CLX Programmer’s Reference



Events and Input

place— Type(member :top :bottom).

The new stacking priority requested f@indow
:colormap-notify Event Type

Selected by:— :colormap-change
The:colormap-notify event is generated witiew-pt when thecolormapassociated
with awindowis changed, installed, or uninstalled.

window, event-window- Typewindow.

The window receiving the event.

colormap— Type(or null colormap).
The colormap attribute of the window.

new-p— Typeboolean
If new-pis true, then thevindows colormap attribute has changed to the given
colormap Otherwise, thavindows colormap attribute has not, but taor-
maphas been installed or uninstalled.

installed-p— Typeboolean

If installed-pis true, then theolormapis currently installed.
:configure-request Event Type

Selected by=— :substructure-redirect on parent.
The :configure-requestevent is generated when a client program sets, thevidth,
heiglt, border-widthor stacking priority attributes of a window that has the override-re-
direct attributeoff.
parent, event-window- Typewindow.
The window receiving the event. The receiving client must have selsated
structure-redirect on this window.
window— Typewindow.
The window to be reconfigured.

X — Typeint16.

x andy specify the requested upper-left corner position oiindowrelative
to the parent. If eitheroryis not specified in the value-mask, then itis set to the
current window position.

y — Typeint16.

x andy specify the requested upper-left corner position ofinelowrelative
to theparent If eitherx oryis not specified in thealue-maskthen it is set to the
current window position.

CLX Programmer’s Reference 12-153



Events and Input

width, height— Typecard16.

width andheightspecify the requested size of thandowinterior. If either
width or heightis not specified in thealue-maskthen it is set to the current
window size.
border-width— Typecard16
The requestedindowborder width. Iborder-widthis not specified in theal-
ue-maskthen it is set to the current winddwrder-width
stack-mode — Type (member :above :below :top-if :bottom-if
:opposite).
stack-modendabove-siblingspecify the requested stacking priority of the
window If stack-modés not specified in th@alue-maskthen it is set to
:above
above-sibling— Type ©r null window).
stack-modendabove-siblingspecify the requested stacking priority of the
window If above-siblings not specified in thealue-maskthen it is set tail .
value-mask— Typemask16
Specifies the changedndowattributes contained in the redirected client re-
quest. Each 1 bit specifies that the corresponding attribute was changed.
‘map-request Event Type

Selected by:— :substructure-redirect on parent.
The:map-requestevent is generated when a client application mapedowthat has
the override-redirect attributeff.
parent, event-window— Typewindow.
The window receiving the event. The receiving client must have selsated
structure-redirect on this window.
window— Typewindow.
The window to be mapped.

‘resize-requestEvent Type

Selected by :resize-redirect
The:resize-requestevent is generated when a client program setwittté or height
attributes of avindowthat has the override-redirect attributé .
window, event-window- Typewindow.
The window to be resized.

width, height— Typecard16.

width andheightspecify the requested size of thendow interior. If either
width or heightwas unchanged in the client request, then it is set to the current
window size.

12-154 CLX Programmer’s Reference



Events and Input

Client 12.12.7 The client communications events discussed in the following
Communications paragraphs are: :client-message  :property-notify, :selection-clear
Events :selection-requestand:selection-notify.
.client-message Event Type

The:client-messagevent is generated exclusively by client callsdnd-event The X

server places no interpretation ontyyeeor content oflatasent in aclient-messageA

client can neither seleatlient-messagesvents nor avoid receiving them.
window, event-window- Typewindow.

The window receiving the event.

type— Typekeyword.
An xatom keyword that specifies the type of client message. Interpretation of
the type is determined solely by agreement between the sending and receiving
clients.

format— Type fnember 8 16 32
An integer that specifies whettsatashould be viewed as a sequence of 8-hit,
16-bit, or 32-bit quantities.

data— Type(sequence integer)

The data content of the client messatgta always consists of 160 bytes —
depending on format, either 20 8-bit values, 10 16-bit values or 5 32-bit values.
The amount of this data actually used by a particular client message depends on
the type.

:property-notify Event Type

Selected by— :property-change.

The:property-notify eventis generated when a window property is changed or deleted.

window, event-window- Typewindow.

The window receiving the event.

atom— Typekeyword.
The property that was changed or deleted.

state— Type(member :new-value :deleted)

stateis:new-valueif the property was changed usititange-propertyorro-
tate-properties, even if zero-length data was added or if all or part of the prop-
erty was replaced with identical datateis :deleted if the property was
deleted usinglelete-property or get-property.

time— Typetimestamp.
The server time when the property was changed or deleted.

:selection-cleaEvent Type

The :selection-clearevent is reported to the previous owner skectionwhen the
owner of theselections changed. The selection owner is changed by a clientsssing
A client can neither selectelection-clearevents nor avoid receiving them.

CLX Programmer’s Reference 12-155



Events and Input

window, event-window— Typewindow.

The window losing ownership of ttselection

selection— Typekeyword.

The name of the selection.

time— Typetimestamp.
The last-change time recorded for tsdection

:selection-notify Event Type

The :selection-notify event is sent to a client callimgpnvert-selection :selection-
notify reports the result of the client request to return the current valseletctiorinto
a particular form:selection-notifyis sent usingend-eventoy the owner of the selec-
tion or (if no owner exists) by the X server. A client can neither ssleletiction-notify

events nor avoid receiving them.

NOTE: Standard conventions for inter-client communication require the following
additional steps in processingsalection-notify event:

1.

The client receiving this event should cgkt-property to return the con-
verted selection value.

After receiving the selection value, the property should then be deleted (either by
using thedelete-pargument taet-property or by callingdelete-property).

:selection-request

window, event-window- Typewindow.

The requestor window given in the calldonvert-selection

selection— Typekeyword.

The selection to be converted.

target— Typekeyword.
An xatom specifying the type of the converted selection value. This is the same
target type given in the call tmnvert-selection

property— Type(or null keyword).

The window property containing the converted selection. If the propeity is
then either theelectiorhas no owner or the owner could not perform the con-
version to theargettype.

time— Typetimestamp.
The timestamp from the client call tonvert-selection

Event Type

The:selection-requestevent is reported to the owner of a selection when a client calls

convert-selection This event requests the selection owner to convert the current value
of aselectioninto a specified form and to return it to the requestor. A client can neither

selectselection-requestevents nor avoid receiving them.

The selection owner should respond wedection-requesevent by performing the fol-
lowing steps:

12-156

CLX Programmer’s Reference



Events and Input

1. Convert the currersielectionvalue to thdargettype.

2. Store the converted selection value irptoperty If propertyisnil, then the owner
should choose thgroperty

3. Callsend-eventto send aselection-notify event to theequestorcontaining the
propertywith the converted value. If tiselectiorcould not be converted to tree-
gettype, then ail propertyshould be sent. Theelection :target, and:time argu-
ments tasend-evenshould be the same as those received irs#tection-request
event. The event-mask argumergénd-evenshould banil ; that is, theselection-
notify event should be sent to client that createdehaestor

NOTE: Standard conventions for inter-client communication require the following
additional steps in processingsalection-requestevent:

1. The property used to store the selection value must belong to the requestor.
2. If the property isil, the target typatom should be used as the property name.

3. If the window did not actually own the selection at the given time, the request
should be refused, just as if it could not be converted to the target type.

window, event-window- Typewindow.

The selection owner receiving the event.

requestor— Typewindow.
The window requesting the convertslection

selection— Typekeyword.
The selection to be converted.

target— Typekeyword.
An xatom specifying the type of the convertselectionvalue.

property— Type(or null keyword).
A requestor window property.

time— Typetimestamp.
The timestamp sent in the clier@nvert-selectionrequest.

Declaring 12.12.8 CLX uses thaleclare-eventmacro to define the event slot symbols
Event Types thataccess the contents of X events. Most client applications do not needidolass
eventbecause the declarations for all core X events are already defined by CLX. Pro-
grammers using extensions to the X protocol cardestare-eventto allow CLX to
handle new event types returned by an extended X server.

declare-eventevent-code&restslot-declarations Macro

Defines a mapping between event slot symbols and the data items in event messages re-
ceived from an X server.

CLX Programmer’s Reference 12-157



Events and Input

Theevent-codeargument gives the event type keyword for the event described. If sev-
eral event types share the same slots, ¢wvent-codesan be a list of event type key-
words.slot-declarationss a list containing an element for each event data item. The
order ofslot-declarationgorresponds to the order of event data items defined by the X
protocol.

Each element cflot-declarationss a list of the formtgpe slot-nantg, wheretypeis a
Common Lisp type specifier astbt-namas a slot name symbol. The effect of such a
listis to declare that the next data items in the event have the givéypaatad are asso-

ciated with the giveslot-namesymbolsslot-namecan also be a list of slot name sym-

bols; in this case, each symbol in the listis an alias that refers to the same event data item.

event-codes -An event type keyword or a list of event type keywords.
slot-declarations —A list of clauses defining event slot symbols.

Releasing 12.13 A client grabbing the keyboard or pointer can freeze the reporting of

Queued Events events on that device. When an input device is thus frozen, the server queues events until
explicitly requested to release them by the grabbing client. CLX programs can use the
allow-eventsfunction to release queued events from a frozen input device.

allow-events display mode&optionaltime Function

Releases some queued events if the client has caused a device to freeze. The request has
no effect if theimeis earlier than the last-grab time of the most recent active grab for the
client, or if thetimeis later than the current server timdirtieis nil, the current server

time is used. The effect of this function depends on the spenifieie

- :async-pointer — If the pointer is frozen by the client, pointer event processing
continues normally. If the pointer is frozen twice by the client on behalf of two sepa-
rate grabsasync-pointerreleases events for both gsalasync-pointerhas no ef-
fect if the pointer is not frozen by the client, but the pointer need not be grabbed by
the client.

- :sync-pointer— If the pointer is frozen and actively grabbed by the client, pointer
event processing continues normally until the nleutton-press or :button-re-
leaseevent is reported to the client, at which time the pointer again appears to
freeze. However, if the reported event causes the pointer grab to be released, the
pointer does not freezaync-pointerhas no effect if the pointer is not frozen by the
client, or if the pointer is not grabbed by the client.

- replay-pointer — If the pointer is actively grabbed by the client and is frozen as
the result of an event having been sent to the client (either from the activation of a
grab-button, or from a previousllow-eventswith mode:sync-pointer, but not
from agrab-pointer), the pointer grab is released and that event is completely re-
processed, but this time ignoring any passive grabs at or above (towards the root) the
grab-window of the grab just released. The request has no effect if the pointer is not
grabbed by the client, or if the pointer is not frozen as the result of an event.

- :async-keyboard— If the keyboard is frozen by the client, keyboard event proc-
essing continues normally. If the keyboard is frozen twice by the client on behalf of
two separate grabssync-keyboardreleases events for both gratasync-key-
board has no effect if the keyboard is not frozen by the client, but the keyboard need
not be grabbed by the client.

12-158 CLX Programmer’s Reference



Events and Input

« :sync-keyboard— If the keyboard is frozen and actively grabbed by the client,
keyboard event processing continues normally until the keytpressor:key-re-
leaseevent is reported to the client, at which time the keyboard again appears to
freeze. However if the reported event causes the keyboard grab to be released, the
keyboard does not freezeync-keyboardhas no effect if the keyboard is not fro-
zen by the client, or if the keyboard is not grabbed by the client.

- replay-keyboard — If the keyboard is actively grabbed by the client and is frozen
as the result of an event having been sent to the client (either from the activation of a
grab-key, or from a previouslow-eventswith mode:sync-keyboard but not
from agrab-keyboard), the keyboard grab is released and that event is completely
reprocessed, but this time ignoring any passive grabs at or above (towards the root)
thegrab-window of the grab just released. The request has no effect if the keyboard
is not grabbed by the client, or if the keyboard is not frozen as the result of an event.

- :sync-both— If both pointer and keyboard are frozen by the client, event process-
ing (for both devices) continues normally until the nbutton-press, :button-re-
lease :key-press or :key-releaseevent is reported to the client for a grabbed
device (button event for the pointer, key event for the keyboard). At this time, the
devices again appear to freeze. If the reported event causes the grab to be released,
the devices do not freeze. However, if the other device is still grabbed, then a subse-
quent event for it will still cause both devices to freeggnc-both has no effect
unless both pointer and keyboard are frozen by the client. If the pointer of keyboard
is frozen twice by the client on behalf of two separate grajpsc-both thawsfor
both, but a subsequent freeze :&ymc-both will only freeze each device once.

- :async-both— If the pointer and the keyboard are frozen by the client, event proc-
essing for both devices continues normally. If a device is frozen twice by the client
on behalf of two separate grabssync-boththawsfor both.:async-bothhas no
effect unless both pointer and keyboard are frozen by the client.

:async-pointer, :sync-pointer, and:replay-pointer have no effect on processing of
keyboard eventsasync-keyboard :sync-keyboard and:replay-keyboard have no
effect on processing of pointer events.

Itis possible for both a pointer grab and a keyboard grab to be active simultaneously by
the same or different clients. When a device is frozen on behalf of either grab, no event
processing is performed for the device. It is possible for a single device to be frozen due
to both grabs. In this case, the freeze must be released on behalf of both grabs before
events can again be processed.

display— A display.

mode— One of::async-pointer, :sync-pointer, :reply-pointer, :async-keyboard
:sync-keyboard, :replay-keyboard, :async-both :sync-both.

time— A timestamp.

CLX Programmer’s Reference 12-159



Events and Input

12-160 CLX Programmer’s Reference



RESOURCES

Introduction

13.1 Users need a way to specify preferences for various user interface values (for ex-
ample, colors, fonts, title strings, and so forth). Applications need a consistent method
for determining the default interface values that are specific to them. It is also useful if
application interface values can be modified by users without changes to the program
code. For example, this capability can make it easy to change the color scheme of a user
interface. In CLX, such interface values are referred tesmircesCLX defines func-

tions for storing and retrieving interface resources from a resource database. A user can
store various user interface values as resources in a resource database; a CLX applica-
tion can then read these resource values and modify its user interface accordingly.

NOTE: The general termesourcerefers to any application user interface value stored

in aresource database. The tegrver resourcés used more specifically to refer to the
types of objects allocated by an X server and referenced by clients (for example, win-
dows, fonts, graphics contexts, and so forth).

Resource
Bindings

13.2 Conceptually, a resource database is a set of resource name-value
pairs (omesource bindings The name in a resource binding is a list that is the concate-
nation of gpath listand amattribute name

A path listis a list of symbols (or strings) that corresponds to a path through a tree-struc-
tured hierarchy. For example, the path:

'(top middle bottom)

corresponds to a three-level hierarchy in whigfdle is the child ofop , andbottom is
the child ofmiddie .

Typically, the path of a resource name corresponds to a path in a hierarchy of windows,
and each symbol/string names a window in the hierarchy. However, the first element of
the path can also represent the overall name of the entire program, and subsequent path
elements can refer to an application-specific hierarchy of resource names not strictly re-
lated to windows. In addition, a resource name can contain a partially-specified path list.
The asterisk symbol (*) is a wildcard that can correspond to any sequence of levels in the
hierarchy (including the null sequence). For example, the path:

"(top * bottom)
corresponds to a hierarchy of two or more levels in wiichis at the top level angt-

tom is at the bottom level. An element of a path list can be the name of an individual win-
dow or the name of a class of windows.

CLX Programmer’s Reference

13-161



Resources

The final element of a resource name list is an attribute name. This symbol (or string)
identifies a specific attribute of the object(s) named by the preceding path list. The attrib-
ute name can also be the symbol * or the string “*”, in which case the resource name
refers to all attributes of the path object(s). However, this form of resource name is rarely
useful.

Some examples of resource bindings are shown below. In these examples, assume that
mail is the resource name of a mail reading applicatiain. uses a window of the class
button whose name igply .

Resource Name Resource Value
(mail screen-1 reply background) ‘green

(mail * background) red

(* button background) ‘blue

These resource bindings specify the following:

«  Thebackground attribute resource efail applicationsreply button has the value
of green Onscreen-1

«  Thebackground attribute for the rest of theail application is alwaysd on all
screens.

+ In general, theéackground attribute for albutton windows isblue .

Basic Resource 13.3 A resource-databasestructure is a CLX object that represents a set
Datab_ase of resource bhindings. The following paragraphs describe the CLX functions
Functions used to:

- Create aresource database

« Add a resource binding

- Remove a resource binding

- Merge two resource databases

- Map a function over the contents of a resource database

make-resource-database Function
Returns:
resource-database- Typeresource-database

Returns an empty resource database.

add-resourcedatabase name-list value Function

Adds the resource binding specifiedrtame-listandvalueto the giverdatabaseOnly
one value can be associated withithene-listin thedatabaseThis function replaces
any value previously associated with tiene-list

database— Theresource-databasdor the new resource binding.

name-list— A list containing strings or symbols specifying the name for the resource
binding.

value— The value associated with theme-listin the resource binding. This can be an
object of any type.

13-162

CLX Programmer’s Reference



Resources

delete-resourcedatabase name-list Function

Removes the resource binding specifiedhagne-listirom the giverdatabase

database— Theresource-databaseontaining the resource binding.

name-list— A list containing strings or symbols specifying the name for the deleted re-
source binding.

map-resourcedatabase functio&restargs Function

Calls the function for each resource binding indambaseFor each resource binding
consisting of a name-list and a value the form
(apply function name-list value aryjss executed.

database— A resource-database

function— A function object or function symbol.

args— A list of arguments to thieinction

merge-resourcesrom-database to-database Function

Returns:
to-database—Typeresource-database

Merges the contents of tirem-databasevith theto-databasemap-resourceinvokes
add-resourcein order to add each resource binding inftbm-databasé¢o theto-data-
base The updatetb-databaseés returned.

from-database— Theresource-databasdrom which resource bindings are read.

to-database— Theresource-databaseéo which resource bindings are added.

Accessing
Resource
Values

Complete Names
and Classes

13.4 The power and flexibility of resource management is the result of the
way resource values in a resource database are accessed. A resource binding

binding stored in the database generally contains only a partial resource name consisting
of a mixture of name and class identifiers and wildcard elements (that is, *). To look up a
resource value, an application program starts with two resource name lists of the same
length containing no wildcard elements -eaanplete resource naraed e&complete re-

source classThe lookup algorithm returns the value for the resource binding whose re-
source name is the closest match to the complete name and class given. The definition of
closest matctakes into account the top-down, parent-child hierarchy of resource names
and also the distinction between individual names and class names.

13.4.1 A resource binding contains a resource name list that can contain
names, class names, or a mixture of both. A class name is a symbol or string that repre-
sents agroup of related objects. The set of names used as class hames are not specified by
CLX. Instead, class names are defined by agreement between those who use class names
when creating resource bindings (that is, users) and those who use class names when ac-
cessing resource values (that is, application programmers).

In order to access a value in a resource database, an application uses a key consisting of
two items: acomplete resource nansd acomplete resource clasé complete re-

source name is a resource name list containing no wildcard elements. A complete re-
source class is a list of exactly the same form. The distinction between a complete
resource name and a complete resource class lies in how they are used to access resource
bindings. The elements of a complete resource name are interpreted as names of individ-
ual objects; the elements of a complete resource class are interpreted as names of object
classes. The complete resource name and class lists used in a resource database access
must have the same length.

CLX Programmer’s Reference

13-163



Resources

Matching
Resource Names

Like any resource name list, a complete resource name consists of a path list and an at-
tribute name. The first path list element is typically a symbol (or string) identifying the
application as a whole. The second element can be a screen root identifier. Subsequent
elements can be identifiers for each ancestor window of an application window. Thus, a
path list typically identifies a specific window by tracing a path to it through the applica-
tion window hierarchy. The final element of a complete resource name (its attribute
name) is typically the name of a specific attribute of the window given by the path list
(for examplespackground ). An attribute name can refer to a feature associated with the
window by the application but not by the X server (for example, a font identifier). Simi-
larly, a complete resource class typically represents a path to a window in the application
window hierarchy and a specific window attribute. However, a complete resource class
contains the class name for each window and for the window attribute.

For instance, in the previous example,ritag¢ application can attempt to look up the
value of thevackground resource for theeply button window by using the following
complete resource name:

(mail screen-1 reply background)

and the following complete resource class:

(application root button fill)

This complete resource name contains a path list identifying the reply button window —
(mail screen-1 reply) — and an attribute name for the window background. The

corresponding resource class contains the class names for the same path list and window
attribute.

13.4.2 The resource lookup algorithm searches a specified resource data
base and returns the value for the resource binding whose resource name is the closest
match to a given complete resource name and class. The intent of the lookup algorithm
is to formalize an intuitive notion of the closest match.

Precedence is given to a match which bebigkerin the parent-child contact hierar-

chy. This allows a resource binding with a partial name to define a resource value shared
by all members of a window subtree. For example, suppose the resource database con-
tained the following resource bindings:

Resource Name Resource Value
(mail * background) red
(* reply background) ‘blue

Suppose an application program searched by using the following complete resource
name:

(mail screen-1 reply background)

then the closest matching value returned woulgebe.

Precedence is given to the more specific match. A name match is more specific than a
class match. Either a name or class match is more specific than a wildcard match. For
example, suppose the resource database contained the following resource bindings:

Resource Name Resource Value

(mail * background) red

13-164

CLX Programmer’s Reference



Resource

Resources

(mail * fill) ‘blue

Suppose an application program searched by using the following complete resource
name and complete resource class:

(mail screen-1 reply background)
(application root button fill)

then the closest matching value returned woulébe. However, suppose the resource
database contained the following resource bindings:

Resource Name Resource Value
(mail * background) red
(mail * button background) ‘blue

then the closest matching value returned wouldike .

13.4.3 The following paragraphs describe the CLX functions used to return

Access Functions a value from a resource database.

get-resourcedatabase attribute-name attribute-class path-name path-class Function

Returns:
value— Typet.

Returns the value of the resource binding inda@basevhose resource name most
closely matches the complete resource name/class given fgttheamepath-class
attribute-nameandattribute-class The lookup algorithm implements the precedence
rules described previously to determine the closest match. When comparing name ele-
ments, case is significant only if both elements are strings; otherwise, element match-
ing is case-insensitive.

database— A resource-database

attribute-name— A string or symbol giving an attribute name from a complete resource
name.

attribute-class— A string or symbol giving an attribute class name from a complete re-
source class.

path-name— The path list from a complete resource napah-nameand path-
classmust have the same length.

path-class— The path list from a complete resource clgsth-nameand path-
class must have the same length.

get-search-tabledatabase path-name path-class Function

Returns:
search-table— Typelist.

Returns a table containing the subset ofdlabasehat matches thgath-nameand
path-classResources using the sapsh-namendpath-classcan be accessed much
more efficiently by using this table as an argumegetinsearch-resource

database— A resource-database

path-name— The path list from a complete resource napah-nameand path-
classmust have the same length.

path-class— The path list from a complete resource clgsgh-nameand path-
classmust have the same length.

CLX Programmer’s Reference

13-165



Resources

get-search-resourceable attribute-name attribute-class Function

Returns:
value— Typet.

Returns the value of the resource binding in the s¢abtéthat most closely matches
theattribute-namendattribute-class Thetableis computed bget-search-tableand
represents a set of resource bindings. The closest match is determined by the same algo-
rithm used irget-resource

The following two forms are functionally equivalent:

(get-resource
database attribute-name attribute-class path-name path-class)

(get-search-resource
(get-search-table database path-name path-class)
attribute-name attribute-class)

However, the hard part of the search is dongdtysearch-table Looking up values for
several resource attributes that share the same path list can be done much more efficient-
ly with calls toget-search-resource

table— A search table returned [ggt-search-table

attribute-name— A string or symbol giving an attribute name from a complete resource
name.

attribute-class— A string or symbol giving an attribute class name from a complete re-
source class.

Resource
Database Files

13.5 X users and application programs can save resource bindings in a file,

using a standard file format shared by all X clients. The following paragraphs describe
the CLX functions used to convert between the standard external format of resource
files and the internal resource-database format used by application programs.

read-resourcesdatabase pathnamgkey :key :test :test-not Function

Returns:
database— Typeresource-database

Reads resource bindings from a resource file in standard X11 format and merges them
with the given resouragatabaseThe:key function is called to convert a file resource
value into the value stored in tHatabaseBy default;key is#'identity. The:testand
‘test-not functions are predicates that select resource bindings to merge, based on the
result of thekey function. For each file resource binding consistingrebaurce-name

and aresource-valugethe:test (or :test-not) function is called with the argumenmes
source-nameand funcall key resource-valye

database— Theresource-databas¢o merge.

pathname— A pathname for the resource file to read.

:key — A function used to convert a value from the resource file into a resource binding
value.

‘test, :test-not — Functions used to select which resource bindings from the resource
file are merged with thdatabase

13-166

CLX Programmer’s Reference



Resources

write-resourcesdatabase pathnamg&key :write :test :test-not Function

Writes resource bindings found in thatabaseo the file given by thpathnameThe
output file is written in the standard X11 format. Tiveite function is used for writing
resource values; the defaultiprinc. The:write function is passed two arguments: a
resource-valuend astream The:test and:test-not functions are predicates which se-
lect resource bindings to write. For each resource binding consistingesbarce-
nameand aesource-valugthe:test (or :test-not) function is called with the arguments
resource-namandresource-value

database— Theresource-databaseo write.
pathname— A pathname of the file to write.
‘write — A function for writing resource values.

‘test, :test-not — Functions used to select which resource bindings from the resource
file are merged with thdatabase

CLX Programmer’s Reference

13-167



Resources

13-168 CLX Programmer’s Reference



CONTROL FUNCTIONS

Grabbing 14.1 Certain cases may require that a client demand exclusive access to the

the Server server, causing the processing for all other clients to be suspended. Such exclusive ac-
cess is referred to ggabbing the servelCLX provides functions to grab and release
exclusive access to the server. These function should be used rarely and always with ex-
treme caution, since they have the potential to disrupt the entire window system for all
clients.

grab-serverdisplay Function
Disables processing of requests and close-downs on all connections other than the one
on which this request arrived.
display— A display.

ungrab-serverdisplay Function
Restarts processing of requests and close-downs on other connections.

display— A display.
with-server-grabbed display&body body Macro

Grabs thalisplayserver only within the dynamic extent of thedy ungrab-serveris
automatically called upon exit from thedy This macro provides the most reliable way
for CLX clients to grab the server.

display— A display.

body— The forms to execute while the server is grabbed.

Pointer Control 14.2 The following paragraphs describe the CLX functions used to:
«  Return or change the pointer acceleration and acceleration threshold
« Return or change the mapping of pointer button numbers

change-pointer-controldisplay&key :acceleration :threshold Function

Changes the acceleration and/or the acceleration threshold of the pointedieplthe
The:accelerationnumber is used as a multiplier, typically specified as a rational num-
ber of the fornC/P, whereC is the number of pixel positions of cursor motion displayed
for P units of pointer device motion. The acceleration only occurs if the pointer moves
more thatthreshold pixels at once, and only applies to the motion beyondttesh-

old. Either:acceleration or :threshold can be set todefault, that restores the de-
fault settings of the server.

display— A display.
:acceleration— A number for the acceleration ratio.

:threshold — The number of pixels required for acceleration to take effect.

CLX Programmer’s Reference 14-169



Control Functions

pointer-control display Function
Returns:
accelerationthreshold— Typenumber.

Returns the acceleration and threshold fordikplaypointer.

display — A display.

pointer-mapping display&key (:result-type ’list) Function
Returns:
mapping— Typesequenceor card8.

Returns or (withsetf) changes the mapping of button numbers fodikplaypointer.
The:result-type is not used when changing the mapping. If elemehthe mapping
sequence jsthen the events from pointer butj@me reported by the server as events for
buttoni+1. (Note that pointer buttons are numbered beginning with one, while the map-
ping sequence itself is indexed normally from zero.) If elemehthe mapping se-
guence is zero, then buttorl is disabled and can no longer generate input events. No
two elements of the mapping can have the same non-zero value.

The length of the mapping sequence indicates the actual number of buttons on the de-
vice. When changing the mapping, the new mapping must have this same length.

display— A display.
:result-type — The type of sequence to return.

Keyboard 14.3 The following paragraphs describe the CLX functions used to:
Control

- Return or change keyboard controls

« Ring the keyboard bell

«  Return or change the mapping of modifiers
- Return the current up/down state of all keys

bell display&optional (percent-from-normabD) Function
Rings the bell on the keyboard at a volume relative to the base volume for the keyboard,
if possible. Percent can range from —100 to 100 inclusive, or else a Value error occurs.
The following is the bell volume when percent is non-negative:
(- (+ base percent(quotient (* base percentl00))
and when percent is negative:

(+ base(quotient (* base percentl00))

display— A display.
percent-from-normai— An integer (—100 through 100).

14-170 CLX Programmer’s Reference



Control Functions

change-keyboard-controldisplay &key :key-click-percent :bell-percent Function
‘bell-pitch :bell-duration :led :led-mode :key :auto-repeat-mode

Changes the various aspects of the keyboard. The keyword arguments specify which
controls to change.

The:key-click-percentkeyword sets the volume for key clicks, if possible. A value of 0
implies off, while a value of 100 implies loud. Settikgy-click-percent to :default
restores the default value.

The:bell-percentsets the base volume for the bell between 0 (off) and 100 (loud) if pos-
sible. Settingbell-percent to :default restores the default value.

The:bell-pitch sets the pitch (specified in Hz) of the bell, if possible. Setting#ie

pitch to:default restores the default value. Thell-duration sets the duration (speci-

fied in milliseconds) of the bell, if possible. Settibgll-pitch to :default restores the
default. Note that a bell generator connected with the console but not directly on the key-
board is treated as if it were part of the keyboard.

If both :led-modeand:led are specified, then the state of that LED is changed, if pos-
sible. If only:led-modeis specified, the state of all LEDs are changed, if possible. At
most 32 LEDs are supported, numbered from one. No standard interpretation of the
LEDs are defined.

If both :auto-repeat-modeand:key are specified, the auto-repeat mode of that key is
changed, if possible. If onlyauto-repeat-modeis specified, the global auto-repeat
mode for the entire keyboard is changed, if possible, without affecting the per-key set-
tings. An error occurs tkey is specified withoutauto-repeat-mode

display— A display.

:key-click-percent — An integer (0 100).

:bell-percent — An integer (0 100).

‘bell-pitch — A card16.

:bell-duration — A card16.

:led — A card8.

:led-mode— Either:on or :off.

:key — A card8 keycode.

:auto-repeat-mode— Either:on, :off, or:default.

CLX Programmer’s Reference 14-171



Control Functions

keyboard-control display Function
Returns:
key-click-percent, bell-percent Typecard8.
bell-pitch bell-duration— Typecard16.
led-mask— Typecard32.
global-auto-repeat— Either:on or :off.
auto-repeats— Typebit-vector.

Returns the current control values for the keyboard. For the LEDs, the least significant
bit of led-maslcorresponds to LED one, and each one b#drmaskndicates an LED

that is lit.auto-repeatss a bit vector; each one bit indicates that auto-repeat is enabled
for the corresponding key. The vector is represented as 32 bytes (Byta 0) contains

the bits for keys8to &1+7, with the least significant bit in the byte representing key 8

display— A display.

modifier-mapping display Function
Returns:
shift-keycodedock-keycodgsxontrol-keycodesnodl-keycodes
mod2-keycodesnod3-keycodesnod4-keycodesnod5-keycodes-
Typelist of card8.

Returns the set of keycodes used for each modifier alighlaykeyboard. Each return
value is a list of theard8 keycodes used for each modifier key. The order of keycodes
within each list is server-dependent.

display— A display.

query-keymap display Function
Returns:
keymap— Typebit-vector 256.

Returns a bit vector that describes the state of the keyboard. Each one bit indicates that
the corresponding key is currently pressed. The vector is represented as 32 bytes. Byte
(from 0) contains the bits for keys & &1+7, with the least significant bit in the byte
representing keyr8

display— A display.

set-modifier-mapping display&key :shift :lock :control :mod1 :mod2 Function
:mod3 :mod4:mod5
Returns:
status— One of:success:failed, or:device-busy

Changes the set of keycodes mapped to the specified modifier keysisptagkey-
board. Each keyword argument contains a sequence aiand@keycodes for a specif-
ic modifier. The return value indicates whether the change was completed successfully.

A status offailed is returned if hardware limitations prevent the requested change. For
example, multiple keycodes per modifier may not be supported, up transitions on a giv-
en keycode may not be supported, or autorepeat may be mandatory for a given keycode.
If :failed is returned, the mappings for all modifiers remain unchanged.

14-172 CLX Programmer’s Reference



Control Functions

A status ofdevice-busyis returned if a new keycode given for a modifier was not pre-
viously mapped to that modifier and is currently in the down state. In this case, the map-
pings for all modifiers remain unchanged.

display— A display.

:shift, :lock, :control, :mod1, :mod2, :mod3, :mod4, :mod5 — A sequence afard8
keycodes for the given modifier.

Keyboard
Encodings

Keycodes and
Keysyms

14.4 Handling the great diversity of keyboard devices and international
language character encodings is a difficult problem for interactive programs that need to
receive text input but must also be portable. The X Window System solves this problem
by using different sets of encodings for device ké&gy¢odesand for character sym-

bols keysymp Each X server maintainkayboard mappinthat associates keycodes

and keysyms, and which can be returned or changed by client programs.

To handle text input, a CLX client program must follow these steps:
1. Receive akey-press(or :key-releasg event containing a keycode.

2. Convertthe keycode into its corresponding keysym, based on the current keyboard
mapping. Se&eycode-keysym

3. Convertthe keysym into the corresponding Common Lisp charactéeBsen-
character.

14.4.1 A keycoderepresents a physical (or logical) key. In CLX, keycodes
are values of typer{teger 8 255). A keycode value carries no intrinsic information, al-
though server implementors may attempt to encode geometry (for example, matrix) in-
formation in some fashion so it can be interpreted in a server- dependent fashion. The
mapping between keys and keycodes cannot be changed.

A keysymis an encoding of a symbol on the cap of a key. In CLX, keysyms are values of
typecard32. The set of defined keysyms include the ISO Latin character sets (1-4), Ka-
takana, Arabic, Cyrillic, Greek, Technical, Special, Publishing, APL, Hebrew, and mis-
cellaneous keys found on keyboards (RETURN, HELP, TAB, and so on). The encoding
of keysyms is defined by the X Protocol.

A list of keysyms is associated with each keycode. The length of the list can vary with
each keycode. The listis intended to convey the set of symbols on the corresponding key.
By convention, if the list contains a single keysym and if that keysym is alphabetic and
case distinction is relevant, then it should be treated as equivalent to a two-element list of
the lowercase and uppercase keysyms. For example, if the list contains the single key-
sym for uppercase A, the client should treat it as if it were a pair with lowercase as the
first keysym and uppercase A as the second keysym.

For any keycode, the first keysym in the list should be chosen as the interpretation of a
key press when no modifier keys are down. The second keysym in the list normally
should be chosen when tfghift modifier is on, or when thdock modifier is on and

:lock is interpreted asshift-lock. When thelock modifier is on and is interpreted as
:caps-lock it is suggested that thehift modifier first be applied to choose a keysym,

but if that keysym is lowercase alphabetic, the corresponding uppercase keysym should
be used instead.

CLX Programmer’s Reference

14-173



Control Functions

Other interpretations ofaps-lockare possible; for example, it may be viewed as equiv-
alent tashift-lock, but only applying when the first keysym is lowercase alphabetic and
the second keysym is the corresponding uppercase alphabetic. No interpretation of key-
syms beyond the first two in a list is suggested here. No spatial geometry of the symbols
on the key is defined by their order in the keysym list, although a geometry might be de-
fined on a vendor-specific basis. The X server does not use the mapping between key-
codes and keysyms. Rather, the X server stores the mapping merely for reading and
writing by clients.

Keyboard 14.4.2 The X server maintains a keyboard mapping that associates each
Mapping keycode with one or more keysyms. The following paragraphs describe the CLX func-
tions used to return or change the mapping of keycodes.
change-keyboard-mappingdisplay keysym&key (:start 0) :end Function
(:first-keycode :start)
Changes the mapping of keycode&eéysymsA :mapping-notify event is generated
for all clients.
The newkeysymsire specified as a two-dimensional array in which:
(aref keysymg+ :start i) j)
is keysynj associated with keycode ffirst-keycodei). The maximum number &gy-
symsassociated with any one keycode is given by:
(array-dimension keysym4d)
keysymshould contaimil elements to represent those keysyms that are undefined for a
given keycodestart and:end define the subsequence of keysymarray that defines
the new mapping, and the number of keycode mappings changed. By defelil,
given by:
(array-dimension keysym®)
The keycodes whose mappings are changed are giviérsbiteycode through the fol-
lowing:
(+ :first-keycode (- :end :start) —1)
keycodes outside this range of are not affecfedt-keycode must not be less than
(display-min-keycodedisplay), and the last keycode modified must not be greater
than @isplay-max-keycodedisplay).
display— A display.
keysyms -A two-dimensional array of keysyrmdrd32) values.
'start, :end — Indexes for the subsequenceeysymsised.
first-keycode — A card8 defining the first keycode mapping changed.
keyboard-mapping display &key :first-keycode :start :end :data Function

Returns:
mappings— Type @rray card32 (* *)).

Returns the keysyms mapped to the given range of keycodes flisheykeyboard.

The mappings are returned in the form of a two-dimensional aregrd32 keysym
values. Thedata argument, if given, must be a two-dimensional array in which the re-
turned mappings will be stored. In this case:

14-174

CLX Programmer’s Reference



Control Functions

(array-dimension :data 1)

defines the maximum number of keysyms returned for any keycode. Otherwise, a
new array is created and returned.

Upon return:
(aref mappingg+ :starti) j)

will contain keysynj associated with keycode ffirst-keycodei) (ornil, if keysymj is
undefined for that keycode).

first-keycode specifies the first keycode whose mapping is returned; by defasit,
keycodeis (display-min-keycodedisplay). :start and:end define the subsequence of
the returned array in which the returned mappings are stored. By detavitis given
by :first-keycode and:end is given by:

(1+ (display-max-keycodedisplay))

first-keycode must not be less thandigplay-min-keycode display, and
the last keycode returned must not be greater tiapléy-max-keycodedisplay).

display— A display.
first-keycode — A card8 defining the first keycode mapping returned.

:start, :end — Indexes for the subsequence of the returned array which is modified.

.data — If given, a two-dimensional array to receive the returned keysyms.

Using Keycodes 14.4.3 The following paragraphs describe the CLX functions used to:
and Keysyms
. Convert a keycode into a keysym

. Convert a keysym into a character

keycode-keysymdisplay keycode keysym-index Function
Returns:
keysym— Typekeysym

Returns th&eysynat the giverkeysym-indeftom the keysym list for thieeycoden the
current keyboard mapping for thesplayserver.

display— A display.

keycode— A card8.

keysym-index— A card8.

keycode-characterdisplay keysyr&optional (state0) Function
Returns:
character— Typecharacter or null.

Returns theharacterassociated with tHeeysynand thestate Thestateis amask16bit
mask representing the state of tieplaymodifier keys and pointer buttons. $tate-
mask-keyin paragraph 1.6, Data Types. If tkeysyndoes not represent a Common
Lisp character, thenil is returned.

Thestatedetermines the bits attribute of the returnbdracter as follows:

CLX Programmer’s Reference 14-175



Control Functions

:control char-control-bit
:mod-1 char-meta-bit
:mod-2 char-super-bit

‘mod-3 char-hyper-bit
display— A display.
keysym— A keysym
state— A mask16

Client 145 The CLX functions affecting client termination are discussed in the
Termination following paragraphs.

When a display connection to an X server is closed, whether by an explicitbeddo

display or by some external condition, the server automatically performs a sequence of
operations to clean up server state information associated with the closed connection.
The effect of these operations dependskbse-down modend thesave-sethat the cli-

ent has specified for the closed display connection. The close-down mode of a display
determines whether server resources allocated by the connection are freed or not. The
save-set identifies windows that will remain after the connection is closed.

The display save-set is used primarily by window managers that reparent the top-level
windows of other clients. For example, such a window manager can automatically
create a frame window that encloses a top-level client window, along with a set of con-
trols used for window management. Ordinarily, termination of the window manager cli-
ent would then destroy all client windows! However, the window manager can prevent
this by adding to its save-set those windows created by other clients that should be pre-
served.

When a display connection closes, an X server performs the following operations:

1. For each selection owned by a window created on the connection, the selection
owner is set tail.

2. An active or passive grab established for a window created on the connection is re-
leased.

3. If the connection has grabbed the server, the server is ungrabbed.

14-176 CLX Programmer’s Reference



Control Functions

4. Server resources and colormap cells allocated by the connection are freed and de-
stroyed, depending on the close-down mode, as follows:

:retain-permanent — All resources are markgrmanentand no resources are
destroyed. These resources can later be destroyed by algiétlient .

:retain-temporary — All resources are markedmporary and no resources are
destroyed. These resources can later be destroyed by &ihdltent orkill-tem-
porary-clients.

:destroy — All resources are destroyed.

When server resources allocated by a display connection are destroyed — whether by
closing the connection with close-down modiestroy or by later callingill-client or
kill-temporary-clients — then an X server performs the following operations on each
member of the save-set before actually destroying resources.

1. Ifthe save-set window is a descendant of a window created on the connection, the
save-set window is reparented. The new parent is the closest ancestor such that the
save-set window is no longer a descendant of any window created on the connec-
tion. The position of the reparented window with respect to its parent remains un-
changed.

2. If the save-set window is unmapped, then it is mapped.

If the last connection open to an X server is closed with close-down:dextmy, the

server resets its state to restore all initial defaults. The server state after reset is the same
as its initial state when first started. When an X server resets, it performs the following
operations:

- Allpermanent and temporary server resources from previously-closed connections
are destroyed.

« All but the predefined atoms are deleted.
« All root window properties are deleted.

«  All device control attributes and mappings are restored to their original default val-
ues.

«  The default background and cursor for all root windows are restored.

«  The default font path is restored.

« The input focus is set tpointer-root.

«  The access control list is reset.

The following paragraphs describe the CLX functions used to:

« Add or remove a window from a display save-set.

« Return or change the display close-down mode.

- Force a connection to be closed or all its server resources to be destroyed.

- Force a connection to be closed and all temporary resources to be destroyed.

CLX Programmer’s Reference

14-177



Control Functions

add-to-save-setvindow Function

Adds the specifiedindowto the save-set of tiendowdisplay. Thavindowmust have
been created by some other display. Windows are removed automatically from the save-
set when they are destroyed.

window— A window.

close-down-modealisplay Function
Returns:
mode— One of:destroy, :retain-permanent, or :retain-temporary.

Returns and (witketf) sets the close-down mode of the client’s resources at connection
close.
display— A display.

kill-client display resource-id Function
Closes the display connection which created the giesaurce-id Theresource-id
must be valid, but need not belong to the gidisplay

If the closed connection was previously open, the connection is closed according to its
close-down mode. Otherwise, if the connection had been previously terminated with
close-down modeetain-permanent or :retain-temporary, then all its retained server
resources — both permanent and temporary — are destroyed.

display— A display.
resource-id— A valid card29 resource ID.

kill-temporary-clients display Function
Closes thalisplayconnection and destroys all retained temporary server resources for
this and all previously-terminated connections.

If the displayconnection was previously open, the connection is closed according to its
close-down mode. Otherwise, if thisplayconnection had been previously terminated
with close-down modeetain-permanent or :retain-temporary, then all its retained
server resources — both permanent and temporary — are destroyed.

display— A display.

remove-from-save-setvindow Function

Removes the specifiegindowfrom the save-set of theindowdisplay. Thevindow
must have been created by some other display. Windows are removed automatically
from the save-set when they are destroyed.

window— A window.

14-178 CLX Programmer’s Reference



Control Functions

Managing Host

Access

14.6 An X server maintains a list of hosts from which client programs can be
run. Only clients executing on hosts that belong tcethigss control listre allowed to

open a connection to the server. Typically, the access control list can be changed by cli-
ents running on the same host as the server. Some server implementations can also im-
plement other authorization mechanisms in addition to, or in place of, this mechanism.
The action of this mechanism can be conditional based on the authorization protocol
name and data received by the server at connection setup.

The following paragraphs describe the CLX functions used to:
- Add or remove hosts on the access control list.
- Return the hosts on the access control list.

« Return or change the state of the access control list mechanism

access-controblisplay Function

access-hosts

Returns:
enabled-p— Typeboolean

Returns and (witketf) changes the state of the access control list mechanism éisthe
play server. Returns true if access control is enabled; othemiise,returned. If en-
abled, the access control list is used to validate each client during connection setup.

Only a client running on the same host as the server is allowed to enable or disable the
access control list mechanism.

display— A display.

display&key (:result-type 'list) Function
Returns:

hosts— sequenceof string.

enabled-p— Typeboolean

Returns a sequence containingltoststhat belong to the access control list ofdse
playserver. Elements of the returrfestssequence are either strings or some other type

of object recognized as a host namabg-access-hostndremove-access-hosihe

second returned value specifies whether the access control list mechanism is current-
ly enabled or disabled (seecess-control.

display— A display.
‘result-type — The type of hosts sequence to return.

add-access-hostlisplay host Function

Adds the specifietlostto the access control list. Only a client running on the same host
as the server can change the access control list.

display— A display.
host— A host name. Either a string or some other implementation-dependent type.

CLX Programmer’s Reference

14-179



Control Functions

remove-access-hostisplay host Function

Removes the specifidibstfrom the access control list. Only a client running on the
same host as the server can change the access control list.

display— A display.
host— A host name. Either a string or some other implementation-dependent type.

Screen Saver

14.7 To prevent monitor damage, an X server implements a screen saver function
which blanks screens during periods of unuse. The screen saver can be in one of three

states:

Disabled — No screen blanking is done and screen content remains unchanged.

Deactivated — The server is being used. When the server input devices are unused
for a specific amount of time, the screen saver becomes activated.

Activated — The server input devices are unused. The screen saver blanks all server
screens or displays a server-dependentimage. As soon as an input event from either
the pointer or the keyboard occurs, the screen saver is deactivated and its timer is

reset.
The following paragraphs describe the CLX functions used to:
« Return or change screen saver control values.

- Activate or reset the screen saver

activate-screen-savedisplay Function

Activates the screen saver for tfisplayserver.

display— A display.

reset-screen-savedisplay Function

screen-saver

Deactivates the screen saver fordigplayserver (if necessary) and resets its timer, just
as if a pointer or keyboard event had occurred.

display— A display.

display Function
Returns:

timeout period— Typeint16.

blanking exposures— One of:yesor :no.

Returns the current control values for theplayserver screen saver. Sgd-screen-
saver.

display— A display.

14-180

CLX Programmer’s Reference



Control Functions

set-screen-savedisplay timeout period blanking exposures Function

Changes the current control values fordisplayserver screen saver. The screen saver
is reset. The screen saver is also disabled if:

. timeoutis zero, or

- Both blanking andexposuresare disabled and the server cannot regenerate the
screen contents without sendimgposureevents.

Thetimeoutspecifies the (non-negative) number of seconds of input device inactivity
that must elapse before the screen saver is activatetimBuoeiican be set tmlefault to
restore the server default timeout interval.

If blankingis:yesand the screen hardware supports blanking, blanking is enabled; that
is, the screen saver will simply blank all screens when it is actiddgadkingcan be set
to :default to restore the server default state for blanking.

If exposuress:yes exposures are enabled. If exposures are enabled, or if the server is
capable of regenerating screen contents without sermelipgsureevents, the screen
saver will display some server-dependent image when activated. Frequently, this image
will consist of a repeating animation sequence, in whichpased specifies the (non-
negative) number of seconds for each repetitiqguerdodof zero is a hint that no repeti-

tion should occur.

display— A display.

timeout— Specifies the delay until timeout takes over.

period— Specifies the periodic change interval, if used.

blanking— Specifies whether the blanking option is available.

exposures— Specifies whether exposures are allowed during blanking.

CLX Programmer’s Reference

14-181



Control Functions

14-182 CLX Programmer’s Reference



EXTENSIONS

Extensions

15.1 The X Window System is based on a core protocol which can be extended to pro-
vide new functionality. An extension is generally represented by an additional set of re-
quests or event types that are implemented by an X server supporting the extension. By
definition, a client program using an extension may not be portable to other servers.
However, extensions allow different server implementations and different sites to add
their own special features to X, without disrupting clients that rely only on the core pro-
tocol.

Extensions are identified by assigning them unique name strings and major protocol
numbers. A client program can request an X server to use a protocol extension by fur-
nishing the extension protocol number

as an argument tpen-display The X Consortium maintains a registry of standard ex-
tension names and protocol numbers.

The following paragraphs describe the CLX functions used to:

«  List all supported extensions.

- Find out if a given extension is supported.

list-extensionsdisplay&key (:result-type ’list) Function

Returns:
names— Typesequenceof string.

Returns a sequence containingribeef all extensions supported by tisplayserv-
er.

display— A display.

:result-type — The type of hame sequence to return.

query-extensiondisplay name Function

Returns:
major-opcode first-event first-error — Typecard8 or null.

Returns thenajor-opcoddor the given extensiamamesupport by théisplayserver. If
the extension is not supported, only values are returned. The extensi@memust
contain only ISO Latin-1 characters; case is significant.

If the extension involves additional event typesfitise-eventreturned is the base event
type code for new events; otherwise fitg-eventsnil . If the extension involves addi-
tional error codes, tHest-error returned is the base code for new errors; otherwise, the
first-error is nil. The formats of error and event messages sent by the server are com-
pletely defined by the extension.

display— A display.
name— An extension hame string.

CLX Programmer’s Reference

15-183



Extensions

15-184 CLX Programmer’s Reference



ERRORS

Introduction 16.1 CLX error conditions are hierarchial. The base error condition is
x-error, and all other conditions are built on topxeérror. x-error can be built on a
lower-level condition that is implementation dependent (this is probabdéyrthrecon-
dition).

define-condition name(parent-type¥) [({ slot-specifiet}) { optiort}] Macro

access-error

alloc-error

atom-error

Any new condition type must be defined with tregine-conditionmacro. A condition
type has a name, parenttypes, report message, and any number of slot itemkispee the
Referencenanual for further information regardidgfine-condition.

The following are the predefined error conditions that can occur in CLX.

Condition
An access-errorcan occur for several reasons:

- Aclientattempted to grab a key/button combination already grabbed by another cli-
ent

- Aclient attempted to free a colormap entry that it did not already allocate
- Aclient attempted to store into a read-only colormap entry

- A client attempted to modify the access control list from other than the local (or
otherwise authorized) host

- Aclient attempted to select an event type that another client has already selected,
and, that at most, one client can select at a time

An access-erroris a special case of the more genszgliest-error (see page 16-189
for information orrequest-error).

Condition
The server failed to allocate the requested resource or server memory.

An alloc-error is a special case of the more generquiest-error (see page 16-189 for
information onrequest-error).

Condition
A value for amatomargument does not name a defined atom.

An atom-error is a special case of the more gengrqliest-error (see page 16-189 for
information onrequest-error).

closed-display Condition

Theclosed-displaycondition is signaled when trying to read or write a closed display
(that is,close-displayhas been called on tdésplay object, or a server-disconnect oc-
curred). Theclosed-displayobject is reported with the error.

CLX Programmer’s Reference

16-185



Errors

A closed-displaycondition is a special case of the more genemiror (see page
16-190 for information om-error).

colormap-error Condition

A value for acolormapargument does not name a defined colormap.

A colormap-error is a special case of the more geneesburce-error (see page
16-189 for information omesource-error).

connection-failure Condition

Signaled when an X11 server refuses a connection. The following items are reported
along with the error:

« major-version— The major version of the X server code.
« minor-version— The minor version of the X server code.
+  host— The host name for the X server.

- display —The display on which the error occurred.

« reason— A string indicating why the connection failed.

A connection-failureis a special case of the more gengratror (see page 16-190 for
information onx-error).

cursor-error Condition
A value for acursorargument does not name a defined cursor.
A cursor-error is a special case of the more genszaburce-error (see page 16-189
for information orresource-error).

device-busy Condition

Signaled by getf (pointer-mapping display) mapping) when theset-pointer-map-

ping request returns a busy status. A similar condition occeetimodifier-mapping,

butin this case, itreturns a boolean indicating success, rather than signaling an error. The
device-busycondition returns the display object as part of the error.

A device-busycondition is a special case of the more geneeator (see page 16-190
for information orx-error).

drawable-error Condition
A value for adrawableargument does not name a defined window or pixmap.

A drawable-error is a special case of the more geneeaburce-error (see page
16-189 for information omesource-error).

font-error Condition

A value for afont or gcontextargument does not name a defined font.

A font-error is a special case of the more generaburce-error (see page 16-189 for
information onresource-error).

16-186 CLX Programmer’s Reference



Errors

gcontext-error Condition

id-choice-error

A value for agcontextargument does not name a defined GContext.

A gcontext-error is a special case of the more genersburce-error (see page 16-189
for information orresource-error).

Condition

The value chosen for a resource identifier is either not included in the range assigned to
the client or is already in use. Under normal circumstances, this cannot occur and should
be considered a server or CLX library error.

An id-choice-error is a special case of the more genegaburce-error (see page
16-189 for information omesource-error).

implementation-error Condition

length-error

lookup-error

The server does not implement some aspect of the request. A server that generates this
error for a core request is deficient. As such, this error is not listed for any of the requests.
However, clients should be prepared to receive such errors and either handle or discard
them.

An implementation-error is a special case of the more genegaburce-error (see
page 16-189 for information aBsource-error).
Condition
The length of a request is shorter or longer than that minimally required to contain the
arguments. This usually means an internal CLX error.

A length-error is a special case of the more genszaburce-error (see page 16-189
for information orresource-error).
Condition

CLX has the option of caching different resource typesidgecached-types) in a
hash table by resource ID. When looking up an object in the hash table, if the type of the
object is wrong, éookup-error is signaled.

For example: The cursor with ID 123 is interned in the hash table. An event is received
with a field for window 123. When 123 is looked up in the hash table, a cursor is found.
Since a window was expectedpakup-error is signaled. This error indicates a prob-
lem with the extension code being used. The following items are reported along with the
error:

+ id— The resource ID.

« display— The display being used.

- type— The resource type.

«  object— Theresourceobject.

A lookup-error is a special case of the more generairor (see page 16-190 for infor-
mation onx-error).

CLX Programmer’s Reference

16-187



Errors

match-error

Condition

In a graphics request, the root and depth of the GContext does not match that of the draw-
able. Aniinput-only window is used as a drawable. Some argument or pair of arguments
has the correct type and range but fails to match in some other way required by the re-
quest. Aninput-only window locks this attribute. The values do not exist foirgrut-

only window.

A match-error is a special case of the more genegraliest-error (see page 16-189 for
information onrequest-error).

missing-parameter Condition

name-error

pixmap-error

One or more of the required keyword parameters is missimfy dihe missing parame-
ters are reported along with the error.

A missing-parametercondition is a special case of the more geneeator (see page
16-190 for information om-error).

Condition

A font or color of the specified name does not exist.

A name-error is a special case of the more genergliest-error (see page 16-189 for
information onrequest-error).

Condition
A value for apixmapargument does not name a defined pixmap.

A pixmap-error is a special case of the more genersdurce-error. (See page 16-189
for information orresource-error.)

reply-length-error (x-error) (slots® Condition

reply-timeout

The reply to arequest has an unexpected length. The following items are reported along
with the error:

- reply-length— The actual reply length.
« expected-length— The expected reply length.
- display— The display on which the error occurred.

A reply-length-error is a special case of the more generatror (see page 16-190 for
information onx-error).

Condition

The*reply-timeout* parameter specifies the maximum number of seconds to wait for a
request reply, aril to wait forever (the default). When areply has not been received after
*reply-timeout* seconds, theeply-timeout condition is signaled. ThHaneout period
anddisplayare reported along with the error.

A reply-timeout condition is a special case of the more generilror (see page
16-190 for information om-error).

16-188

CLX Programmer’s Reference



Errors

request-error Condition

The following items are reported along with the error:

The major or minor opcode does not specify a valid request.
- display— The display on which the error occurred.

- error-key— The error (sub)type.

« major— The major opcode.

«  minor— The minor opcode.

« sequence— The actual sequence number.

current-sequence- The current sequence number.

A request-error condition is a special case of the more genemiror (see page
16-190 for information om-error).

resource-error Condition

All X11 errors for incorrect resource IDs are built on topesurce-error. These are
colormap-error, cursor-error, drawable-error, font-error, gcontext-error, id-
choice-error, pixmap-error andwindow-error. resource-error is never signaled di-
rectly.

A resource-error is a special case of the more generquiest-error (see page 16-189
for information orrequest-error).

sequence-error Condition

All X11 request replies contain the sequence number of their request. If a reply’s se-
quence does not match the request cowsgigjaence-erroiis signaled. Aequence-er-

ror usually indicates a locking problem with a multi-processing Lisp. The following
items are reported along with the error:

- display— The display on which the error occurred.

+ reg-sequence- The sequence number in the reply.

- msg-sequence- The current sequence number.

A sequence-errorcondition is a special case of the more genegtor. (See page
16-190 for information om-error.)

server-disconnect Condition

The connection to the server was lost. The display on which the error occurred is re-
ported along with the error.

A server-disconnectcondition is a special case of the more genegator. (See page
16-190 for information om-error.)

CLX Programmer’s Reference

16-189



Errors

unexpected-reply Condition

Areply was found when none was expected. This indicates a problem with the extension
code. The following items are reported along with the error:

- display— The display on which the error occurred.
«  reg-sequence- The sequence number in the reply.
« msg-sequence- The current sequence number.

« length— The message length of the reply.

An unexpected-reply condition is a special case of the more general
x-error. (See page 16-190 for information x@rror.)

unknown-error (request-error) (error-code) Condition

An error was received from the server with an unknown error code. This indicates a
problem with the extension code. The undefined error code is reported.

An unknown-error is a special case of the more geneegjuest-error. (See page
16-189 for information onequest-error.)

value-error (request-error) (value) Condition

Some numeric value falls outside the range of values accepted by the request. Unless a
specific range is specified for an argument, the full range defined by the argument’s type
is accepted. Any argument defined as a set of alternatives can generate this error. The
erroneous value is reported.

A value-error is a special case of the more genexqliest-error. (See page 16-189 for
information onrequest-error.)

window-error (resource-error) Condition

A value for awindowargument does not name a defined window.

A window-error is a special case of the more genegsdburce-error. (See page 16-189
for information orresource-error.)

Condition
This is the most general error condition upon which all other conditions are defined.

16-190

CLX Programmer’s Reference



PROTOCOL VS. CLX FUNCTIONAL
CROSS-REFERENCE LISTING

X11 Request Name CLX Function Name

AllocColor alloc-color

AllocColorCells alloc-color-cells
AllocColorPlanes alloc-color-planes
AllocNamedColor alloc-color

AllowEvents allow-events

Bell bell

ChangeAccessControl sétf (access-controtisplay)
ChangeActivePointerGrab change-active-pointer-grab
ChangeCloseDownMode sétf (close-down-modedisplay))
ChangeGC force-gcontext-changes

(Seewith-gcontext)

(setf (gcontext-function gc))

(setf (gcontext-plane-maskgc))

(setf (gcontext-foregroundgc))

(setf (gcontext-backgroundgc))

(setf (gcontext-line-width gc))

(setf (gcontext-line-stylegc))

(setf (gcontext-cap-stylegc))

(setf (gcontext-join-stylegc))

(setf (gcontext-fill-style gc))

(setf (gcontext-fill-rule gc))

(setf (gcontext-tile gc))

(setf (gcontext-stipplegc))

(setf (gcontext-ts-xgc))

(setf (gcontext-ts-ygo))

(setf (gcontext-font gc &optional
metrics-p))

(setf (gcontext-subwindow-modeyc))

(setf (gcontext-exposuregc)))

(setf (gcontext-clip-x gc))

(setf (gcontext-clip-y gc))

(setf (gcontext-clip-maskgc
&optionalordering))

(setf (gcontext-dash-offsegyc))

(setf (gcontext-dashegc))

(setf (gcontext-arc-modegc))

(setf (gcontext-clip-ordering gc))

CLX Programmer’s Reference A-191



Protocol vs. CLX Functional
Cross-Reference Listing

X11 Request Name CLX Function Name

ChangeHosts
ChangeHosts

ChangeKeyboardControl
ChangePointerControl

ChangeProperty
ChangeSaveSet
ChangeSaveSet

ChangeWindowAttributes

CirculateWindow
CirculateWindow
ClearToBackground
CloseFont
ConfigureWindow

ConvertSelection
CopyArea

CopyColormapAndFree

CopyGC

CopyGC
CopyPlane
CreateColormap
CreateCursor
CreateGC
CreateGlyphCursor
CreatePixmap
CreateWindow
DeleteProperty
DestroySubwindows
DestroyWindow
FillPoly
ForceScreenSaver
ForceScreenSaver
FreeColormap
FreeColors
FreeCursor

add-access-host
remove-access-host
change-keyboard-control
change-pointer-control
change-property
remove-from-save-set
add-to-save-set
(Sewith-state)
(setf (window-background window))
(setf (window-border window))
(setf (window-bit-gravity window))
(setf (window-gravity window))
(setf (window-backing-storewindow))
(setf (window-backing-planeswindow))
(setf (window-backing-pixel window))
(setf (window-override-redirect window)
(setf (window-save-undemwindow))
(setf (window-colormap window))
(setf (window-cursor window))
(setf (window-event-maskwindow))
(setf (window-do-not-propagate-mask
window)
circulate-window-down
circulate-window-up
clear-area
close-font
(Sewvith-state)
(setf (drawable-x drawablg)
(setf (drawable-y drawabk))
(setf (drawable-width drawablg)
(setf (drawable-heightdrawablg)
(setf (drawable-depth drawablg)
(setf (drawable-border-width drawablg)
(setf (window-priority window&optional
sibling))
convert-selection
copy-area
copy-colormap-and-free
copy-gcontext
copy-gcontext-components
copy-plane
create-colormap
create-cursor
create-gcontext
create-glyph-cursor
create-pixmap
create-window
delete-property
destroy-subwindows
destroy-window
draw-lines
reset-screen-saver
activate-screen-saver
free-colormap
free-colors
free-cursor

A-192

CLX Programmer’s Reference



Protocol vs. CLX Functional
Cross-Reference Listing

X11 Request Name CLX Function Name

FreeGC
FreePixmap
GetAtomName
GetFontPath
GetGeometry

Getlmage
GetlnputFocus
GetKeyboardControl
GetKeyboardMapping
GetModifierMapping
GetMotionEvents
GetPointerControl
GetPointerMapping
GetProperty
GetScreenSaver
GetSelectionOwner
GetWindowAttributes

GrabButton
GrabKey
GrabKeyboard
GrabPointer
GrabServer
ImageTextl6
ImageTextl6
ImageText8
InstallColormap
InternAtom
InternAtom
KillClient
KillClient
ListExtensions
ListFonts
ListFontsWithinfo
ListHosts

free-gcontext
free-pixmap
atom-name
font-path
(Sewith-state)
drawable-root
drawable-x
drawable-y
drawable-width
drawable-height
drawable-depth
drawable-border-width
get-raw-image
input-focus
keyboard-control
keyboard-mapping
modifier-mapping
motion-events
pointer-control
pointer-mapping
get-property
screen-saver
selection-owner
(Sewith-state)
window-visual
window-class
window-bit-gravity
window-gravity
window-backing-store
window-backing-planes
window-backing-pixel
window-save-under
window-override-redirect
window-event-mask
window-do-not-propagate-mask
window-colormap
window-colormap-installed-p
window-all-event-masks
window-map-state
grab-button
grab-key
grab-keyboard
grab-pointer
grab-server
draw-image-glyphs
draw-image-glyph
draw-image-glyphs
install-colormap
find-atom
intern-atom
kill-temporary-clients
kill-client
list-extensions
list-font-names
list-fonts
access-control

CLX Programmer’s Reference

A-193



Protocol vs. CLX Functional

Cross-Reference Listing

X11 Request Name CLX Function Name

ListHosts
ListInstalledColormaps
ListProperties
LookupColor
MapSubwindows
MapWindow
OpenFont
PolyArc

PolyArc
PolyFillArc
PolyFillArc
PolyFillRectangle
PolyFillRectangle
PolyLine
PolyLine
PolyPoint
PolyPoint
PolyRectangle
PolyRectangle
PolySegment
PolyText16
PolyText16
PolyText8
Putimage
QueryBestSize
QueryBestSize
QueryBestSize
QueryColors
QueryExtension
QueryFont

access-hosts
installed-colormaps
list-properties
lookup-color
map-subwindows
map-window
open-font
draw-arc
draw-arcs
draw-arc
draw-arcs
draw-rectangle
draw-rectangles
draw-line
draw-lines
draw-point
draw-points
draw-rectangle
draw-rectangles
draw-segments
draw-glyph
draw-glyphs
draw-glyphs
put-raw-image
query-best-cursor
query-best-stipple
guery-best-tile
guery-colors
guery-extension
font-name
font-name
font-direction
font-min-char
font-max-char
font-min-bytel
font-max-bytel
font-min-byte2
font-max-byte2
font-all-chars-exist-p
font-default-char
font-ascent
font-descent
font-properties
font-property
char-left-bearing
char-right-bearing
char-width
char-ascent
char-descent
char-attributes
min-char-left-bearing
min-char-right-bearing
min-char-width
min-char-ascent
min-char-descent
min-char-attributes

A-194

CLX Programmer’s Reference



Protocol vs. CLX Functional
Cross-Reference Listing

X11 Request Name CLX Function Name

QueryKeymap
QueryPointer
QueryPointer
QueryPointer
QueryTextExtents
QueryTextExtents
QueryTree
RecolorCursor
ReparentWindow
RotateProperties
SendEvent
SetClipRectangles

SetDashes

SetFontPath
SetlnputFocus
SetKeyboardMapping
SetModifierMapping
SetPointerMapping
SetScreenSaver
SetSelectionOwner
StoreColors
StoreColors
StoreNamedColor
StoreNamedColor
TranslateCoords
UngrabButton
UngrabKey
UngrabKeyboard
UngrabPointer
UngrabServer
UninstallColormap
UnmapSubwindows
UnmapWindow
WarpPointer
WarpPointer
WarpPointer
WarpPointer
ListHosts

ListHosts
ForceScreenSaver
ChangeHosts

max-char-left-bearing
max-char-right-bearing
max-char-width
max-char-ascent
max-char-descent
max-char-attributes
query-keymap
global-pointer-position
pointer-position
guery-pointer
text-extents
text-width
query-tree
recolor-cursor
reparent-window
rotate-properties
send-event
force-gcontext-changes
(Seewith-gcontext)
(setf (gcontext-clip-xgc))
(setf (gcontext-clip-y gc))
(setf (gcontext-clip-maskgc &optional
ordering))
(setf (gcontext-clip-ordering gc))
force-gcontext-changes
(Seewith-gcontext)
(setf (gcontext-dash-offseqc))
(setf (gcontext-dashegc))
getf (font-path font)
set-input-focus
change-keyboard-mapping
set-modifier-mapping
set-pointer-mapping
set-screen-saver
set-selection-owner
store-color
store-colors
store-color
store-colors
translate-coordinates
ungrab-button
ungrab-key
ungrab-keyboard
ungrab-pointer
ungrab-server
uninstall-colormap
unmap-subwindows
unmap-window
warp-pointer
warp-pointer-if-inside
warp-pointer-relative
warp-pointer-relative-if-inside
access-control
access-hosts
activate-screen-saver
add-access-host

CLX Programmer’s Reference

A-195



Protocol vs. CLX Functional
Cross-Reference Listing

X11 Request Name CLX Function Name

ChangeSaveSet
AllocColor
AllocNamedColor
AllocColorCells
AllocColorPlanes
AllowEvents
GetAtomName

Bell
ChangeActivePointerGrab
ChangeKeyboardControl
SetKeyboardMapping
ChangePointerControl
ChangeProperty
QueryFont
QueryFont
QueryFont
QueryFont
QueryFont
QueryFont
CirculateWindow
CirculateWindow
ClearToBackground
CloseFont
ConvertSelection
CopyArea
CopyColormapAndFree
CopyGC

CopyGC

CopyPlane
CreateColormap
CreateCursor
CreateGC
CreateGlyphCursor
CreatePixmap
CreateWindow
DeleteProperty
DestroySubwindows
DestroyWindow
PolyArc

PolyArc

PolyText16
PolyText16
PolyText8
ImageTextl6
ImageTextl6
ImageText8
PolyLine

PolyLine

PolyPoint

PolyPoint
PolyFillRectangle
PolyRectangle
PolyFillRectangle
PolyRectangle
PolySegment
GetGeometry

add-to-save-set
alloc-color

alloc-color
alloc-color-cells
alloc-color-planes
allow-events
atom-name

bell
change-active-pointer-grab
change-keyboard-control
change-keyboard-mapping
change-pointer-control
change-property
char-ascent
char-attributes
char-descent
char-left-bearing
char-right-bearing
char-width
circulate-window-down
circulate-window-up
clear-area

close-font
convert-selection
copy-area
copy-colormap-and-free
copy-gcontext
copy-gcontext-components
copy-plane
create-colormap
create-cursor
create-gcontext
create-glyph-cursor
create-pixmap
create-window
delete-property
destroy-subwindows
destroy-window
draw-arc

draw-arcs

draw-glyph
draw-glyphs
draw-glyphs
draw-image-glyph
draw-image-glyphs
draw-image-glyphs
draw-line

draw-lines

draw-point

draw-points
draw-rectangle
draw-rectangle
draw-rectangles
draw-rectangles
draw-segments
drawable-border-width

A-196

CLX Programmer’s Reference



Protocol vs. CLX Functional
Cross-Reference Listing

X11 Request Name CLX Function Name

GetGeometry
GetGeometry
GetGeometry
GetGeometry
GetGeometry
GetGeometry
FillPoly
InternAtom
QueryFont
QueryFont
QueryFont
QueryFont
QueryFont
QueryFont
QueryFont
QueryFont
QueryFont
QueryFont
QueryFont
QueryFont
QueryFont
GetFontPath
QueryFont
QueryFont
ChangeGC
SetClipRectangles
SetDashes
FreeColormap
FreeColors
FreeCursor
FreeGC
FreePixmap
GetProperty
Getlmage
QueryPointer
GrabButton
GrabKey
GrabKeyboard
GrabPointer
GrabServer
GrabServer
GetlnputFocus
InstallColormap
ListInstalledColormaps
InternAtom
GetKeyboardControl
GetKeyboardMapping
KillClient
KillClient
ListExtensions
ListFonts
ListFontsWithInfo
ListProperties
LookupColor
MapSubwindows
MapWindow

drawable-depth
drawable-height
drawable-root
drawable-width
drawable-x
drawable-y
fill-polygon
find-atom
font-all-chars-exist-p
font-ascent
font-default-char
font-descent
font-direction
font-max-bytel
font-max-byte2
font-max-char
font-min-bytel
font-min-byte2
font-min-char
font-name
font-name

font-path
font-properties
font-property
force-gcontext-changes
force-gcontext-changes
force-gcontext-changes
free-colormap
free-colors
free-cursor
free-gcontext
free-pixmap
get-property
get-raw-image
global-pointer-position
grab-button
grab-key
grab-keyboard
grab-pointer
grab-server
with-server-grabbed
input-focus
install-colormap
installed-colormaps
intern-atom
keyboard-control
keyboard-mapping
kill-client
kill-temporary-clients
list-extensions
list-font-names
list-fonts
list-properties
lookup-color
map-subwindows
map-window

CLX Programmer’s Reference

A-197



Protocol vs. CLX Functional
Cross-Reference Listing

X11 Request Name

CLX Function Name

QueryFont
QueryFont
QueryFont
QueryFont
QueryFont
QueryFont
QueryFont
QueryFont
QueryFont
QueryFont
QueryFont
QueryFont
GetModifierMapping
GetMotionEvents
OpenFont
GetPointerControl
GetPointerMapping
QueryPointer
Putlmage
QueryBestSize
QueryBestSize
QueryBestSize
QueryColors
QueryExtension
QueryKeymap
QueryPointer
QueryTree
RecolorCursor
ChangeHosts
ChangeSaveSet
ReparentWindow
ForceScreenSaver
RotateProperties
GetScreenSaver
GetSelectionOwner
SendEvent
ChangeAccessControl

ChangeCloseDownMode

SetlnputFocus
SetModifierMapping
SetPointerMapping
SetScreenSaver
SetSelectionOwner
StoreColors
StoreColors
StoreNamedColor
StoreNamedColor
QueryTextExtents
QueryTextExtents
TranslateCoords
UngrabButton
UngrabKey
UngrabKeyboard
UngrabPointer
UngrabServer
UngrabServer

max-char-ascent
max-char-attributes
max-char-descent
max-char-left-bearing
max-char-right-bearing
max-char-width
min-char-ascent
min-char-attributes
min-char-descent
min-char-left-bearing
min-char-right-bearing
min-char-width
modifier-mapping
motion-events
open-font
pointer-control
pointer-mapping
pointer-position
put-raw-image
query-best-cursor
guery-best-stipple
query-best-tile
query-colors
guery-extension
query-keymap
query-pointer
query-tree
recolor-cursor
remove-access-host
remove-from-save-set
reparent-window
reset-screen-saver
rotate-properties
screen-saver
selection-owner
send-event
set-access-control
set-close-down-mode
set-input-focus
set-modifier-mapping
set-pointer-mapping
set-screen-saver
set-selection-owner
store-color
store-colors
store-color
store-colors
text-extents
text-width
translate-coordinates
ungrab-button
ungrab-key
ungrab-keyboard
ungrab-pointer
ungrab-server
with-server-grabbed

A-198

CLX Programmer’s Reference



X11 Request Name

Protocol vs. CLX Functional
Cross-Reference Listing

CLX Function Name

UninstallColormap
UnmapSubwindows
UnmapWindow
WarpPointer
WarpPointer
WarpPointer
WarpPointer
GetWindowAttributes
GetWindowAttributes
GetWindowAttributes
GetWindowAttributes
GetWindowAttributes
GetWindowAttributes
GetWindowAttributes
GetWindowAttributes
GetWindowAttributes
GetWindowAttributes
GetWindowAttributes
GetWindowAttributes
GetWindowAttributes
GetWindowAttributes
GetWindowAttributes
ConfigureWindow
ConfigureWindow
ConfigureWindow
ConfigureWindow
ConfigureWindow
ConfigureWindow
SetFontPath
ChangeGC
ChangeGC
ChangeGC
SetClipRectangles

SetClipRectangles
SetClipRectangles
SetClipRectangles
SetDashes
SetDashes
ChangeGC
ChangeGC
ChangeGC
ChangeGC

ChangeGC
ChangeGC
ChangeGC
ChangeGC
ChangeGC
ChangeGC
ChangeGC
ChangeGC
ChangeGC
ChangeGC
ChangeGC

ChangeWindowAttributes

uninstall-colormap
unmap-subwindows
unmap-window
warp-pointer
warp-pointer-if-inside
warp-pointer-relative
warp-pointer-relative-if-inside
window-all-event-masks
window-backing-pixel
window-backing-planes
window-backing-store
window-bit-gravity
window-class
window-colormap
window-colormap-installed-p
window-do-not-propagate-mask
window-event-mask
window-gravity
window-map-state
window-override-redirect
window-save-under
window-visual
getf (drawable-border-width drawablg)
getf (drawable-depth drawablg)
getf (drawable-heightdrawablg)
getf (drawable-width drawabk))
getf (drawable-x drawablg)
getf (drawable-y drawablg)
getf (font-path font) paths)
getf (gcontext-arc-modegc))
getf (gcontext-backgroundgc))
getf (gcontext-cap-stylegc))
sétf (gcontext-clip-maskgc &optional
ordering))
sétf (gcontext-clip-ordering gc))
sétf (gcontext-clip-xgc))
sétf (gcontext-clip-y go))
sgtf (gcontext-dash-offsegc))
setf (gcontext-dashegc))
qetf (gcontext-exposuresc))
getf (gcontext-fill-rule gc) keyword)
getf (gcontext-fill-style gc) keyword)
getf (gcontext-fontgc &optional
metrics-p)
getf (gcontext-foregroundgc) card32)
{etf (gcontext-function gc))
getf (gcontext-join-stylegc) keyword)
getf (gcontext-line-stylegc) keyword)
getf (gcontext-line-width gc) card16)
getf (gcontext-plane-maskgc) card32)
getf (gcontext-stipplegc) pixmap)
getf (gcontext-subwindow-modegc))
getf (gcontext-tile gc))
getf (gcontext-ts-xgc))
getf (gcontext-ts-ygo))
setf (window-background window))

CLX Programmer’s Reference

A-199



Protocol vs. CLX Functional
Cross-Reference Listing

X11 Request Name CLX Function Name

ChangeWindowAttributes
ChangeWindowAttributes
ChangeWindowAttributes
ChangeWindowAttributes
ChangeWindowAttributes
ChangeWindowAttributes
ChangeWindowAttributes
ChangeWindowAttributes

ChangeWindowAttributes
ChangeWindowAttributes
ChangeWindowAttributes
ConfigureWindow

ChangeWindowAttributes

sétf (window-backing-pixel window))

sétf (window-backing-planeswindow)

sétf (window-backing-store window))

sétf (window-bit-gravity window)

séetf (window-border window))

sétf (window-colormap window))

setf (window-cursor window))

setf (window-do-not-propagate-mask
window)

sétf (window-event-maskwindow))

setf (window-gravity window))

setf (window-override-redirect window))

getf (window-priority window&optional
sibling))

sétf (window-save-underwindow)

A-200

CLX Programmer’s Reference



GLOSSARY

a

access control list

X maintains a list of hosts from which client programs can be run. By default, only pro-
grams on the local host can use the display, plus any hosts specified in an initial list read
by the server. Thiaccess control listan be changed by clients on the local host. Some
server implementations can also implement other authorization mechanisms in addition
to or in place of this mechanism. The action of this mechanism can be conditional based
on the authorization protocol name and data received by the server at connection setup.

action A function that is designed to handle an input event. CLUE input processing consists of
matching an event with an event specification found in a contaaist-translations
slot and then calling actions associated with the matching event specification.

active grab A grab isactivewhen the pointer or keyboard is actually owned by the single grabbing
client.

ancestors If W is an inferior of A, then A is aancestorof W.

atom A unique ID corresponding to a string hame. Atoms are used to identify properties,
types, and selections.

b

backing store

before action

bit gravity

bitmap

button grabbing

byte order

When a server maintains the contents of a window, the off-screen saved pixels are known
as abacking store

An action of a&contact-displaythat is called when an eventis dispatched to a contact, but
before any other contact input processing is performed.

When awindow is resized, the contents of the window are not necessarily discarded. Itis
possible to request the server to relocate the previous contents to some region of the win-
dow. This attraction of window contents for some location of a window is knobih as
gravity.

A pixmap of depth one.

Buttons on the pointer can be passiyggbbedby a client. When the button is pressed,
the pointer is then actively grabbed by the client.

Forimage (pixmap/bitmap) data, byte order is defined by the server, and clients with dif-
ferent native byte ordering must swap bytes as necessary. For all other parts of the proto-
col, the byte order is defined by the client, and the server swaps bytes as necessary.

C

callback

children

A function that represents a connection between a contact and the rest of an application
program. A contact calls a callback function in order to report the results of the user inter-
face component that it represents.

First-level subwindows of a window.

CLX Programmer’s Reference

Glossary-201



Glossary

class event
translations

class resources

click

client

clipping regions

colormap

composite

complete resource
class

complete resource
name

connection

constraint resources

contact

contact-display

contact initialization

contact realization

Event translations that belong to all instances of a contact class. A class event
translation is created by tldefeventmacro.

Resources defined for each instance of a contact class. Also see constraint resources.

A :button-press event followed immediately by:autton-releaseevent for the same
button, with no intervening change in pointer position or modifier key state.

An application program connects to the window system server by some interprocess
communication (IPC) path, such as a TCP connection or a shared memory buffer. This
program is referred to askentof the window system server. More precisely, the client

is the IPC path itself. A program with multiple paths open to the server is viewed as mul-
tiple clients by the protocol. Resource lifetimes are controlled by connection lifetimes,
not by program lifetimes.

In a graphics context, a bitmap or list of rectangles can be specified to restrict output to a
particular region of the window. The image defined by the bitmap or rectangles is called
aclipping region

A set of entries defining color values. The colormap associated with a window is used to
display the contents of the window. Each pixel value indexes the colormap to produce
RGB values that drive the guns of a monitor. Depending on hardware limitations, one or
more colormaps can be installed at one time, such that windows associated with those
maps display with correct colors.

A subclass ofontactrepresenting contacts that are the parents of other contacts. Acom-
posite provides geometry management and input focus management services for the
contacts that are its children.

A list of symbols containing the class of the contact, the class of the contact’s
parent(and so on), and the claskthecontact-displayto which the contact belongs.

The complete resource class is one of the two items used as a key by a CLUE application
in order to access a contact resource value in a resource database.

A list of symbols containing thename of the contact, thename of the
contact’sparent (and so on), and the name of ttemtact-displayto which the contact
belongs. The complete resource name is one of the two items used as a key by a CLUE
application in order to access a contact resource value in a resource database.

The IPC path between the server and client program. A client program typically has one
connection to the server over which requests and events are sent.

Resources defined for each child belonging to a member of a composite class. Constraint
resources are typically used to control the parent’s geometry management policy. Also
see class resources.

The basic CLUE object for programming a user interface.

The CLUE object type that representsoanection to an X server and that supports an
event loop for applicatiomput.

The process of collecting initial values for all contact attributes. No server resources
(windows and so on) are actually allocated until contact realization.

The process of allocating contact resources. This process completes contact creation.

Glossary-202

CLX Programmer’s Reference



containment

content

coordinate system

Glossary

A window contains the pointer if the window is viewable and the hot spot of the cursor is
within a visible region of the window or a visible region of one of its inferiors. The border
of the window is included as part of the window for containment. The pointer is in a win-
dow if the window contains the pointer but no inferior contains the pointer.

The single child of a shell. The basic geometry management policy implemented by the
shell class constrains a shell and its content to have the same width and height; size
changes to one are automatically applied to the other.

The coordinate system has x horizontal and y vertical, with the origin [0, O] at the upper
left. Coordinates are discrete and are in terms of pixels. Each window and pixmap has its
own coordinate system. For a window, the origin is at the inside upper left, inside the
border.

cursor The visible shape of the pointer on a screen. It consists of a hot-spot, a source bitmap, a
shape bitmap, and a pair of colors. The cursor defined for a window controls the visible
appearance when the pointer is in that window.

d

depth The depth of a window or pixmap is number of bits per pixel it has. The depth of a graph-
ics context is the depth of the drawables it can be used in conjunction with for graphics
output.

descendant If W is an inferior of A, then W is descendanof A.

device Keyboards, mice, tablets, track-balls, button boxes, and so forth, are all collectively
known as inpudlevicesThe core protocol only deals with two devices: the keyboard and
the pointer.

direct color A class of colormap in which a pixel value is decomposed into three separate subfields

dispatching an event

for indexing. One subfield indexes an array to produce red intensity values, the second
subfield indexes a second array to produce blue intensity values, and the third subfield
indexes a third array to produce green intensity values. The RGB values can be changed
dynamically.

The process of finding the appropriate contact and its actions.

double-click A sequence of two clicks of the same button in rapid succession.

drawable Both windows and pixmaps can be used as sources and destinations in graphics opera-
tions. These are collectively known @dmwables However, aninput-only window
cannot be used as a source or destination in a graphics operation.

e

event Clients receive information asynchronouslyeve@ntsThese events can be either asyn-

chronously generated from devices, or generated as side effects of client requests.
Events are grouped into types; events are never sent to a client by the server unless the
client has specifically asked to be informed of that type of event, but clients can force
events to be sent to other clients. Events are typically reported relative to a window.

CLX Programmer’s Reference

Glossary-203



Glossary

event compression

event loop

event mask

event propagation

event specification

event synchronization

event source

event translation

exposure event

extension

Ignoring (or compressing) certain redundant input events. Compression of redundant
events is controlled by the class slotsmpress-exposuresnd compress-motion
which are shared by all instances of a contact class.

The fundamental application control structure: wait for an event, figure out how to han-
dle it, process the event, then go back and wait for the next one. In CLUE, the event loop
is implemented using th@ocess-next-evenfunction.

Events are requested relative to a window. The set of event types a client requests relative
to a window are described usingarent mask

Device-related evenfsropagatefrom the source window to ancestor windows until
some client has expressed interest in handling that type of event, or until the event is dis-
carded explicitly.

A notation for describing a certain sort of event. CLUE input processing consists of
matching an event with an event specification found in a congaeist-translations
slot and then calling actions associated with the matching event specification.

Certain race conditions are possible when demultiplexing device events to clients (in
particular deciding where pointer and keyboard events should be sent when in the middle
of window management operations). The event synchronization mechanism allows syn-
chronous processing of device events.

The smallest window containing the pointer issbarceof a device related event.

The process of determining which contact actigrctions will be executed. An event
translationis alist found in a contaatigent-translationsslot associating an event spec-
ification with one or more actiomames. Also see class event translations.

Servers do not guarantee to preserve the contents of windows when windows are ob-
scured or reconfigureBxposureevents are sent to clients to inform them when contents
of regions of windows have been lost.

Namedextension$o the core protocol can be defined to extend the system. Extension to
output requests, resources, and event types are all possible, and expected.

f

focus window

Another term for the input focus.

font A matrix of glyphs (typically characters). The protocol does no translation or interpreta-
tion of character sets. The client simply indicates values used to index the glyph array. A
font contains additional metric information to determine inter-glyph and inter-line spac-
ing.

g

geometry The process whereby a composite controls the geometrical properties of its

management child contacts; the composite is referred to agtwmetry manager.

glyph An image, typically of a character, in a font.

Glossary-204

CLX Programmer’s Reference



grab

gcontext

graphics context

Glossary

Keyboard keys, the keyboard, pointer buttons, the pointer, and the servegczieel

for exclusive use by a client. In general, these facilities are not intended to be used by
normal applications but are intended for various input and window managers to imple-
ment various styles of user interfaces.

Shorthand for graphics context.

Various information for graphics output is stored igraphics contexfor gcontext),

such as foreground pixel, background pixel, line width, clipping region, and so forth. A
graphics context can only be used with drawables that have the same root and the same
depth as the graphics context.

gray scale A degenerate case of pseudo color, in which the red, green, and blue values in any given
colormap entry are equal, thus producing shades of gray. The gray values can be changed
dynamically.

h

hot spot A cursor has an associateot spotthat defines a point in the cursor that corresponds to
the coordinates reported for the pointer.

i

identifier Each resource has @tentifier, a unique value associated with it that clients use to name
the resource. An identifier can be used over any connection to name the resource.

inferiors All of the subwindows nested below a window: the children, the children’s children, and
SO on.

initialization See contact initialization.

input event See event.

input focus Normally a window defining the scope for processing of keyboard input. If a generated

input-only window

input/output window

insensitivity

interactive-stream

keyboard event would normally be reported to this window or one of its inferiors, the
eventis reported normally; otherwise, the eventis reported with respect to the focus win-
dow. The input focus also can be set such that all keyboard events are discarded and that
the focus window is dynamically taken to be the root window of whatever screen the
pointer is on at each keyboard event.

A window that cannot be used for graphics requegtsit-onlywindows are invisible,
and can be used to control such things as cursors, input event generation, and grabbing.
input-onlywindows cannot havieput/outputwindows as inferiors.

The normal kind of opaque window, used for both input and output. Input/output win-
dows can have bothput/outputand input-only windows as inferiors.

See sensitivity.

A contact subclass designed to integrate CLUE with the conventional stream-based 1/0
of Common Lisp.

CLX Programmer’s Reference

Glossary-205



Glossary

Kk

key grabbing

keyboard grabbing

Keys on the keyboard can be passiggbbbedby a client. When the key is pressed, the
keyboard is then actively grabbed by the client.

A client can activelygrab control of the keyboard, and key events will be sent to that
client rather than the client to which the events would normally have been sent.

keysym An encoding of a symbol on a keycap on a keyboard.

m

managed A contact under geometry management control.

mapped A window is said to benappedf a map call has been performed on it. Unmapped win-

modifier keys

monochrome

dows and their inferiors are never viewable or visible.

SHIFT, CONTROL, META, SUPER, HYPER, ALT, Compose, Apple, CAPS LOCK,
Shift Lock, and similar keys are calletbdifier keys

A special case of static gray, in which there are only two colormap entries.

o

obscure

occlude

A window isobscuredf some other window obscures it. For example, window A ob-
scures window B if:

- Both windows are viewablénput-output windows
«  Window A is higher in the global stacking order than window B

- Therectangle defined by the outside edges of window A intersects the rectangle de-
fined by the outside edges of window B

Notice that window borders are included in the calculation, and that a window can be
obscured and yet still have visible regions. See occlude (there is a fine distinction be-
tween obscure and occlude).

A window isoccludedf some other window occludes it. For example, window A oc-
cludes window B if:

- Both windows are mapped
«  Window A is higher in the global stacking order than window B

- Therectangle defined by the outside edges of window A intersects the rectangle de-
fined by the outside edges of window B

Notice that window borders are included in the calculation. See obscure (there is a fine
distinction between occlude and obscure).

Glossary-206

CLX Programmer’s Reference



override-shell

Glossary

A subclass ofhellused to override the window manager. This subclass contains pop-up
menus and other temporary objects that the user can never resize and so on.

P
padding

parent window

passive grab

pixel value

pixmap

plane

plane mask

pointer

pointer grabbing

pointing device

pop-up

property

property list

pseudo color

Some padding bytes are inserted in the data stream to maintain alignment of the protocol
requests on natural boundaries. This increases ease of portability to some machine archi-
tectures.

If C is a child of P, then P is thparentof C.

Grabbing a key or button igpassive grabThe grab activates when the key or button is
actually pressed.

Ann-bit value, wher@is the number of bit planes used in (thatis, the depth of) a particu-
lar window or pixmap. For a window, a pixel value indexes a colormap to derive an actu-
al color to be displayed.

Athree dimensional array of bits. A pixmap is normally thought of as a two dimensional

array of pixels, where each pixel can be a value froniZf}o— 1 wherenis the depth (z
axis) of the pixmap. A pixmap can also be thought of as a stackihaps.

When a pixmap or window is thought of as a stack of bitmaps, each bitmap is called a
planeor bit plane

Graphics operations can be restricted to only affect a subset of bit planes of a destination.
A plane maslks a bit mask describing which planes are to be modified, anditis stored in a
graphics context.

The pointing device attached to the cursor and tracked on the screens.

A client can activelygrab control of the pointer, and button and motion events will be
sent to that client rather than the client to which the events would normally have been
sent.

Typically a mouse or tablet, or some other device with effective dimensional motion.
There is only one visible cursor defined by the core protocol, and it tracks whatever
pointing device is attached as the pointer.

One of the uses of a top-level shell (for example, a menu that pops up when a command
button contact s activated). Setting shateof a shell tomappedis sometimes referred

to asmappingorpopping ughe shell. Setting tretateof a shell towithdrawn or:icon-

ic is sometimes referred to asmappingor popping dowrthe shell.

Windows can have associafdperties consisting of a name, a type, a data format, and
some data. The protocol places no interpretation on properties; they are intended as a
general-purpose naming mechanism for clients. For example, clients might share infor-
mation such as resize hints, program names, and icon formats with a window manager
via properties.

The list of properties that have been defined for a window.
A class of colormap in which a pixel value indexes the colormap to produce independent

red, green, and blue values. That is, the colormap is viewed as an array of triples (RGB
values). The RGB values can be changed dynamically.

CLX Programmer’s Reference

Glossary-207



Glossary

r
realization

redirecting control

reply

representation type

request
resource
resource class,
complete

resource database

resource name,

See contact realization.

Window managers (or client programs) may choose to enforce window layout policy in
various ways. When a client attempts to change the size or position of a window, the op-
eration can beedirectedto a specified client, rather than the operation actually being
performed.

Information requested by a client program is sent back to the client vefityaBoth

events and replies are multiplexed on the same connection. Most requests do not gener-
ate replies. However, some requests generate multiple replies.

The type of representation of a resource value. For example, a color value might be rep-
resented either as a namestring (“red”), a pixel value, an RGB triplet, an HSV triplet, and
So on.

A command to the server is callegguestltis a single block of data sent over a connec-
tion.

A value of the user interface that can be changed by the user in a resource database via
CLX functionsadd-resource get-resource and so forth. See server resource.

See complete resource class.
Conceptually, a set of resource name/value pairs (or resource bindings). CLX defines
functions for storing and retrieving interface resources from a resource database.

See complete resource name.

complete

RGB values Red green andblueintensity values used to define color. These values are always repre-
sented as 16-bit unsigned numbers, with zero being the minimum intensity and 65535
being the maximum intensity. The values are scaled by the server to match the display
hardware.

root A special composite contact used to represent an entire display screen.

root window Each screen hagaot windowcovering it. It cannot be reconfigured or unmapped, but
otherwise acts as a full-fledged window. A root window has no parent.

S

save set Thesave sebf a clientis a list of other client’s windows that, if they are inferiors of one
of the client’s windows at connection close, should not be destroyed and that should be
remapped if it is unmapped. Save sets are typically used by window managers to avoid
lost windows if the manager should terminate abnormally.

scanline Alist of pixel or bit values viewed as a horizontal row (all values having the samey coor-

scanline order

dinate) of an image, with the values ordered by increasing x coordinate.

Animage representedscanline ordecontains scanlines ordered by increasing y coor-
dinate.

Glossary-208

CLX Programmer’s Reference



screen

selection

sensitivity

server

server grabbing

Server resource

shell

sibling

static color

static gray

stacking order

state

stipple

Glossary

A server can provide several independeneenswhich typically have physically inde-
pendent monitors. This would be the expected configuration when there is only a single
keyboard and pointer shared among the screens.

A selectioncan be thought of as an indirect property with dynamic type. That is, rather
than having the property stored in the server, itis maintained by some clienti(ie

A selection is global in nature, being thought of as belonging to the user (but maintained
by clients), rather than being private to a particular window subhierarchy or a particular
set of clients. When a client asks for the contents of a selection, it specifies a selection
target type This target type can be used to control the transmitted representation of the
contents.

For example, if the selection is “the last thing the user clicked on” and that is currently an
image, then the target type might specify whether the contents of the image should be
sent in XY Format or Z Format. The target type can also be used to control the class of
contents transmitted; that is, asking for the looks (fonts, line spacing, indentation, and so
forth) of a paragraph selection, rather than the text of the paragraph. The target type can
also be used for other purposes; the semantics is not constrained by the protocol.

A condition in which a user interface component of an application will accept input.
Conversely, when a contactis insensitive, events of particular types are not dispatched to
the contact and are ignored.

Theserverprovides the basic windowing mechanism. It handles IPC connections from
clients, demultiplexes graphics requests onto the screens, and multiplexes input back to
the appropriate clients.

The server can lirabbedby a single client for exclusive use. This prevents processing

of any requests from other client connections until the grab is complete. This is typically
only a transient state for such things as rubber-banding and pop-up menus, or to execute
requests indivisibly.

Windows, pixmaps, cursors, fonts, gcontexts, and colormaps are known as resources.
They all have unique identifiers associated with them for naming purposes. The lifetime
of aresource is bounded by the lifetime of the connection over which the resource was
created. See resource.

A composite that handles the duties required by standard conventions for top-level X
windows.

Children of the same parent window are knowsibbng windows.

A degenerate case of pseudo color in which the RGB values are predefined and read-
only.

A degenerate case of gray scale in which the gray values are predefined and read-only.
The values are typically (near-)linear increasing ramps.

Sibling windows carstackon top of each other. Windows above both obscure and oc-
clude lower windows. This is similar to paper on a desk. The relationship between sib-
ling windows is known as th&tacking order

A slot of contact that controls the visual effect of the contact.

Abitmap thatis used to tile aregion to serve as an additional clip mask for a fill operation
with the foreground color.

CLX Programmer’s Reference

Glossary-209



Glossary

tile

timer

timestamp

top-level contact

top-level-session

top-level-shell

transient-shell

A pixmap can be replicated in two dimensiongl&a region. The pixmap itself is also
known as a tile.

A CLUE object that provides support for animation and other types of time-sensitive
user interfaces. A timer causéismer events to be dispatched to a specific contact for
processing.

Atime value, expressed in milliseconds, typically since the last server reset. Timestamp
values wrap around (after about 49.7 days). The server, given its current time is repre-
sented by timestamp T, always interprets timestamps from clients by treating half of the
timestamp space as being earlier in time than T and half of the timestamp space as being
later intime than T. One timestamp value (hamed CurrentTime) is never generated by the
server; this value is reserved for use in requests to represent the current server time.

A contact whose parentis aroot. A top-level contact is usually a composite at the top of a
hierarchy of other contacts created by an application program.

A subclass o$hellthat is used to communicate with a session manager.
A subclass ohellthat provides full window manager interaction.

A subclass oghell that a window manager typically will unmap when its owner be-
comes unmapped or iconified and will not allow to be individually iconified.

true color A degenerate case of direct color in which the subfields in the pixel value directly encode
the corresponding RGB values. That is, the colormap has predefined read-only RGB
values. The values are typically (near-)linear increasing ramps.

type An arbitrary atom used to identify the interpretation of property data. Types are com-
pletely uninterpreted by the server; they are solely for the benefit of clients.

u

unmanaged A contact that is not under geometry management control.

user interface

A set of abstract interface objects used to control the dialog between an application and
its human user.

\Y

viewable

visible

A window isviewableif it and all of its ancestors are mapped. This does not imply that
any portion of the window is actually visible. Graphics requests can be performed on a
window when itis not viewable, but output will not be retained unless the server is main-
taining backing store.

A region of a window igisibleif someone looking at the screen can actually see it; that
is, the window is viewable and the region is not occluded by any other window.

Glossary-210

CLX Programmer’s Reference



Glossary

W

window gravity When windows are resized, subwindows can be repositioned automatically relative to
some position in the window. This attraction of a subwindow to some part of its parent is
known aswvindow gravity

window manager Manipulation of windows on the screen, and much of the user interface (policy) is typi-

cally provided by avindow manageclient.

window manager shell A subclass o$hell calledwm-shellthat interacts with the window manager.

X

XY Format The data for a pixmap is said to beXif Formatif it is organized as a set of bitmaps
representing individual bit planes, with the planes appearing from most to least signifi-
cant in bit order.

V4

Z Format The data for a pixmap is said to b&iRormatif it is organized as a set of pixel values in

scanline order.

CLX Programmer’s Reference Glossary-211



Glossary

Glossary-212 CLX Programmer’s Reference



General In-

dex

General

A

access control list, 14-179

arc-mode attribute of graphics context, 5-55
arcs, drawing, 6-74—6-75

area of a window, 6-69—6-71

atom, 11-111—11-112

attribute name, 13-161

authorization
data of display, 2-24
name of display, 2-24

auto-repeat keys, 14-170—14-173

B

background attribute
graphics context, 5-56
window, 4-38

backing-pixel attribute of window, 4-39
backing-planes attribute of window, 4-39
backing-store attribute of window, 4-39
backing-stores attribute of screen, 3-32
bell, 14-170—14-173

bit-gravity attribute of window, 4-39

bit vector, keyboard, 14-170—14-173

bitmap, 1-2
format of display, 2-24

black-pixel attribute of screen, 3-32
border attribute of window, 4-40
border-width attribute of window, 4-37
button, grabbing, 12-132—12-133
:button-press event, 12-136

:button-release event, 12-136
example, 1-9

byte order of display, 2-24

C

cap-style attribute of graphics context, 5-56

character, 8-89—8-98
attributes, 8-89, 8-96—8-97

.circulate-notify event, 12-147

.circulate-request event, 12-152
class, window, 4-40
classes of visual types supported, 3-31

client, 1-2
communications events, 12-155—12-157
termination, 14-176—14-178

:client-message event, 12-155

clip-mask attribute of graphics context, 5-57
clip-x attribute of graphics context, 5-58
clip-y attribute of graphics context, 5-58

CLX

error conditions, 16-185—16-190

examples, 1-3—1-11
calculating menu size, 1-6
creating menu window, 1-5
creating subwindows, 1-5
definition of menu structure, 1-3
drawing/redrawing menus, 1-7
main client program, 1-10
menu processing of user input, 1-8

overview, 1-1—1-22

xatom objects, 11-111

color, 9-99—9-108
allocating, 9-103—9-105
changing, 9-99, 9-105—9-106
creating, 9-99
finding, 9-105

colormap, 9-99—9-108
accessors, 9-107
attribute of window, 4-40
creating, 9-101—9-102
installing, 9-102—9-103
maximum number for screen, 3-33
minimum number for screen, 3-33
screen default, 3-32

:colormap-notify event, 12-153
complete resource class, 13-163

CLX Programmer’s Reference

Index-213



General Index

complete resource name, 13-163 minor version, 2-27
» version, 2-27
conditions, CLX, 16-185 request maximum length, 2-26
:configure-notify event, 12-148 resource-id
:configure-request event, 12-153 base, 2-27
mask, 2-28

control, 14-169—14-182 roots, 2-28

client termination, 14-176—14-178 server resource ID, 2-28

grabbing the server, 14-169 vendor, 2-28

host access, 14-179—14-180 name, 2-28

keyboard, 14-170—14-173 version number, 2-28

pointer, 14-169—14-170 window object, 4-41

screen saver, 14-180—14-182

do-not-propagate-mask attribute of window, 4-41
.create-notify event, 12-149

drawable, 1-2, 4-35—4-52

cursor, 10-107—10-110 geometry
attribute of window, 4-41 reader and setf functions, 4-45
values, batching, 4-43
drawing
D arcs, 6-74
glyphs, 6-75—6-80
dash-offset attribute of graphics context, 5-58 lines, 6-71—6-73
dashes attribute of graphics context, 5-58 points, 6-71
rectangles, 6-73
default colormap of screen, 3-32 text, 6-75
depth attribute of window, 4-37
depths of screen, 3-32 E
.destroy-notify event, 12-149
destroying windows, 4-49 :enter-notify event, 12-138
) example, 1-9
device events, 12-119 .
events returned, 12-119 error conditions, CLX, 16-185—16-190
display, 1-2, 2-23—2-30 error handler of display, 2-25
attributes, 2-24—2-29 event, 1-2, 12-119—12-160
authorization :button-press, 12-136
data, 2-24 :button-release, 12-136
name, 2-24 example, 1-9
bitmap format, 2-24 :circulate-notify, 12-147
byte order, 2-24 :circulate-request, 12-152
closing, 2-29 client communications, 12-155—12-157
error handler, 2-25 :client-message, 12-155
image leftmost bit, 2-25 :colormap-notify, 12-153
keycode :configure-notify, 12-148
maximum value, 2-26 :configure-request, 12-153
minimum value, 2-26 :create-notify, 12-149
range, 2-25 :destroy-notify, 12-149
motion buffer size, 2-26 device, 12-119
number, 2-24 events returned, 12-119
opening, 2-23 :enter-notify, 12-138
output buffer management, 2-29 example, 1-9
pixmap formats, 2-26 :exposure, 12-145
property list, 2-27 example, 1-9
protocol exposure, 12-145—12-147
major version, 2-27 :focus-in, 12-140

Index-214 CLX Programmer’s Reference



:focus-out, 12-140

grabbing
button, 12-132—12-133
key, 12-134—12-160
keyboard, 12-133—12-134
pointer, 12-130—12-131

:graphics-exposure, 12-146

:gravity-notify, 12-150

input, 1-2

input focus, 12-140—12-143

‘key-press, 12-136

‘key-release, 12-136

keyboard, 12-136—12-140
state, 12-144

:keymap-notify, 12-144

:leave-notify, 12-138
example, 1-9

managing

event queue, 12-124—12-125

input focus, 12-128—12-129
:map-notify, 12-150
‘map-request, 12-154
‘mapping-notify, 12-144
:motion-notify, 12-137
‘no-exposure, 12-146
pointer, 12-136—12-140

position, 12-126—12-128

state, 12-144
processing, 12-122—12-124
:property-notify, 12-155
‘reparent-notify, 12-151
‘resize-request, 12-154
selecting, 12-120—12-121
:selection-clear, 12-155
:selection-notify, 12-156
:selection-request, 12-156
sending, 12-125—12-126
side-effect, 12-119

events returned, 12-119

structure control, 12-152—12-154

types, 12-135—12-158
declaring, 12-157
:unmap-notify, 12-151
wvisibility-notify, 12-152
window state, 12-147—12-152

event mask
keywords, 12-121
event types selected, 12-121
root of screen, 3-32

event-mask, attribute of window, 4-41

event masks, window, 4-38

examples, CLXSeeCLX examples

General In-

dex

:exposure event, 12-145
example, 1-9

exposure events, 12-145—12-147
exposures attribute of graphics context, 5-59
extensions, 15-183—15-184

F

fill-rule attribute of graphics context, 5-59
fill-style attribute of graphics context, 5-60
:focus-in event, 12-140

:focus-out event, 12-140

font, 8-89—8-98
attribute of graphics context, 5-61
attributes, 8-91—8-95
character attributes, 8-89, 8-96
closing, 8-89
listing, 8-90—8-91
opening, 8-89—8-90
guerying text size, 8-97—8-98

foreground attribute of graphics context, 5-61

function attribute of graphics context, 5-61
logical operation codes, 5-62

G

glyphs, 8-89
drawing, 6-75—6-80

grab types, 12-120

grabbing
button, 12-132—12-133
key, 12-134—12-160
keyboard, 12-133—12-134
pointer, 12-130—12-131
server, 14-169

graphics, 6-69—6-80
area, 6-69—6-71
drawing
arcs, 6-74—6-75
glyphs, 6-75—6-80
lines, 6-71—6-73
points, 6-71
rectangles, 6-73
text, 6-75—6-80
plane, 6-69—6-71
graphics context, 5-53—5-68

attribute
arc-mode, 5-55

CLX Programmer’s Reference

Index-215



General Index

background, 5-56
cap-style, 5-56
clip-mask, 5-57
clip-x, 5-58
clip-y, 5-58
dash-offset, 5-58
dashes, 5-58
exposures, 5-59
fill-rule, 5-59
fill-style, 5-60
font, 5-61
foreground, 5-61
function, 5-61
logical operation codes, 5-62
join-style, 5-62
line-style, 5-63
line-width, 5-63
plane-mask, 5-64
stipple, 5-65
best, 5-67
subwindow-mode, 5-66
tile, 5-66
best, 5-67
ts-x, 5-67
ts-y, 5-67
attributes, 5-55—5-67
cache, 5-68
components, default values, 5-55
copying, 5-67
creating, 5-54—5-55
destroying, 5-68
local cache mode, 5-56

:graphics-exposure event, 12-146
gravity attribute of window, 4-41
:gravity-notify event, 12-150

H

height
attribute of window, 4-37
screen, 3-33
screen in millimeters, 3-33

host, managing access, 14-179—14-180

ID, window, 4-42

image, 7-81—7-88
leftmost bit of display, 2-25

focus events, 12-140—12-143

J

join-style attribute of graphics context, 5-62

K

key
auto-repeat, 14-170—14-173
click, 14-170—14-173
grabbing, 12-134—12-160

‘key-press event, 12-136
:key-release event, 12-136

keyboard
bell, 14-170
bit vector, 14-170—14-173
control, 14-170—14-173
encodings, 14-173—14-176
events, 12-136—12-140
grabbing, 12-133—12-134
mapping, 14-170—14-173, 14-174—14-175
state event, 12-144

keycode
maximum value of display, 2-26
minimum value of display, 2-26
range of display, 2-25

keycodes, 14-173—14-174
usage, 14-175—14-176

‘keymap-notify event, 12-144

keysyms, 14-173—14-174
usage, 14-175—14-176

L

:leave-notify event, 12-138
example, 1-9

line-style attribute of graphics context, 5-63
line-width attribute of graphics context, 5-63
lines, drawing, 6-71—6-73

M

:map-notify event, 12-150
‘map-request event, 12-154
map state of window, 4-42

input
event, 1-2 :mapping-notify event, 12-144
Index-216 CLX Programmer’s Reference



General In-
dex

mapping windows, 4-47—4-49 R
motion buffer size of display, 2-26 )

) ) rectangles, drawing, 6-73
:motion-notify event, 12-137

mouse, behavior, 14-170—14-173

:reparent-notify event, 12-151

reply, 1-2
representation type, standard conversions, 4-45
N request maximum length of display, 2-26
:resize-request event, 12-154
‘no-exposure event, 12-146 resource, 13-161—13-168
number of display, 2-24 accessing, 13-163—13-166

binding, 13-161—13-162
examples, 13-162
complete class, 13-163
O complete name, 13-163
database, 13-161, 13-162—13-163

obscuring window, 1-2 files, 13-166
ff 2.9 matching, 13-164

output buffer management, 2-29 name. 13-161

override-redirect attribute of window, 4-42 search table, 13-165
server, 13-161

resource-id

P base of display, 2-27
mask of display, 2-28

path list, 13-161 root, 1-2

pixmap, 1-2, 4-35—4-52 dgpth of screen, 3-34

formats of display, 2-26 display, 2-28

event mask of screen, 3-32

plane, 6-69—6-71 visual type of screen, 3-34

plane-mask attribute of graphics context, 5-64 window of screen, 3-33

pointer
button S
obtaining, 14-170—14-173
setting, 14-170—14-173 save-under attribute of window, 4-43

control, 14-169—14-170

save-unders-p attribute of screen, 3-34
events, 12-136—12-140

grabbing, 12-130—12-131 screen, 1-2, 3-31—3-34
position, 12-126—12-128 attributes, 3-31—3-34
state event, 12-144 backing-stores attribute, 3-32
black-pixel attribute, 3-32
points, drawing, 6-71 colormap, default, 3-32
property, 11-112—11-115 colormaps maximum number, 3-33
colormaps minimum number, 3-33
property list depths, 3-32
display, 2-27 event mask root, 3-32
screen, 3-33 height, 3-33
window, 4-43 height in millimeters, 3-33

property list, 3-33

:property-notify event, 12-155 root depth, 3-34

protocol root visual type, 3-34
major version of display, 2-27 root window, 3-33
minor version of display, 2-27 save-unders-p attribute, 3-34
version of display, 2-27 saver, 14-180—14-182

CLX Programmer’s Reference Index-217



General Index

white pixel, 3-34
width, 3-34
width in millimeters, 3-34

selection, 11-115—11-118
:selection-clear event, 12-155
:selection-notify event, 12-156
:selection-request event, 12-156

server
grabbing, 14-169
resource, 13-161
resource ID of display, 2-28

shell
popping down, 208
popping up, 208

side-effect events, 12-119
events returned, 12-119

stacking order of window, 4-45—4-46
stacking priority of window, 4-43

stipple
attribute of graphics context, 5-65
best, graphics context, 5-67

structure control events, 12-152—12-154
subwindow-mode attribute of graphics context, 5-66

T

text
drawing, 6-75—6-80
size querying, 8-97—=8-98

tile, 1-2
attribute of graphics context, 5-66
best, graphics context, 5-67

ts-x attribute of graphics context, 5-67
ts-y attribute of graphics context, 5-67

U

:unmap-notify event, 12-151
unmapping windows, 4-47—4-49

V

vendor
display, 2-28
name of display, 2-28

version number of display, 2-28
wvisibility-notify event, 12-152

visual type of window, 4-43

visual types, classes supported, 3-31
visuals, 3-31

W

white pixel of screen, 3-34

width
attribute of window, 4-37
screen, 3-34
screen in millimeters, 3-34

window, 4-35—4-52
attribute
background, 4-38
backing-pixel, 4-39
backing-planes, 4-39
backing-store, 4-39
bit-gravity, 4-39
border, 4-40
border-width, 4-37
colormap, 4-40
cursor, 4-41
depth, 4-37
do-not-propagate-mask, 4-41
event-mask, 4-41
gravity, 4-41
height, 4-37
override-redirect, 4-42
save-under, 4-43
width, 4-37
attributes, 4-37
batching, 2-29, 4-43
reader and setf functions, 4-45
class, 4-40
creating, 4-35
destroying, 4-49
display object, 4-41
event masks, 4-38
hierarchy, 4-46—4-47
ID, 4-42
map state, 4-42
mapping, 4-47—4-49
obscure, 1-2
property list, 4-43
stacking order, 4-45—4-46
stacking priority, 4-43
state events, 12-147—12-152
unmapping, 4-47—4-49
visual type, 4-43
x coordinate, 4-38
y coordinate, 4-38

Index-218

CLX Programmer’s Reference



General In-
dex

X

X server, reset operations, 14-177
X Window System, overview, 1-1—1-3

CLX Programmer’s Reference Index-219



Conditions Index

Conditions

A

xlib:access-error, 16-185
xlib:alloc-error, 16-185

xlib:atom-error, 16-185

C

xlib:closed-display, 16-185
xlib:colormap-error, 16-186
xlib:connection-failure, 16-186

xlib:cursor-error, 16-186

D

xlib:device-busy, 16-186

xlib:drawable-error, 16-186

F

xlib:font-error, 16-186

G

xlib:gcontext-error, 16-187

xlib:id-choice-error, 16-187

xlib:implementation-error, 16-187

L

xlib:length-error, 16-187
xlib:lookup-error, 16-187

M

xlib:match-error, 16-188
xlib:missing-parameter, 16-188

N

xlib:name-error, 16-188

P

xlib:pixmap-error, 16-188

R

xlib:reply-length-error, 16-188
xlib:reply-timeout, 16-188
xlib:request-error, 16-189
xlib:resource-error, 16-189

S

xlib:sequence-error, 16-189
xlib:server-disconnect, 16-189

U

xlib:unexpected-reply, 16-190
xlib:unknown-error, 16-190

V

xlib:value-error, 16-190

W

xlib:window-error, 16-190

X

xlib:x-error, 16-190

Index-220

CLX Programmer’s Reference



Function Index

Functions

A

xlib:access-control, 14-179
xlib:access-hosts, 14-179
xlib:activate-screen-saver, 14-180
xlib:add-access-host, 14-179
xlib:add-resource, 13-162
xlib:add-to-save-set, 14-178
xlib:alloc-color, 9-103
xlib:alloc-color-cells, 9-103
xlib:alloc-color-planes, 9-104
xlib:allow-events, 12-158

xlib:atom-name, 11-112

B

xlib:bell, 14-170

C

xlib:change-active-pointer-grab, 12-131
xlib:change-keyboard-control, 14-171
xlib:change-keyboard-mapping, 14-174
xlib:change-pointer-control, 14-169
xlib:change-property, 11-113
xlib:char-ascent, 8-96
xlib:char-attributes, 8-96
xlib:char-descent, 8-96
xlib:char-left-bearing, 8-96
xlib:char-right-bearing, 8-96
xlib:char-width, 8-97
xlib:circulate-window-down, 4-45
xlib:circulate-window-up, 4-46
xlib:clear-area, 6-69

xlib:close-display, 2-30, 5-57
example, 1-10

xlib:close-down-mode, 14-178

xlib:close-font, 8-90

xlib:color-blue, 9-100
xlib:color-green, 9-100

xlib:color-p, 9-100

xlib:color-red, 9-100

xlib:color-rgh, 9-100
xlib:colormap-display, 9-107
xlib:colormap-equal, 9-107
xlib:colormap-id, 9-107
xlib:colormap-p, 9-107
xlib:colormap-plist, 9-107
xlib:convert-selection, 11-116
xlib:copy-area, 6-70
xlib:copy-colormap-and-free, 9-102
xlib:copy-gcontext, 5-67
xlib:copy-gcontext-components, 5-68
xlib:copy-image, 7-85
xlib:copy-plane, 6-70
xlib:create-colormap, 9-101
xlib:create-cursor, 10-107

xlib:create-gcontext, 5-54
example, 1-5

xlib:create-glyph-cursor, 10-108
xlib:create-image, 7-83
xlib:create-pixmap, 4-50

xlib:create-window, 4-35
example, 1-5, 1-6

xlib:cursor-display, 10-109
xlib:cursor-equal, 10-109
xlib:cursor-id, 10-109
xlib:cursor-p, 10-109
xlib:cursor-plist, 10-109

D

xlib:declare-event, 12-157
xlib:define-condition, 16-185
xlib:delete-property, 11-113
xlib:delete-resource, 13-163

CLX Programmer’s Reference

Index-221



Function Index

xlib:destroy-subwindows, 4-49 xlib:draw-image-glyphs, 6-78
xlib:destroy-window, 4-49 example, 1-8

example, 1-6 xlib:draw-line, 6-72
xlib:discard-current-event, 12-124 xlib:draw-lines, 6-72
xlib:discard-font-info, 8-90 xlib:draw-point, 6-71

xlib:display-after-function, 2-29 xlib:draw-points, 6-71

xlib:display-authorization-data, 2-24 Xlib:draw-rectangle, 6-73

xlib:display-authorization-name, 2-24 Xlib:draw-rectangles, 6-73
xlib:draw-segments, 6-73
xlib:drawable-border-width, 4-37
xlib:drawable-depth, 4-37

xlib:drawable-display, 4-35

xlib:display-bitmap-format, 2-24
xlib:display-byte-order, 2-24
xlib:display-display, 2-24

xlib:display-error-handler, 2-25 example, 1-9

xlib:display-finish-output, 2-29 xlib:drawable-equal, 4-35

xlib:display-force-output, 2-29 xlib:drawable-height, 4-37
example, 1-7

xlib:display-image-Isb-first-p, 2-25
xlib:drawable-id, 4-35

xlib:drawable-p, 4-35
xlib:drawable-plist, 4-35
xlib:drawable-root, 4-46
xlib:drawable-width, 4-37

xlib:display-keycode-range, 2-25
xlib:display-max-keycode, 2-26
xlib:display-max-request-length, 2-26
xlib:display-min-keycode, 2-26

xlib:display-motion-buffer-size, 2-26 example, 1-7
xlib:display-p, 2-26 xlib:drawable-x, 4-38
xlib:display-pixmap-formats, 2-26 -example, 17
xlib:display-plist, 2-27 X"g;‘;ﬁ";’%ﬁ"f}” 4-38
xlib:display-protocol-major-version, 2-27
xlib:display-protocol-minor-version, 2-27 E

xlib:display-protocol-version, 2-27

xlib:display-resource-id-base, 2-27 xlib-event-case, 12-123

example, 1-9
xlib:display-resource-id-mask , 2-28 «lib-event-cond. 12-123
xlib:display-roots, 2-28 xlib:event-listen, 12-125

example, 1-10

xlib:display-vendor, 2-28

F

xlib:display-vendor-name, 2-28

xlib:display-version-number, 2-28 xlib:find-atom, 11-112
xlib:display-xid, 2-28 xlib:font-all-chars-exist-p, 8-91
xlib:draw-arc, 6-74 xlib:font-ascent, 8-91

example, 1-7, 1-8
xlib:font-default-char, 8-91

xlib:font-descent, 8-92
xlib:draw-glyphs, 6-76 example, 1-7

xlib:draw-arcs, 6-75

xlib:draw-glyph, 6-76

xlib:draw-image-glyph, 6-77 xlib:font-direction, 8-92

Index-222 CLX Programmer’s Reference



xlib:font-display, 8-92
xlib:font-equal, 8-92
xlib:font-id, 8-92
xlib:font-max-bytel, 8-92
xlib:font-max-byte2, 8-92
xlib:font-max-char, 8-93
xlib:font-min-bytel, 8-93
xlib:font-min-byte2, 8-93
xlib:font-min-char, 8-93
xlib:font-name, 8-93
xlib:font-p, 8-93
xlib:font-path, 8-90
xlib:font-plist, 8-93
xlib:font-properties, 8-94
xlib:font-property, 8-94

xlib:force-gcontext-changes, 5-68

xlib:free-colormap, 9-102
xlib:free-colors, 9-104
xlib:free-cursor, 10-108
xlib:free-gcontext, 5-68
xlib:free-pixmap, 4-50

G

xlib:gcontext-arc-mode, 5-55

xlib:gcontext-background, 5-56
example, 1-6, 1-8

xlib:gcontext-cache-p, 5-56
xlib:gcontext-cap-style, 5-56
xlib:gcontext-clip-x, 5-58
xlib:gcontext-clip-y, 5-58
xlib:gcontext-dash-offset, 5-58
xlib:gcontext-dashes, 5-58
xlib:gcontext-display, 5-59
xlib:gcontext-equal, 5-59
xlib:gcontext-exposures, 5-59
xlib:gcontext-fill-rule, 5-59
xlib:gcontext-fill-style, 5-60

xlib:gcontext-font, 5-61
example, 1-7, 1-8

xlib:gcontext-foreground, 5-61
example, 1-8

xlib:gcontext-function, 5-61
xlib:gcontext-id, 5-62
xlib:gcontext-join-style, 5-62
xlib:gcontext-line-style, 5-63
xlib:gcontext-line-width, 5-63
xlib:gcontext-p, 5-64
xlib:gcontext-plane-mask, 5-64
xlib:gcontext-plist, 5-65
xlib:gcontext-stipple, 5-65
xlib:gcontext-subwindow-mode, 5-66
xlib:gcontext-tile, 5-66
xlib:gcontext-ts-x, 5-67
xlib:gcontext-ts-y, 5-67
xlib:get-image, 7-85
xlib:get-property, 11-114
xlib:get-raw-image, 7-87
xlib:get-resources, 13-165
xlib:get-search-resource, 13-166
xlib:get-search-table, 13-165
xlib:global-pointer-position, 12-126
xlib:grab-button, 12-132
xlib:grab-keyboard, 12-133, 12-134
xlib:grab-pointer, 12-130
xlib:grab-server, 14-169

H

xlib:handler-function, 12-122

xlib:image-blue-mask, 7-81
xlib:image-depth, 7-81
xlib:image-green-mask, 7-81
xlib:image-height, 7-82
xlib:image-name, 7-82
xlib:image-plist, 7-82
xlib:image-red-mask, 7-82
xlib:image-width, 7-82

Function Index

CLX Programmer’s Reference

Index-223



Function Index

xlib:image-x-hot, 7-82
xlib:image-xy-bitmap-list, 7-83
xlib:image-y-hot, 7-82
xlib:image-z-bits-per-pixel, 7-83
xlib:image-z-pixarray, 7-83
xlib:input-focus, 12-129
xlib:install-colormap, 9-102
xlib:installed-colormaps, 9-102
xlib:intern-atom, 11-112

K

xlib:keyboard-control, 14-172
xlib:keyboard-mapping, 14-175
xlib:keycode-character, 14-176
xlib:keycode-keysym, 14-175
xlib:kill-client, 14-178
xlib:kill-temporary-clients, 14-178

L

xlib:list-extensions, 15-183
xlib:list-font-names, 8-91
xlib:list-fonts, 8-91
xlib:list-properties, 11-114
xlib:lookup-color, 9-105

M

xlib:make-color, 9-100
xlib:make-event-keys, 1-16

xlib:make-event-mask, 1-16
example, 1-5, 1-6

xlib:make-resource-database, 13-162

xlib:make-state-keys, 1-20
xlib:make-state-mask, 1-20
xlib:map-resource, 13-163

xlib:map-subwindows, 4-49
example, 1-7

xlib:map-window, 4-48
xlib:max-char-ascent, 8-94

xlib:max-char-attributes, 8-94
xlib:max-char-descent, 8-94
xlib:max-char-left-bearing, 8-94
xlib:max-char-right-bearing, 8-94
xlib:max-char-width, 8-94
xlib:merge-resources, 13-163
xlib:min-char-ascent , 8-95
xlib:min-char-attributes, 8-95
xlib:min-char-descent, 8-95
xlib:min-char-left-bearing, 8-95
xlib:min-char-right-bearing, 8-95
xlib:min-char-width, 8-95
xlib:modifier-mapping, 14-172
xlib:motion-events, 12-127

O

xlib:open-display, 2-23
example, 1-10

xlib:open-font, 8-90
example, 1-10

P

xlib:pixmap-display, 4-50
xlib:pixmap-equal, 4-50
xlib:pixmap-id, 4-50
xlib:pixmap-p, 4-51
xlib:pixmap-plist, 4-51
xlib:pointer-control, 14-170
xlib:pointer-mapping, 14-170
xlib:pointer-position, 12-126
xlib:process-event, 12-122
xlib:put-image, 7-86
xlib:put-raw-image, 7-88

Q

xlib:query-best-cursor, 10-109
xlib:query-best-stipple, 5-67
xlib:query-best-tile, 5-67
xlib:query-colors, 9-105

Index-224

CLX Programmer’s Reference



xlib:query-extension, 15-183
xlib:query-keymap, 14-172

xlib:query-pointer, 12-126
example, 1-10

xlib:query-tree, 4-46
xlib:queue-event, 12-124

R

xlib:read-bitmap-file, 7-87
xlib:read-resources, 13-166
xlib:recolor-cursor, 10-109
xlib:remove-access-host, 14-180
xlib:remove-from-save-set , 14-178
xlib:reparent-window, 4-46
xlib:reset-screen-saver, 14-180
xlib:rotate-properties, 11-114

S

xlib:screen-backing-stores, 3-32

xlib:screen-black-pixel, 3-32
example, 1-10

xlib:screen-default-colormap, 3-32
xlib:screen-depths, 3-32
xlib:screen-event-mask-at-open, 3-32
xlib:screen-height, 3-33
xlib:screen-height-in-millimeters, 3-33
xlib:screen-max-installed-maps, 3-33
xlib:screen-min-installed-maps, 3-33
xlib:screen-p, 3-33

xlib:screen-plist, 3-33

xlib:screen-root, 3-33
example, 1-10

xlib:screen-root-depth, 3-34
xlib:screen-root-visual, 3-34
xlib:screen-save-unders-p, 3-34
xlib:screen-saver, 14-180

xlib:screen-white-pixel, 3-34
example, 1-10

xlib:screen-width, 3-34

Function Index

xlib:screen-width-in-millimeters, 3-34
xlib:selection-owner, 11-117
xlib:send-event, 12-125
xlib:set-input-focus, 12-128
xlib:set-modifier-mapping, 14-172
xlib:set-screen-saver, 14-181
xlib:store-color, 9-105
xlib:store-colors, 9-106

T

xlib:text-extents, 8-97
example, 1-7

xlib:text-width, 8-98
xlib:translate-coordinates, 4-47
xlib:translate-function, 6-78

U

xlib:ungrab-button, 12-133
xlib:ungrab-key, 12-135
xlib:ungrab-keyboard, 12-134
xlib:ungrab-pointer, 12-131
xlib:ungrab-server, 14-169
xlib:uninstall-colormap, 9-103
xlib:unmap-subwindows, 4-49

xlib:unmap-window, 4-49
example, 1-9

W

xlib:warp-pointer, 12-127
xlib:warp-pointer-if-inside, 12-127
xlib:warp-pointer-relative, 12-127
xlib:warp-pointer-relative-if-inside, 12-128
xlib:window-all-event-masks , 4-38
xlib:window-background, 4-38
xlib:window-backing-pixel, 4-39
xlib:window-backing-planes, 4-39
xlib:window-backing-store, 4-39
xlib:window-bit-gravity, 4-39
xlib:window-border, 4-40

CLX Programmer’s Reference

Index-225



Function Index

xlib:window-class, 4-40
xlib:window-colormap, 4-40
xlib:window-colormap-installed-p, 4-40
xlib:window-cursor, 4-41
xlib:window-display, 4-41
xlib:window-do-not-propagate-mask, 4-41
xlib:window-equal, 4-41
xlib:window-event-mask, 4-41
xlib:window-gravity, 4-41
xlib:window-id, 4-42
xlib:window-map-state, 4-42
xlib:window-override-redirect, 4-42
xlib:window-p, 4-43

xlib:window-plist, 4-43
xlib:window-priority, 4-43
xlib:window-save-under, 4-43
xlib:window-visual, 4-43
xlib:with-display, 2-29
xlib:with-event-queue, 12-125

xlib:with-gcontext, 5-68
example, 1-8

xlib:with-server-grabbed, 14-169

xlib:with-state, 4-43
example, 1-7

xlib:write-bitmap-file, 7-87
xlib:write-resources, 13-167

Index-226

CLX Programmer’s Reference



Types Index

Types

A

xlib:alist, 1-12
xlib:angle, 1-12
xlib:arc-seq, 1-12
xlib:array-index, 1-12

B

xlib:bit-gravity, 1-12
xlib:bitmap, 1-12
xlib:bitmap-format, 1-13
xlib:boole-constant, 1-14
xlib:boolean, 1-14

C

xlib:card16, 1-14
xlib:card29, 1-14
xlib:card32, 1-14
xlib:card8, 1-14
xlib:color, 1-14
xlib:colormap, 1-14
xlib:cursor, 1-14

D

xlib:device-event-mask, 1-14

xlib:device-event-mask-class, 1-14

xlib:display, 1-15
xlib:draw-direction, 1-15
xlib:drawable, 1-15

E

xlib:error-key, 1-15
xlib:event-key, 1-15

xlib:event-mask, 1-15
xlib:event-mask-class, 1-16

F

xlib:font, 1-16
xlib:font-props, 1-16
xlib:fontable, 1-16

G

xlib:gcontext, 1-16
xlib:gcontext-key, 1-16
xlib:grab-status, 1-17

xlib:image-depth, 1-17
xlib:index-size, 1-17
xlib:int16, 1-17
xlib:int32, 1-17
xlib:int8, 1-17

K

xlib:keysym, 1-17

M

xlib:mask16, 1-17
xlib:mask32, 1-18
xlib:modifier-key, 1-18
xlib:modifier-mask, 1-18

P

xlib:pixarray, 1-18
xlib:pixel, 1-18
xlib:pixmap, 1-18
xlib:pixmap-format, 1-18

CLX Programmer’s Reference

Index-227



Types Index

xlib:point-seq, 1-19
xlib:pointer-event-mask, 1-19

xlib:pointer-event-mask-class, 1-19

R

xlib:rect-seq, 1-19
xlib:repeat-seq, 1-19
xlib:resource-id, 1-20
xlib:rgb-val, 1-20

S

xlib:screen, 1-20
xlib:seg-seq, 1-20
xlib:state-mask-key, 1-20

xlib:stringable, 1-20

T

xlib:timestamp, 1-21

V

xlib:visual-info, 1-21

W

xlib:win-gravity, 1-22
xlib:window, 1-22

X

xlib:xatom, 1-22

Index-228

CLX Programmer’s Reference



	INTRODUCTION TO CLX
	Introduction
	The X Window System
	A Quick Tour of CLX
	Naming and Argument Conventions
	Programming Considerations
	Data Types

	DISPLAYS
	Introduction
	Opening the Display
	Display Attributes
	Managing the Output Buffer
	Closing the Display

	SCREENS
	Screens and Visuals
	Screen Attributes

	WINDOWS AND PIXMAPS
	Drawables
	Creating Windows
	Window Attributes
	Stacking Order
	Window Hierarchy
	Mapping Windows
	Destroying Windows
	Pixmaps

	GRAPHICS CONTEXTS
	Introduction
	Creating Graphics Contexts
	Graphics Context Attributes
	Copying Graphics Contexts
	Destroying Graphics Contexts
	Graphics Context Cache

	GRAPHIC OPERATIONS
	Introduction
	Area and Plane Operations
	Drawing Points
	Drawing Lines
	Drawing Rectangles
	Drawing Arcs
	Drawing Text

	IMAGES
	Introduction
	Image Types
	Image Functions
	Image Files
	Direct Image Transfer

	FONTS AND CHARACTERS
	Introduction
	Opening Fonts
	Listing Fonts
	Font Attributes
	Character Attributes
	Querying Text Size

	COLORS
	Colormaps and Colors
	Color Functions
	Colormap Functions

	CURSORS
	Introduction
	Creating Cursors
	Cursor Functions
	Cursor Attributes

	ATOMS, PROPERTIES, AND SELECTIONS
	Atoms
	Properties
	Selections

	EVENTS AND INPUT
	Introduction
	Selecting Events
	Processing Events
	Managing the Event Queue
	Sending Events
	Pointer Position
	Managing Input Focus
	Grabbing the Pointer
	Grabbing a Button
	Grabbing the Keyboard
	Grabbing a Key
	Event Types
	Releasing Queued Events

	RESOURCES
	Introduction
	Resource Bindings
	Basic Resource Database Functions
	Accessing Resource Values
	Resource Database Files

	CONTROL FUNCTIONS
	Grabbing the Server
	Pointer Control
	Keyboard Control
	Keyboard Encodings
	Client Termination
	Managing Host Access
	Screen Saver

	EXTENSIONS
	Extensions

	ERRORS
	Introduction

	PROTOCOL VS. CLX FUNCTIONAL CROSS- REFERENCE LISTING
	GLOSSARY

